Abstract
We have devised a new drug screening assay to discover anti‐cancer drugs which inhibit Ras‐mediated cellular signals, by utilizing a Ras‐responsive element (RRE)‐driven reporter gene system. We found that hypothemycin, an anti‐bacterial, reduces RRE‐dependent transcription. Treatment of tumor cells with hypothemycin resulted in reduced expression of Ras‐inducible genes, including MMP (matrix metalloproteinase)‐1, MMP‐9, transforming growth factor‐β (TGF‐β), and vascular endothelial growth factor (VEGF), but not that of the constitutively expressed gene, MMP‐2. The results of zymography demonstrated that hypothemycin reduced the production of MMP‐9 and MMP‐3, another Ras‐inducible MMP, in the culture medium. Hypothemycin selectively inhibits anchorage‐independent growth of Ras‐transformed cells in comparison with anchorage‐dependent growth. These findings suggest that hypothemycin inhibits Ras‐mediated cellular signaling. Daily treatment of tumor‐bearing mice with hypothemycin resulted in significant inhibition of tumor growth. Since MMP‐1, MMP‐3 and MMP‐9 play important roles in tumor invasion and TGF‐? and VEGF are involved in tumor angiogenesis, hypothemycin is considered to be an example of a new class of antitumor drugs, whose antitumor efficacy can be at least partly attributed to inhibition of Ras‐inducible genes.
Keywords: Reporter gene‐based assay, Ras‐inhibitor, Hypothemycin, Matrix metalloproteinases, Vascular endothelial growth factor
Full Text
The Full Text of this article is available as a PDF (243.7 KB).
REFERENCES
- 1. ) Bos , J. L.ras oncogenes in human cancer: a review . Cancer Res. , 49 , 4682 – 4689 ( 1989. ). [PubMed] [Google Scholar]
- 2. ) Shirasawa , S. , Furuse , M. , Yokoyama , N. and Sasazaki , Altered T.growth of human colon cancer cell lines disrupted at activated ki‐ras . Science , 260 , 85 – 88 ( 1993. ) [DOI] [PubMed] [Google Scholar]
- 3. ) Marshall , C. J.Opportunities for pharmacological intervention in the ras pathway . Ann. Oncol. , 6 ( Suppl. 1 ), S63 – S67 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Sugita , K. and Ohtani , M.Inhibitors of ras‐transformation . Curr. Pharm. Design , 3 , 323 – 334 ( 1997. ) [Google Scholar]
- 5. ) Gibbs , J. B. and Oliff , A.The potential of farnesyltransferase inhibitors as cancer chemotherapeutics . Annu. Rev. Pharmacol. Toxicol. , 37 , 143 – 166 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Williams , T. M.Inhibitors of protein farnesylation 1998. Exp. Opin . Ther. Patents , 8 , 553 – 569 ( 1998. ). [Google Scholar]
- 7. ) James , G. , Goldstein , J. L. and Brown , M. S.Resistance of K‐RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells . Proc. Natl. Acad. Sci. USA , 93 , 4454 – 4458 ( 1996. ) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Whyte , D. B. , Kirschmeier , P. , Hockenberry , T. N. , Nunez‐Oliva , I. , James , L. , Catino , J. J. , Bishop , W. R. and Pai , J. K.K‐ and N‐Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors . J. Biol. Chem. , 272 , 14459 – 14564 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Lebowitz , P. F. , Davide , J. P. and Prendergast , G. C.Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity . Mol. Cell. Biol. , 15 , 6613 – 6622 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. ) Joneson , T. and Bar‐Sagi , D.Ras effectors and their role in mitogenesis and oncogenesis . J. Mol. Med. , 75 , 587 – 593 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Umezawa , K. , Ohse , T. , Yamamoto , T. , Koyano , T. and Takahashi , Y.Isolation of a new vinca alkaloid from the leaves of Ervatamia microphylla as an inhibitor of ras function . Anticancer Res. , 14 , 2413 – 2418 ( 1994. ). [PubMed] [Google Scholar]
- 12. ) Sugita , K. , Koizumi , K. and Yoshida , H.Morphological reversion of sis‐transformed NIH3T3 cells by trichostatin A . Cancer Res. , 52 , 168 – 172 ( 1992. ) [PubMed] [Google Scholar]
- 13. ) Sugita , K. , Yoshida , H. , Matsumoto , M. and Matsutani , S.A novel compound, depudecin, induces production of transformation to the flat phenotype of NIH3T3 cells transformed by ras‐oncogene . Biochem. Biophys. Res. Commun. , 182 , 379 – 387 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Yoshida , H. and Sugita , K.A novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis‐oncogene‐transformed NIH3T3 cells . Jpn. J. Cancer Res. , 83 , 324 – 328 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. ) Sonoda , H. , Nishida , K. , Yoshioka , T. , Ohtani , M. and Sugita , K.Oxamflatin: a novel compound which reverses malignant phenotype to normal one via induction of JunD . Oncogene , 13 , 143 – 149 ( 1996. ) [PubMed] [Google Scholar]
- 16. ) Powell , W. C. and Matrisian , L. M.Complex roles of matrix metalloproteinases in tumor progression . Curr. Top. Microbiol. Immunol. , 213 ( Part 1 ), 1 – 21 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Bouck , N. , Stellmach , V. and Hsu , S. C.How tumors become angiogenic . Adv. Cancer Res. , 69 , 135 – 174 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Bortner , D. M. , Langer , S. J. and Ostrowski , M. C.Non‐nuclear oncogenes and the regulation of gene expression in transformed cells . Crit. Rev. Oncog. , 4 , 137 – 160 ( 1993. ). [PubMed] [Google Scholar]
- 19. ) Gum , R. , Lengyel , E. , Juarez , J. , Chen , J. H. , Sato , H. , Seiki , M. and Boyd , D.Stimulation of 92‐kDa gelatinase B promoter activity by ras is mitogen–activated protein kinase kinase 1‐independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP–1 sequences . J. Biol. Chem. , 271 , 10672 – 10680 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Imler , J. L. , Schatz , C. , Wasylyk , C. , Chatton , B. and Wasylyk , B.A Harvey‐ras responsive transcription element is also responsive to a tumour‐promoter and to serum . Nature , 332 , 275 – 278 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Noda , M. , Selinger , Z. , Scolnick , E. M. and Bassin , R. H.Flat revertants isolated from Kirsten sarcoma virus‐transformed cells are resistent to the action of specific oncogenes . Proc. Natl. Acad. Sci. USA , 80 , 5602 – 5606 ( 1983. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Nair , M. S. R. , Carey , S. T. and James , J. C.Metabolites of Pyrenomycetes. XIV. Structure and partial stereochemistry of the antibiotic macrolides hypothemycin and dihydrohypothemycin . Tetrahedron , 37 , 2445 – 2449 ( 1981. ). [Google Scholar]
- 23. ) Owen , R. D. , Bortner , D. M. and Ostrowski , M. C.ras oncogene activation of a VL30 transcriptional element is linked to transformation . Mol. Cell. Biol. , 10 , 1 – 9 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. ) Tanaka , H. , Hojo , K. , Yoshida , H. , Yoshioka , T. and Sugita , K.Molecular cloning and expression of the mouse 105–kDa gelatinase cDNA . Biochem. Biophys. Res. Commun. , 190 , 732 – 740 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Uchida , N. , Kasai , H. , Takeda , Y. , Maekawa , R. , Sugita , K. and Yoshioka , T.Synergy of the combination of Nedaplatin with Etoposide in murine and human lung carcinoma . Anticancer Res. , 18 , 247 – 252 ( 1998. ). [PubMed] [Google Scholar]
- 26. ) Dunnet , C. W.New tables for multiple comparisons with a control . Biometrics , 20 , 482 – 491 ( 1964. ). [Google Scholar]
- 27. ) Corcoran , M. L. , Hewitt , R. E. , Kleiner , D. E. , Jr. and Stetler‐Stevenson , W. G.MMP‐2: expression, activation and inhibition . Enzyme Protein , 49 , 7 – 19 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Kumar , C. C. , Bushel , P. , Mohan‐Peterson , S. and Ramirez , F.Regulation of smooth muscle α‐actin promoter in ras‐transformed cells: usefulness for setting up reporter gene‐based assay system for drug screening . Cancer Res. , 52 , 6877 – 6884 ( 1992. ). [PubMed] [Google Scholar]
- 29. ) Kumar , C. C. , Prorock‐Rogers , C. , Kelly , J. , Dong , Z. , Lin , J.‐J. , Armstrong , L. , Kung , H.‐F. , Weber , M. J. and Afonso , A.SCH51344 inhibits ras transformation by a novel mechanism . Cancer Res. , 55 , 5106 – 5117 ( 1995. ). [PubMed] [Google Scholar]
- 30. ) Agatsuma , T. , Takahashi , A. , Kabuto , C. and Nozoe , S.Revised structure and stereochemistry of hypothemycin . Chem. Pharm. Bull. (Tokyo) , 41 , 373 – 375 ( 1993. ). [Google Scholar]
- 31. ) Tischer , E. , Mitchell , R. , Hartman , T. , Silvia , M. , Gospodarowicz , D. , Fiddes , J. C. and Abraham , J. A.The human gene for vascular endothelial growth factor . J. Biol. Chem. , 266 , 11947 – 11954 ( 1991. ). [PubMed] [Google Scholar]
- 32. ) Grugel , S. , Finkenzeller , K. , Weindel , B. , Barleon , B. and Marne , D.Both v‐H‐ras and v‐raf stimulate expression of the vascular endothelial growth factor in NIH3T3 cells . J. Biol. Chem. , 270 , 25915 – 25919 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 33. ) White , F. C. , Benehacene , J. S. , Scheele , J. S. and Kamps , M.VEGF mRNA is stabilized by ras and tyrosine kinase oncogenes, as well as by UV radiation—evidence for divergent stabilization pathways . Growth Factors , 14 , 199 – 212 ( 1997. ). [DOI] [PubMed] [Google Scholar]