Abstract
7–Hydroxystaurosporine (UCN‐01), which was originally identified as a protein kinase C selective inhibitor, is currently in clinical trials as an anti‐cancer drug. We previously showed that UCN‐01 induced preferential G1–phase accumulation in tumor cells and this effect was associated with the retinoblastoma (Rb) protein and its regulatory factors, such as cyclin‐dependent kinase 2 (CDK2) and CDK inhibitors p21Cip1/WAF1 and p27kipl. We demonstrate here that G1–phase accumulation was induced by UCN‐01 in Rb‐proficient cell lines (WiDr and HCT116 human colon carcinomas and WI‐38 human lung fibroblast), and it was accompanied by dephosphorylation of Rb. In addition, UCN‐01–induced G1–phase accumulation was also demonstrated in a Rb‐defective cell line (Saos‐2 human osteosarcoma), but not in a simian virus 40 (SV40)‐transformed cell line (WI‐38 VA13). Apoptosis was induced by UCN‐01 in the two Rb‐deficient cell lines, but not in the other Rb‐proficient cell lines. These observations suggest that G1–checkpoint function might be important for cell survival during UCN‐01 treatment. In addition, there may be a UCN‐01–responsive factor in the G1–checkpoint machinery other than Rb which is targeted by SV40. Further studies revealed a correlation between UCN‐01–induced G1–phase accumulation and reduction of cellular CDK2 kinase activity. This reduction was strictly dependent on down‐regulation of the Thr160–phosphor‐ylated form of CDK2 protein, and coincided in part with up‐regulation of p27Kip1, but it was independent of the level of the p21Cip1/WAF1 protein. These results suggest that G1–checkpoint function, including a CDK2–regulatory pathway, may be a significant determinant of the sensitivity of tumor cells to UCN‐01.
Keywords: 7–Hydroxystaurosporine (UCN‐01), G1–phase accumulation, Apoptosis –Cyclin‐dependent kinase 2, G1 checkpoint
Full Text
The Full Text of this article is available as a PDF (296.9 KB).
REFERENCES
- 1. ) Takahashi , I. , Kobayashi , E. , Asano , K. , Yoshida , M. and Nakano , H.UCN‐01, a selective inhibitor of protein kinase C from Streptomyces . J. Antibiot . ( Tokyo ), 40 , 1782 – 17841987. . [DOI] [PubMed] [Google Scholar]
- 2. ) Akinaga , S. , Gomi , K. , Morimoto , M. , Tamaoki , T. and Okabe , M.Antitumor activity of UCN‐01, a selective inhibitor of protein kinase C, in murine and human tumor models . Cancer Res. , 51 , 4888 – 4892 ( 1991. ). [PubMed] [Google Scholar]
- 3. ) Akinaga , S. , Nomura , K. , Gomi , K. and Okabe , M.Synergistic antitumor effect of UCN‐01, a protein kinase C inhibitor, combined with various anticancer agents . Proc. Am. Assoc. Cancer Res. , 33 , 514 ( 1992. ). [Google Scholar]
- 4. ) Akinaga , S. , Nomura , K. , Gomi , K. and Okabe , M.Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN‐01, a selective inhibitor of protein kinase C . Cancer Chemother. Pharmacol. , 32 , 183 – 189 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Weinstein , J. N. , Myers , T. G. , O'Connor , P. M. , Friend , S. H. , Fornace , A. J. , Jr. , Kohn , K. W. , Fojo , T. , Bates , S. E. , Rubinstein , L. V. , Anderson , N. L. , Buolamwini , J. K. , van Osdol , W. W. , Monks , A. P. , Scudiero , D. A. , Sausville , E. A. , Zaharevitz , D. W. , Bunow , B. , Viswanadhan , V. N. , Johnson , G. S. , Wittes , R. E. and Paull , K. D.An information‐intensive approach to the molecular pharmacology of cancer . Science , 275 , 343 – 349 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Fuse , E. , Tanii , H. , Kurata , N. , Kobayashi , H. , Shimada , Y. , Tamura , T. , Sasaki , Y. , Tanigawara , Y. , Lush , R. D. , Headlee , D. , Figg , W. D. , Arbuck , S. G. , Senderowicz , A. M. , Sausville , E. A. , Akinaga , S. , Kuwabara , T. and Kobayashi , S.Unpredicted clinical pharmacology of UCN‐01 caused by specific binding to human α1‐acid glycoprotein . Cancer Res. , 58 , 3248 – 3253 ( 1998. ). [PubMed] [Google Scholar]
- 7. ) Sausville , E. A. , Lush , R. D. , Headlee , D. , Smith , A. C. , Figg , W. D. , Arbuck , S. G. , Senderowicz , A. M. , Fuse , E. , Tanii , H. , Kuwabara , T. and Kobayashi , S.Clinical pharmacology of UCN‐01: initial observations and comparison to preclinical models . Cancer Chemother. Pharmacol. , 42 , S54 – S59 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 8. ) MacLachlan , T. K. , Sang , N. and Giordano , A.Cyclins, cyclin‐dependent kinases and CDK inhibitors: implications in cell cycle control and cancer . Crit. Rev. Eukaryot. Gene Expr. , 5 , 127 – 156 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Sherr , C. J.Cancer cell cycles . Science , 274 , 1672 – 1677 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Manfredi , J. J. and Prives , C.The transforming activity of simian virus 40 large tumor antigen . Biochim. Biophys. Acta , 1198 , 65 – 83 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Ludlow , J. W. and Skuse , G. R.Viral oncoprotein binding to pRB, p107, p130, and p300 . Virus Res. , 35 , 113 – 121 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Stewart , B. W.Mechanisms of apoptosis: integration of genetic biochemical, and cellular indicators . J. Natl. Cancer Inst. , 86 , 1286 – 1296 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Villa , P. , Kaufmann , S. H. and Earnshaw , W. C.Caspases and caspase inhibitors . Trends Biochem. Sci. , 22 , 388 – 393 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Seynaeve , C. M. , Stetler‐Stevenson , M. , Sebers , S. , Kaur , G. , Sausville , E. A. and Worland , P. J.Cell cycle arrest and inhibition by the protein kinase antagonist UCN‐01 in human breast carcinoma cells . Cancer Res. , 53 , 2081 – 2086 ( 1993. ). [PubMed] [Google Scholar]
- 15. ) Akinaga , S. , Nomura , K. , Gomi , K. and Okabe , M.Effect of UCN‐01, a selective inhibitor of protein kinase C, on the cell‐cycle distribution of human epidermoid carcinoma, A431 cells . Cancer Chemother. Pharmacol. , 33 , 273 – 280 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Kawakami , K. , Futami , H. , Takahara , J. and Yamaguchi , K.UCN‐01, 7‐hydroxylstaurosporine, inhibits kinase activity of cyclin‐dependent kinase and reduces the phosphorylation of the retinoblastoma susceptibility gene product in A549 human lung carcinoma cell line . Biochem. Biophys. Res. Commun. , 219 , 778 – 783 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Akiyama , T. , Yoshida , T. , Tsujita , T. , Shimizu , M. , Mizukami , T. , Okabe , M. and Akinaga , S.G1 phase accumulation induced by UCN‐01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1/WAF1/Sdi1 in p53‐mutated human epidermoid carcinoma A431 cells . Cancer Res. , 57 , 1495 – 1501 ( 1997. ). [PubMed] [Google Scholar]
- 18. ) Wang , Q. , Worland , P. J. , Clark , J. L. , Carlson , B. A. and Sausville , E. A.Apoptosis in 7‐hydroxystaurosporine‐treated T lymphoblasts correlates with activation of cyclin‐dependent kinase 1 and 2 . Cell Growth Differ. , 6 , 927 – 936 ( 1995. ). [PubMed] [Google Scholar]
- 19. ) Shao , R. G. , Shimizu , T. and Pommier , Y.7‐Hydroxystau‐rosporine (UCN‐01) induces apoptosis in human colon carcinoma and leukemia cells independently of p53 . Exp. Cell Res. , 234 , 388 – 397 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Harkin , S. T. , Cohen , G. M. and Gescher , A.Modulation of apoptosis in rat thymocytes by analogs of staurosporine: lack of direct association with inhibition of protein kinase C . Mol. Pharmacol. , 54 , 663 – 670 ( 1998. ). [PubMed] [Google Scholar]
- 21. ) Takahashi , I. , Saitoh , Y. , Yoshida , M. , Sano , H. , Nakano , H. , Morimoto , M. and Tamaoki , T.UCN‐01 and UCN‐02, a new selective inhibitors of protein kinase C. II. Purification, physiochemical properties, structural determinations, and biological activities . J. Antibiot . ( Tokyo ), 42 , 571 – 5761989. . [DOI] [PubMed] [Google Scholar]
- 22. ) Carmichael , J. , DeGraff , W. G. , Gazdar , A. F. , Minna , J. D. and Mitchell , J. B.Evaluation of a tetrazolium‐based semi‐automated colorimetric assay: assessment of chemosensitivity testing . Cancer Res. , 47 , 936 – 942 ( 1987. ). [PubMed] [Google Scholar]
- 23. ) Laemmli , U. K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature , 227 , 680 – 685 ( 1970. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Gavrieli , Y. , Sherman , Y. and Ben‐Sasson , S. A.Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation . J. CellBiol. , 119 , 493 – 501 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. ) Puisieux , A. , Galvin , K. , Troalen , F. , Bressac , B. , Marcais , C. , Galun , E. , Ponchel , F. , Yakicier , C. , Ji , J. and Ozturk , M.Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines . FASEB J. , 7 , 1407 – 1413 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Rodrigues , N. R. , Rowan , A. , Smith , M. E. F. , Kerr , I. B. , Bodmer , W. F. , Gannon , J. V. and Lane , D.P. p53 mutations in colorectal cancer . Proc. Natl. Acad. Sci. USA , 87 , 7555 – 75591990. . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. ) Waldman , T. , Kinzler , K. W. and Vogelstein , B.p21 is necessary for the p53‐mediated G1 arrest in human cancer cells . Cancer Res. , 55 , 5187 – 51901995. . [PubMed] [Google Scholar]
- 28. ) Rieger , K. M. , Little , A. F. , Swart , J. M. , Kastrinakis , W. V. , Fitzgerald , J. M. , Hess , D. T. , Libertino , J. A. and Summerhayes , I. C.Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression . Br. J. Cancer , 72 , 683 – 690 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. ) Diller , L. , Kassel , J. , Nelson , C. E. , Gryka , M. A. , Litwak , G. , Gebhardt , M. , Bressac , B. , Ozturk , M. , Baker , S. J. , Vogelstein , B. and Friend , S. H.p53 functions as a cell cycle control protein in osteosarcomas . Mol. Cell. Biol. , 10 , 5772 – 5781 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. ) Lehman , T. A. , Bennett , W. P. , Metcalf , R. A. , Welsh , J. A. , Ecker , J. , Modali , R. V. , Ullrich , S. , Romano , J. W. , Appella , E. , Testa , J. R. , Gerwin , B. I. and Harris , C. C.p53 mutations, ras mutations, and p53‐heat shock 70 protein complexes in human lung carcinoma cell lines . Cancer Res. , 51 , 4090 – 4096 ( 1991. ). [PubMed] [Google Scholar]
- 31. ) Horowitz , J. M. , Park , S. H. , Bogenmann , E. , Cheng , J. C. , Yandell , D. W. , Kaye , F. J. , Minna , J. D. , Dryja , T. P. and Weinberg , R. A.Frequent inactivation of the retinoblastoma anti‐oncogene is restricted to a subset of human tumor cells . Proc. Natl. Acad. Sci. USA , 87 , 2775 – 2779 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. ) Shew , J. Y. , Lin , B. T. Y. , Chen , P. L. , Tseng , B. Y. , Yang‐Feng , T. L. and Lee , W. H.C‐terminal truncation of the retinoblastoma gene product leads to functional inactivation . Proc. Natl. Acad. Sci. USA , 87 , 6 – 10 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. ) Chen , W. D. , Otterson , G. A. , Lipkowitz , S. , Khleif , S. , Coxon , A. B. and Kaye , F. J.Apoptosis is associated with cleavage of a 5 kDa fragment from RB which mimics dephosphorylation and modulates E2F binding . Oncogene , 14 , 1243 – 1248 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 34. ) Aprelikova , O. , Xiong , Y. and Liu , E. T.Both p16 and p21 families of cyclin‐dependent kinase (CDK) inhibitors block the phosphorylation of cyclin‐dependent kinases by the CDK‐activating kinase . J. Biol. Chem. , 270 , 18195 – 18197 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 35. ) Lloyd , R. V. , Erickson , L. A. , Jin , L. , Kulig , E. , Qian , X. , Cheville , J. C. and Scheithauer , B. W.p27: a multifunctional cyclin‐dependent kinase inhibitor with prognostic significance in human cancers . Am. J. Pathol. , 154 , 313 – 323 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. ) Poon , R. Y. C. , Toyoshima , H. and Hunter , T.Redistribution of CDK inhibitor p27 between different cyclin‐CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation . Mol. Biol. Cell , 6 , 1197 – 1213 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. ) Reynisdottir , I. and Massague , J.The subcellular locations of p15ink4 and p27Kip1 coordinate their inhibitory interactions with cdk4 and cdk2 . Genes Dev. , 11 , 492 – 503 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 38. ) Sugiyama , K. , Akiyama , T. , Shimizu , M. , Tamaoki , T. , Courage , C. , Gescher , A. and Akinaga , S.Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against antisignaling drug UCN‐01 (7‐hydroxystaurosporine) . Cancer Res. , 59 , 4406 – 4412 ( 1999. ). [PubMed] [Google Scholar]
- 39. ) Levkau , B. , Koyama , H. , Raines , E. W. , Clurman , B. E. , Herren , B. , Orth , K. , Roberts , J. M. and Ross , R.Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of cdk2: role of a caspase cascade . Mol. Cell , 1 , 553 – 563 ( 1998. ). [DOI] [PubMed] [Google Scholar]