Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1999 Feb;90(2):226–232. doi: 10.1111/j.1349-7006.1999.tb00737.x

Effective Irinotecan (CPT‐11)‐containing Liposomes: Intraliposomal Conversion to the Active Metabolite SN‐38

Yasuyuki Sadzuka 1,, Sachiyo Hirotsu 1, Sadao Hirota 1
PMCID: PMC5926044  PMID: 10189894

Abstract

Irinotecan hydrochloride (CPT‐11) is a prodrug of SN‐38, which is an active metabolite with anti‐tumor activity and side toxicity. The activities of CPT‐11 and SN‐38 depend on the closed lactone ring form of SN‐38. We have examined the tissue distributions of the closed and open forms of CPT‐11 and SN‐38 in Lewis lung carcinoma‐bearing mice after the administration of liposomal CPT‐11 (S‐Lip) and polyethyleneglycol (PEG)‐modified S‐Lip (S‐PEG). The plasma concentrations of closed CPT‐11 and SN‐38 were increased by liposomalization, and their blood circulation was prolonged by the PEG modification. The concentrations of closed CPT‐11 and SN‐38 in tumors were elevated by both the liposomalization and PEG modification. The closed/total ratio of SN‐38 in the tumors of the S‐PEG group was greater than that of the CPT‐11 solution (Sol) group. Thus, SN‐38 was thought to be generated in intact liposomes containing CPT‐11. The bile concentration of closed SN‐38, which is responsible for CPT‐11‐induced intestinal disorder, was decreased by liposomalization. In an in vitro experiment, the SN‐38/CPT‐11 ratio in the tumor cells of the S‐Lip group was found to be higher than that of the Sol group, and the ratio of the closed form of SN‐38 was increased by the liposomalization. Laser scanning confocal microscopy showed the generation of SN‐38 in the liposomal membrane after the incubation of S‐Lip with carboxylesterase. It is therefore considered that a part of CPT‐11 is converted to SN‐38 in the intact liposomes.

Keywords: Antitumor activity, Irinotecan, SN‐38, Targeting, Conversion

Full Text

The Full Text of this article is available as a PDF (411.9 KB).

REFERENCES

  • 1. ) Coukell , A. J. and Spencer , C. M.Polyethylene glycol‐liposomal doxorubicin . Drugs , 53 , 520 – 538 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Kawato , Y. , Aonuma , M. , Hirota , Y. , Kuga , H. and Sato , K.Intracellular roles of SN‐38, a metabolite of the camp‐tothecin derivative CPT‐11, in the antitumor effect of CPT‐11 . Cancer Res. , 51 , 4187 – 4191 ( 1991. ). [PubMed] [Google Scholar]
  • 3. ) Negoro , S. , Fukuoka , M. , Niitani , H. , Suzuki , A. , Nakabayashi , T. , Kimura , M. , Motomiya , M. , Kurita , Y. , Hasegawa , K. and Taguchi , T.A phase II study of CPT‐11, a camptothecin derivative, in patients with primary lung cancer . Jpn. J. Cancer Chemother. , 18 , 1013 – 1019 ( 1991. ). [PubMed] [Google Scholar]
  • 4. ) Potmesil , M.Camptothecins: from bench research to hospital wards . Cancer Res. , 54 , 1431 – 1439 ( 1994. ). [PubMed] [Google Scholar]
  • 5. ) Sadzuka , Y. , Hirotsu , S. , Miyagishima , A. , Nozawa , Y. and Hirota , S.The study of polyethyleneglycol‐coated liposomes containing CPT‐11 . J. Liposome Res. , 7 , 241 – 260 ( 1997. ). [Google Scholar]
  • 6. ) Sadzuka , Y. , Hirotsu , S. and Hirota , S.Effect of liposomalization on the antitumor activity, side effect and tissue distribution of CPT‐11 . Cancer Lett. , 127 , 99 – 106 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Bangham , A. D. , Standish , M. M. and Watkins , J. C.Diffusion of univalent ion across the lamellae of swollen phospholipids . J. Mol. Biol. , 13 , 238 – 252 ( 1965. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Sasaki , Y. , Yoshida , Y. , Sudoh , K. , Hakusui , H. , Fujii , H. , Ohtsu , T. , Wakita , H. , Igarashi , T. and Itoh , K.Pharmacological correlation between total drug concentration and lactones of CPT‐11 and SN‐38 in patients treated with CPT‐11 . Jpn. J. Cancer Res. , 86 , 111 – 116 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Burke , T. G. , Munshi , C. B. , Mi , Z. and Jiang , Y.The important role of albumin in determining the relative human blood stabilities of the camptothecin anticancer drugs . J. Pharm. Sci. , 84 , 518 – 519 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Jaxel , C. , Kohn , K. W. , Wani , M. C. , Wall , M. E. and Pommier , Y.Structure‐activity study of the actions of camptothecin derivatives on mammalian topoisomerase I . Cancer Res. , 49 , 1465 – 1469 ( 1989. ). [PubMed] [Google Scholar]
  • 11. ) Kurono , Y. , Miyajima , M. and Ikeda , K.Interaction of camptothecin derivatives with human plasma proteins . J. Pharm. Soc. Jpn. , 113 , 167 – 175 ( 1993. ) ( in Japanese ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Mi , Z. , Malak , H. and Burke , T. G.Reduced albumin binding promotes the stability and activity of topotecan in human blood . Biochemistry , 34 , 13722 – 13728 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Burke , T. G. , Staubus , A. E. , Mishra , A. K. and Malak , H.Liposomal stabilization of camptothecin's lactone ring . J. Am. Chem. Soc. , 114 , 8318 – 8319 ( 1992. ). [Google Scholar]
  • 14. ) Bosworth , M. E. and Hunt , C. A.Liposome disposition in vivo II . J. Pharm. Sci. , 71 , 100 – 104 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Sadzuka , Y. and Hirota , S.Does the amount of an antitumor agent entrapped in liposomes influence its tissue distribution and cell uptake ? Cancer Lett. , 131 , 163 – 170 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Chow , D. D. , Essien , H. E. , Padki , M. M. and Hwang , K. J.Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect . J. Pharmacol. Exp. Ther. , 248 , 506 – 513 ( 1989. ). [PubMed] [Google Scholar]
  • 17. ) Kume , Y. , Maeda , F. , Harashima , H. and Kiwada , H.Saturable, non‐Michaelis‐Menten type uptake of liposomes by the reticuloendothelial system . J. Pharm. Pharmacol. , 43 , 162 – 166 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Harashima , H. , Kume , Y. , Yamae , C. and Kiwada , H.Non‐Michaelis‐Menten type hepatic uptake of liposomes in the rat . J. Pharm. Pharmacol. , 44 , 707 – 712 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Kawato , Y. , Aonuma , M. , Matsumoto , K. and Sato , K.Production of SN‐38, a main metabolite of the camptothecin derivative CPT‐11, and its species and tissue specificities . Xenobio. Met. Disp. , 6 , 899 – 907 ( 1991. ). [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES