Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1999 Jun;90(6):647–654. doi: 10.1111/j.1349-7006.1999.tb00796.x

Roles of Extracellular Signal‐regulated Kinase 1/2 and p38 Mitogen‐activated Protein Kinase in the Signal Transduction of Basic Fibroblast Growth Factor in Endothelial Cells during Angiogenesis

Katsuhiro Tanaka 1, Mayumi Abe 1, Yasufumi Sato 1,
PMCID: PMC5926115  PMID: 10429657

Abstract

We examined the role of mitogen‐activated protein (MAP) kinases in the signal transduction of basic fibroblast growth factor (bFGF)‐mediated effects in endothelial cells (ECs). When MSS31 murine endothelial cells were stimulated with bFGF, three MAP kinase homologs, extracellular signal‐regulated kinase (ERK) 1/2, c‐Jun N‐terminal kinase (JNK) 1, and p38 MAP kinase were activated. The inhibition of the ERK1/2 pathway with PD98059, a specific inhibitor of MEK1, or of the p38 MAP kinase pathway with SB203580, a specific inhibitor of p38 MAP kinase, abrogated bFGF‐mediated tube formation by MSS31 cells in type I collagen gel. Tube formation in type I collagen gel requires proliferation and migration of these cells, and degradation of the extracellular matrix by these cells. Both PD98059 and SB203580 inhibited bFGF‐stimulated DNA synthesis as well as migration of MSS31 cells. Cell migration requires cytoskeleton reorganization and cell adhesion. bFGF induced actin reorganization and vinculin assembly in the focal adhesion plaque, both of which were inhibited by SB203580 but not by PD98059. bFGF induced the expression of the transcription factor ETS‐1 in MSS31 cells. ETS‐1 is responsible for the expression of proteases as well as integrin β3 subunit in ECs, and converts ECs to invasive phenotype. PD98059 inhibited this induction of ETS‐1, whereas SB203580 did not. These results indicate that ERK1/2 and p38 MAP kinase are requisite for the signal transduction of bFGF in ECs. The roles of these two MAP kinase homologs are not identical, but these kinases work in a coordinated fashion.

Keywords: bFGF, ERK, p38 MAP kinase, Angiogenesis

Full Text

The Full Text of this article is available as a PDF (335.2 KB).

REFERENCES

  • 1).Fidler , I. J. and Ellis , L. M.The implications of angiogenesis for the biology and the therapy of cancer metastasis . Cell , 79 , 185 – 188 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 2).Folkman , J.Angiogenesis in cancer, vascular, rheumatoid and other disease . Nat. Med. , 1 , 27 – 31 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 3).Holmgren , L. , O'Reilly , M. S. and Folkman , J.Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression . Nat. Med. , 1 , 149 – 153 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 4).Folkman , J. and Shing , Y.Angiogenesis . J. Biol. Chem. , 267 , 10931 – 10934 ( 1992. ). [PubMed] [Google Scholar]
  • 5).Zagzag , D.Angiogenic growth factors in neural embryo‐genesis and neoplasia . Am. J. Pathol. , 146 , 293 – 309 ( 1995. ). [PMC free article] [PubMed] [Google Scholar]
  • 6).Ferrara , N. and Davis‐Smith , T.The biology of vascular endothelial growth factor . Endocr. Rev. , 18 , 4 – 25 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 7).Mustonen , T. and Alitalo , K.Endothelial receptor tyrosine kinases involved in angiogenesis . J. Cell Biol. , 129 , 895 – 898 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8).Rifkin , D. B. and Moscatelli , D.Recent development in the cell biology of basic fibroblast growth factor . J. Cell Biol. , 109 , 1 – 6 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9).Hori , A. , Sasada , R. , Matsunami , E. , Naito , K. , Sakura , Y. , Fujita , T. and Kozai , Y.Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor . Cancer Res. , 51 , 6180 – 6184 ( 1991. ). [PubMed] [Google Scholar]
  • 10).Brem , S. , Tsanaclis , A. M. , Gately , S. , Gross , J. L. and Herblin , W. F.Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors . Cancer , 70 , 2673 – 2680 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 11).Iwasaka , C. , Tanaka , K. , Abe , M. and Sato , Y.Ets‐1 regulates angiogenesis by inducing the expression of urokinase‐type plasminogen activator and matrix metaloproteinase‐1 and the migration of vascular endothelial cells . J. Cell. Physiol. , 169 , 522 – 531 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 12).Waskiewicz , A. J. and Cooper , J. A.Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast . Curr. Opin. Cell Biol. , 7 , 798 – 805 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 13).Force , T. , Pombo , C. M. , Avruch , J. A. , Bonventre , J. V. and Kyriakis , J. M.Stress‐activated protein kinases in cardiovascular disease . Circ. Res. , 78 , 947 – 953 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 14).Pages , G. , Lenormand , P. , L'Allemain , G. , Chambard , J.‐C. , Meloche , S. and Pouyssegur , J.Mitogen‐activating protein kinases p42mapk and p44mapk are required for fibroblast proliferation . Proc. Natl. Acad. Sci. USA , 90 , 8319 – 8323 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15).Gardner , A. M. and Johnson , G. L.Fibroblast growth fac‐tor‐2 suppression of tumor necrosis factor α‐mediated apoptosis requires Ras and the activation of mitogen‐activated kinase . J. Biol. Chem. , 271 , 14560 – 14566 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 16).Rousseau , S. , Houle , F. , Landry , J. and Huot , J.p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells . Oncogene , 15 , 2169 – 2177 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 17).Hibi , M. , Lin , A. , Smeal , T. , Minden , T. and Karin , M.Identification of an oncoprotein‐ and UV‐responsive protein kinase that binds and potentiates the c‐Jun activation domain . Genes Dev. , 7 , 2135 – 2148 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 18).Yanai , N. , Satoh , T. and Obinata , M.Endothelial cells create a hematopoietic inductive microenvironment preferential to erythropoiesis in the mouse spleen . Cell Struct. Funct. , 16 , 87 – 93 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 19).Tanaka , K. , Oda , N. , Iwasaka , C. , Abe , M. and Sato , Y.Induction of Ets‐1 in endothelial cells during reendothelialization after denuding injury . J. Cell. Physiol. , 176 , 235 – 244 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 20).Alessi , D. R. , Cuenda , A. , Cohen , P. , Dudley , D. T. and Saltiei , A. R.PD098059 is a specific inhibitor of the activation of mitogen activated protein kinase kinase in vitro and in vivo . J. Biol. Chem. , 270 , 27489 – 27494 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 21).Cuenda , A. , Rouse , J. , Doza , Y. N. , Meiser , R. , Cohen , P. , Gallagher , T. F. , Young , P. R. and Lee , J. C.SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin‐1 . FEBS Lett. , 364 , 229 – 233 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 22).Lauffenburger , D. A. and Horwitz , A. F.Cell migration: a physically integrated molecular process . Cell , 84 , 359 – 369 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 23).Cook , S. J. and McCormick , F.Kinetic and biochemical correlation between sustained p44ERK1 (44kDa extracellular signal‐regulated kinase 1) activation and lysophosphatidic acid‐stimulated DNA synthesis in Rat‐1 cells . Biochem. J. , 320 , 237 – 245 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24).Weber , J. D. , Raben , D. M. , Phillips , P. J. and Baldassare , J. J.Sustained activation of extracellular signal‐regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase . Biochem. J. , 326 , 61 – 68 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25).Crawley , J. B. , Rawlinson , L. , Lali , F. V. , Page , T. H. , Saklatvala , J. and Foxwell , B. M. J.T cell proliferation in response to interleukins 2 and 7 requires p38 MAP kinase activation . J. Biol. Chem. , 272 , 15023 – 15027 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 26).Craxton , A. , Shu , G. , Graves , J. D. , Saklatvala , J. , Krebs , E. G. and Clark , E. A.p38 MAPK is required for CD40‐induced gene expression and proliferation in B lymphocyte . J. Immunol. , 161 , 3225 – 3236 ( 1998. ). [PubMed] [Google Scholar]
  • 27).Raingeaud , J. , Whitmarsh , A. J. , Barrett , T. , Derijard , B. and Davis , R. J.MKK3‐ and MKK6‐regulated gene expression is mediated by the p38 mitogen‐activated protein kinase signal transduction pathway . Mol. Cell. Biol. , 16 , 1247 – 1255 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28).Tan , Y. , Rouse , J. , Zhang , S. C. , Cohen , P. and Comb , M. J.FGF and stress regulate CREB and ATF‐1 via a pathway involving p38 MAP kinase and MAPKAP kinase‐2 . EMBO J. , 15 , 4629 – 4642 ( 1996. ). [PMC free article] [PubMed] [Google Scholar]
  • 29).Huot , J. , Houle‐ , F. , Marceau , F. and Landry , J.Oxidative stress‐induced actin reorganization mediated by the p38 mitogen‐activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells . Circ. Res. , 80 , 383 – 392 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 30).Guay , J. , Lambert , H. , Gingras‐Breton , G. , Lavoie , J. N. , Huot , J. and Landry , J.Regulation of actin filament dynamics by p38 map kinase‐mediated phosphorylation of heat shock protein 27 . J. Cell Sci. , 110 , 357 – 368 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 31).Oda , N. , Abe , M. and Sato , Y.ETS‐1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin β3 . J. Cell. Physiol. , 178 , 121 – 132 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 32).Fibbi , G. , Ziche , M. , Morbidelli , L. , Magnelli , L. and Rosso , M. D.Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells . Exp. Cell Res. , 179 , 385 – 395 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 33).Odekon , L. E. , Sato , Y. and Rifkin , D. B.Urokinase‐type plasminogen activator mediates basic fibroblast growth factor‐induced bovine endothelial cell migration independent of its proteolytic activity . J. Cell. Physiol. , 150 , 258 – 263 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 34).Leavesley , D. I. , Schwartz , M. A. , Rosenfeld , M. and Cheresh , A.Integrin βL1‐ and βL3‐mediated endothelial cell migration is triggered through distinct signaling mechanisms . J. CellBiol. , 121 , 163 – 170 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35).Liaw , L. , Lindner , V. , Schwartz , S. M. , Chambers , A. F. and Giachelli , C. M.Osteopontin and αvβL3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg‐Gly‐Asp dependent endothelial migration in vitro . Circ. Res. , 77 , 665 – 672 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 36).Jorcyk , C. L. , Watson , D. K. , Mavrothalassitis , G. J. and Papas , T. S.The human ETS1 gene: genomic structure, promoter characterization and alternative splicing . Oncogene , 6 , 523 – 532 ( 1991. ). [PubMed] [Google Scholar]
  • 37).Majerus , M. A. , Bibollet‐Ruche , F. , Telliez , J. B. , Wasylyk , B. and Bailleul , B.Serum, AP‐1 and Ets‐1 stimulate the human ets‐1 promoter . Nucleic Acids Res. , 20 , 2699 – 2703 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38).Slupsky , C. M. , Gentile , L. N. , Donaldson , L. W. , Mackereth , C. D. , Seidel , J. J. , Graves , B. J. and McIntosh , L. P.Structure of the Ets‐1 pointed domain and mitogen‐activated proten kinase phosphorylation site . Proc. Natl. Acad. Sci. USA , 95 , 12129 – 12134 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39).Jiang , Y. , Chen , C. , Li , Z. , Guo , W. , Gegner , J. A. , Lin , S. and Han , J.Characterization of the structure and function of a new mitogen‐activated protein kinase (p38βL) . J. Biol. Chem. , 271 , 17920 – 17926 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 40).Li , Z. , Jiang , Y. , Ulevitch , R. J. and Han , J.The primary structure of p38γ a new member of p38 group of MAP kinases . Biochem. Biophys. Res. Commun. , 228 , 334 – 340 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 41).Wang , X. S. , Diener , K. , Manthey , C. L. , Wang , S. , Rosenzweig , B. , Bray , J. , Delaney , J. , Cole , C. N. , Chan‐Hui , P. Y. , Mantlo , N. , Lichenstein , H. S. , Zukowski , M. and Yao , Z.Molecular cloning and characterization of a novel p38 mitogen‐activated protein kinase . J. Biol. Chem. , 272 , 23668 – 23674 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 42).Wang , Y. , Huang , S. , Sah , V. P. , Ross , J. , Jr. , Brown , J. H. , Han , J. and Chien , K. R.Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen‐activated protein kinase family . J. Biol. Chem. , 273 , 2161 – 2168 ( 1998. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES