Abstract
Human glioma cells frequently overexpress epidermal growth factor receptor (EGFR). We found that the CrkII proto‐oncogene product was associated with the EGFR in human glioma cells in the absence of epidermal growth factor (EGF). EGF stimulation of glioma cells induced the phosphorylation of tyrosine 221 of the CrkII protein, which correlates with its dissociation from the EGFR. By contrast, Shc and Grb2 were inducibly associated with the EGFR in response to EGF stimulation of glioma cells. In A431 cells, epidermoid carcinoma cells which overexpress EGFR, CrkII was tyrosine‐phosphorylated and associated with the EGFR in an EGF‐dependent manner. Therefore, the dissociation of CrkII from the EGFR upon stimulation with EGF appears to be specific to glioma cells. The Cbl oncogene product was also tyrosine‐phosphorylated in U87MG glioma cells upon EGF stimulation. However, unlike in other cell lines, CrkII was not inducibly bound to Cbl in U87MG glioma cells. Thus, EGF‐dependent binding of CrkII to phosphotyrosine‐containing proteins appears to be suppressed in glioma cells. To evaluate the physiological role of dissociation of CrkII from EGFR, we expressed the CrkII‐23 mutant in glioma cells. CrkII‐23 mutant, which was isolated as a suppressor gene of the EGF‐dependent transformation of NRK cells, binds constitutively to EGFR. We found that expression of CrkII‐23 inhibited the anchorage‐independent growth of the glioma cells in the presence of EGF. Taken together, these data implicate EGF‐dependent dissociation of CrkII from EGFR in the oncogenicity of human glioma cells.
Keywords: Adaptor protein, Crk, Epidermal growth factor, Glioma, Tyrosine kinase
Full Text
The Full Text of this article is available as a PDF (318.6 KB).
REFERENCES
- 1. ) Arita , N. , Hayakawa , T. , Izumoto , S. , Taki , T. , Ohnishi , T. , Yamamoto , H. , Bitoh , S. and Mogami , H.Epidermal growth factor receptor in human glioma . J. Neurosurg. , 70 , 916 – 919 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Diedrich , U. , Lucius , J. , Baron , E. , Behnke , J. , Pabst , B. and Zoll , B.Distribution of epidermal growth factor receptor gene amplification in brain tumours and correlation to prognosis . J. Neurol. , 242 , 683 – 688 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Nishikawa , R. , Ji , X. D. , Harmon , R. C. , Lazar , C. S. , Gill , G. N. , Cavenee , W. K. and Huang , H. J.A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity . Proc. Natl. Acad. Sci. USA , 91 , 7727 – 7731 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. ) Tang , P. , Steck , P. A. and Yung , W. K.The autocrine loop of TGF‐alpha/EGFR and brain tumors . J. Neurooncol. , 35 , 303 – 314 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Mayer , B. J. , Hamaguchi , M. and Hanafusa , H.A novel viral oncogene with structural similarity to phospholipase C . Nature , 332 , 272 – 275 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Kizaka‐Kondoh , S. , Matsuda , M. and Okayama , H.CrkII signals from epidermal growth factor receptor to Ras . Proc. Natl. Acad. Sci. USA , 93 , 12177 – 12182 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. ) Matsuda , M. , Tanaka , S. , Nagata , S. , Kojima , A. , Kurata , T. and Shibuya , M.Two species of human CRK cDNA encode proteins with distinct biological activities . Mol. Cell. Biol. , 12 , 3482 – 3489 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Reichman , C. T. , Mayer , B. J. , Keshau , S. and Hanafusa , H.The product of the cellular crk gene consists primarily of SH2 and SH3 regions . Cell Growth Differ. , 3 , 451 – 460 ( 1992. ). [PubMed] [Google Scholar]
- 9. ) Kiyokawa , E. , Mochizuki , N. , Kurata , T. and Matsuda , M.Role of Crk oncogene product in physiologic signaling . Crit. Rev. Oncog. , 8 , 329 – 342 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Feller , S. M. , Knudsen , B. and Hanafusa , H.Cellular proteins binding to the first src homology 3 (SH3) domain of the proto‐oncogene product c‐crk indicate crk‐specific signaling pathways . Oncogene , 10 , 1465 – 1473 ( 1995. ). [PubMed] [Google Scholar]
- 11. ) Tanaka , S. , Hattori , S. , Kurata , T. , Nagashima , K. , Fukui , Y. , Nakamura , S. and Matsuda , M.Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells . Mol. Cell. Biol. , 13 , 4409 – 4415 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Tanaka , S. , Morishita , T. , Hashimoto , Y. , Hattori , S. , Nakamura , S. , Takenawa , T. , Matuoka , K. , Shibuya , M. , Kurata , T. , Nagashima , K. and Matsuda , M.C3G, a guanine nucleotide releasing protein, binds to the SH3 domains of CRK and ASH/GRB2 . Proc. Natl. Acad. Sci. USA , 91 , 3443 – 3447 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Gotoh , T. , Hattori , S. , Nakamura , S. , Kitayama , H. , Noda , M. , Takai , Y. , Kaibuchi , K. , Matsui , H. , Hatase , O. , Takahashi , H. , Kurata , T. and Matsuda , M.Identification of Rap1 as a target for Crk SH3 domain‐binding guanine nucleotide‐releasing factor, C3G . Mol. Cell. Biol. , 15 , 6746 – 6753 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. ) Hasegawa , H. , Kiyokawa , E. , Tanaka , S. , Nagashima , K. , Gotoh , N. , Shibuya , M. , Kurata , T.and Matsuda, M. DOCK180, a major CRK‐binding protein, alters cell morphology upon translocation to the membrane . Mol. Cell. Biol. , 16 , 1770 – 1776 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. ) Ota , S. , Kizaka‐Kondoh , S. , Hashimoto , Y. , Nishihara , H. , Nagashima , K. , Kurata , T. , Okayama , H. and Matsuda , M.Constitutive association of EGF receptor with the CrkII‐23 mutant that inhibits transformation of NRK cells by EGF and TGF‐β . Cell. Signal. , 10 , 283 – 290 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Yamazaki , H. , Ohba , Y. , Tamaoki , N. and Shibuya , M.A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors . Jpn. J. Cancer Res. , 81 , 773 – 779 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. ) Matsuda , M. , Nagata , S. , Tanaka , S. , Nagashima , K. and Kurata , T.Structural requirement of the CRK SH2 region for the binding to phosphotyrosine‐containing proteins: evidence from reactivity to monoclonal antibodies . J. Biol. Chem. , 268 , 4441 – 4446 ( 1993. ). [PubMed] [Google Scholar]
- 18. ) Hashimoto , Y. , Katayama , H. , Kiyokawa , E. , Ota , S. , Kurata , T. , Gotoh , N. , Shibata , M. , Otsuka , N. and Matsuda , M.Phosphorylation of CrkII adaptor protein at Tyrosine 221 by epidermal growth factor receptor . J. Biol. Chem. , 273 , 17186 – 17191 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Fukazawa , H. , Mizuno , S. and Uehara , Y.A microplate assay for quantitation of anchorage‐independent growth of transformed cells . Anal. Biochem. , 228 , 83 – 90 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Hunter , T. and Cooper , J. A.Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells . Cell , 24 , 741 – 752 ( 1981. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Feller , S. M. , Knudsen , B. and Hanafusa , H.c‐Abl kinase regulates the protein binding activity of c‐Crk . EMBO J. , 13 , 2341 – 2351 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Fukazawa , T. , Miyake , S. , Band , V. and Band , H.Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins . J. Biol. Chem. , 271 , 14554 – 14559 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Khwaja , A. , Hallberg , B. , Warne , P. H. and Downward , J.Networks of interaction of p120(cbl) and p130(cas) with Crk and Grb2 adaptor proteins . Oncogene , 12 , 2491 – 2498 ( 1996. ). [PubMed] [Google Scholar]
- 24. ) Galcheva‐Gargova , Z. , Konstantinov , K. N. , Wu , I. H. , Klier , F. G. , Barrett , T. and Davis , R. J.Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor . Science , 272 , 1797 – 1802 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Cook , S. J. , Rubinfeld , B. , Albert , I. and McCormick , F.Rap V12 antagonizes Ras‐dependent activation of ERK1 and ERK2 by LPA and EGF in Rat‐1 fibroblasts . EMBO J. , 12 , 3475 – 3485 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. ) Okada , S. , Matsuda , M. , Anafi , M. , Pawson , T. and Pessin , J. E.Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2‐SOS and CrkII‐C3G complexes . EMBO J. , 17 , 2554 – 2565 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. ) Gutmann , D. H. , Saporito‐Irwin , S. , DeClue , J. E. , Wienecke , R. and Guha , A.Alterations in the rap1 signaling pathway are common in human gliomas . Oncogene , 15 , 1611 – 1616 ( 1997. ). [DOI] [PubMed] [Google Scholar]