Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2000 Jan;91(1):41–51. doi: 10.1111/j.1349-7006.2000.tb00858.x

Adenovirus‐mediated Gene Transduction of IkB or IkB Plus Bax Gene Drastically Enhances Tumor Necrosis Factor (TNF)‐induced Apoptosis in Human Gliomas

Nobusada Shinoura 1,2, Naoki Yamamoto 1, Yoko Yoshida 1, Takashi Fujita 3, Nobuto Saito 2, Akio Asai 2, Takaaki Kirino 2,4, Hirofumi Hamada 1,5,
PMCID: PMC5926230  PMID: 10744043

Abstract

Tumor necrosis factor‐α (TNF), which was initially supposed to be a promising cancer therapeutic reagent, does not kill most types of cancer cells partly due to the activation of an anti‐apoptotic gene, NF‐kB. NF‐kB forms an inactive complex with the inhibitor kappa B alpha (IkBα), which is rapidly phosphorylated and degraded in response to various extracellular signals. To disrupt this protective mechanism, we introduced an inhibitor kappa B alpha (IkBdN) gene, a deletion mutant gene lacking the nucleotides for the N‐terminal 36 amino acids of IkBα, into human glioma cells (U251, T‐98G, and U‐373MG) via an adenoviral (Adv) vector in addition to treatment of the glioma cells with recombinant TNF. Immunohistochemical analysis revealed that NF‐kB was translocated to nuclei by TNF treatment in U251 and T‐98G cells, but not in U‐373MG cells. Neither transduction of IkBdN nor treatment with TNF protein alone induced apoptosis in U251 and T‐98G cells, whereas both cell lines underwent drastic TNF‐induced apoptosis after transduction of IkBdN. On the other hand, U‐373MG cells were refractory to TNF‐induced apoptosis even when they were transduced with the IkBdN gene. U‐373MG cells underwent drastically increased apoptosis when co‐transduced with the IkBdN and Bax gene in the presence of TNF. Adv‐mediated transfer of IkBdN or IkBdN plus Bax may be a promising therapeutic approach to treat gliomas through TNF‐mediated apoptosis.

Keywords: Apoptosis, IkB, TNF, Bax, Gene therapy

Full Text

The Full Text of this article is available as a PDF (897.0 KB).

REFERENCES

  • 1. ) Fukumura , D. , Salehi , H. A. , Witwer , B. , Tuma , R. F. , Melder , R. J. and Jain , R. K.Tumor necrosis factor alphainduced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain . Cancer Res. , 55 , 4824 – 4829 ( 1995. ). [PubMed] [Google Scholar]
  • 2. ) Wright , J. L. and Merchant , R. E.Effects of an intratumoral injection of human recombinant tumor necrosis factor‐alpha on cerebrovascular permeability and leukocytic infiltration in a rat glioma model . Acta Neuropathol. (Berl.) , 93 , 78 – 86 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Tada , M. , Sawamura , Y. , Sakuma , S. , Suzuki , K. , Ohta , H. , Aida , T. and Abe , H.Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor alpha for the treatment of malignant gliomas . Cancer Immunol. Immunother. , 36 , 251 – 259 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. ) Del Maestro , R. F. , Lopez‐Torres , M. , Mcdonald , W. B. , Stroude , E. C. and Vaithilingam , I. S.The effect of tumor necrosis factor‐alpha on human malignant glial cells . J. Neurosurg. , 76 , 652 – 659 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Sakuma , S. , Sawamura , Y. , Tada , M. , Aida , T. , Abe , H. , Suzuki , K. and Taniguchi , N.Responses of human glioblastoma cells to human natural tumor necrosis factoralpha: susceptibility, mechanism of resistance and cytokine production studies . J. Neurooncol. , 15 , 197 – 208 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Zuber , P. , Accolla , R. S. , Carrel , S. , Diserens , A. C. and De Tribolet , N.Effects of recombinant human tumor necrosis factor‐alpha on the surface phenotype and the growth of human malignant glioma cell lines . Int. J. Cancer , 42 , 780 – 786 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Lachman , L. B. , Brown , D. C. and Dinarello , C. A.Growth‐promoting effect of recombinant interleukin 1 and tumor necrosis factor for a human astrocytoma cell line . J. Immunol. , 138 , 2913 – 2916 ( 1987. ). [PubMed] [Google Scholar]
  • 8. ) Staba , M. J. , Mauceri , H. J. , Kufe , D. W. , Hallahan , D. E. and Weichselbaum , R. R.Adenoviral TNF‐alpha gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft . Gene Ther. , 5 , 293 – 300 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Gridley , D. S. , Archambeau , J. O. , Andres , M. A. , Mao , X. W. , Wright , K. and Slater , J. M.Tumor necrosis factoralpha enhances antitumor effects of radiation against glioma xenografts . Oncol. Res. , 9 , 217 – 227 ( 1997. ). [PubMed] [Google Scholar]
  • 10. ) Huang , P. , Allam , A. , Perez , L. A. , Taghian , A. , Freeman , J. and Suit , H. D.The effect of combining recombinant human tumor necrosis factor‐alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice . Int. J. Radiat. Oncol. Biol. Phys. , 32 , 93 – 98 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Walther , W. , Stein , U. and Pfeil , D.Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdr1 expression and potentiation of chemosensitivity . Int. J. Cancer , 61 , 832 – 839 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Takaoka , T. , Yoshida , J. , Mizuno , M. and Sugita , K.Transfection‐ induced tumor necrosis factor‐α increases the susceptibility of human glioma cells to lysis by lymphokineactivated killer cells: continuous expression of intercellular adhesion molecule‐1 on the glioma cells . Jpn. J. Cancer Res. , 85 , 750 – 755 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Harada , K. , Yoshida , J. , Mizuno , M. , Sugita , K. , Kurisu , K. and Uozumi , T.Growth inhibition of subcutaneously transplanted human glioma by transfection‐induced tumor necrosis factor‐alpha and augmentation of the effect by gammainterferon . J. Neurooncol. , 22 , 221 – 225 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Baeuerle , P. A. and Henkel , T.Function and activation of NF‐kappa B in the immune system . Annu. Rev. Immunol. , 12 , 141 – 179 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Beg , A. A. and Baltimore , D.An essential role for NF‐kB in preventing TNF‐α‐induced cell death . Science , 274 , 782 – 784 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Wang , C.‐Y. , Mayo , M. W. and Baldwin , A. S. , Jr.TNF and cancer therapy‐induced apoptosis: potentiation by inhibition of NF‐kB . Science , 274 , 784 – 787 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Van Antwerp , D. J. , Martin , S. J. , Kafri , T. , Green , D. R. and Verma , I. M.Suppression of TNF‐α‐induced apoptosis by NF‐kB . Science , 274 , 787 – 789 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Bours , V. , Villalobos , J. , Burd , P. R. , Kelly , K. and Siebenlist , U.Cloning of a mitogen‐inducible gene encoding a kappa B DNA‐binding protein with homology to the rel oncogene and to cell‐cycle motifs . Nature , 348 , 76 – 80 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Ghosh , S. , Gifford , A. M. , Riviere , L. R. , Tempst , P. , Nolan , G. P. and Baltimore , D.Cloning of the p50 DNA binding subunit of NF‐kappa B: homology to rel and dorsal . Cell , 62 , 1019 – 1029 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Nolan , G. P. , Ghosh , S. , Liou , H. C. , Tempst , P. and Baltimore , D.DNA binding and I kappa B inhibition of the cloned p65 subunit of NF‐kappa B, a rel‐related polypeptide . Cell , 64 , 961 – 969 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Ruben , S. M. , Dillon , P. J. , Schreck , R. , Henkel , T. , Chen , C. H. , Maher , M. , Baeuerle , P. A. and Rosen , C. A.Isolation of a rel‐related human cDNA that potentially encodes the 65‐kD subunit of NF‐kappa B . Science , 251 , 1490 – 1493 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Baeuerle , P. A. and Baltimore , D. IKappa B : a specific inhibitor of the NF‐kappa B transcription factor . Science , 242 , 540 – 546 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Beg , A. A. , Ruben , S. M. , Scheinman , R. I. , Haskill , S. , Rosen , C. A. and Baldwin , A. S. , Jr.I kappa B interacts with the nuclear localization sequences of the subunits of NF‐kappa B: a mechanism for cytoplasmic retention . Genes Dev. , 6 , 1899 – 1913 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Ganchi , P. A. , Sun , S. C. , Greene , W. C. and Ballard , D. W.I kappa B/MAD‐3 masks the nuclear localization signal of NF‐kappa B p65 and requires the transactivation domain to inhibit NF‐kappa B p65 DNA binding . Mol. Biol. Cell , 3 , 1339 – 1352 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. ) Henkel , T. , Machleidt , T. , Alkalay , I. , Kronke , M. , Ben‐Neriah , Y. and Baeuerle , P. A.Rapid proteolysis of I kappa B‐alpha is necessary for activation of transcription factor NF‐kappa B . Nature , 365 , 182 – 185 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Brockman , J. A. , Scherer , D. C. , Mckinsey , T. A. , Hall , S. M. , Qi , X. , Lee , W. Y. and Ballard , D. W.Coupling of a signal response domain in IkBα to multiple pathways for NF‐kB activation . Mol. Cell. Biol. , 15 , 2809 – 2818 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. ) Bakker , T. R. , Reed , D. , Renno , T. and Jongeneel , C. V.Efficient adenoviral transfer of NF‐kappa B inhibitor sensitizes melanoma to tumor necrosis factor‐mediated apoptosis . Int. J. Cancer , 80 , 320 – 323 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Goodman , D. J. , Von Albertini , M. A. , Mcshea , A. , Wrighton , C. J. and Bach , F. H.Adenoviral‐mediated overexpression of I(kappa)B(alpha) in endothelial cells inhibits natural killer cell‐mediated endothelial cell activation . Transplantation , 62 , 967 – 972 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Iimuro , Y. , Nishiura , T. , Hellerbrand , C. , Behrns , K. E. , Schoonhoven , R. , Grisham , J. W. and Brenner , D. A.NFkappaB prevents apoptosis and liver dysfunction during liver regeneration . J. Clin. Invest. , 101 , 802 – 811 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. ) Sumitomo , M. , Tachibana , M. , Ozu , C. , Asakura , H. , Murai , M. , Hayakawa , M. , Nakamura , H. , Takayanagi , A. and Shimizu , N.Induction of apoptosis of cytokine‐producing bladder cancer cells by adenovirus‐mediated IkappaBalpha overexpression . Hum. Gene Ther. , 10 , 37 – 47 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Thomas , L. H. , Friedland , J. S. , Sharland , M. and Becker , S.Respiratory syncytial virus‐induced RANTES production from human bronchial epithelial cells is dependent on nuclear factor‐kappa B nuclear binding and is inhibited by adenovirus‐mediated expression of inhibitor of kappa B alpha . J. Immunol. , 161 , 1007 – 1016 ( 1998. ). [PubMed] [Google Scholar]
  • 32. ) Shinoura , N. , Yoshida , Y. , Sadata , A. , Hanada , K. , Yamamoto , S. , Kirino , T. , Asai , A. and Hamada , H.Apoptosis by retrovirus‐ and adenovirus‐mediated gene transfer of Fas ligand to glioma cells: implications for gene therapy . Hum. Gene Ther. , 9 , 1983 – 1993 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Shinoura , N. , Ohashi , M. , Yoshida , Y. , Kirino , T. , Asai , A. , Hashimoto , M. and Hamada , H.Adenovirus‐mediated overexpression of Fas induces apoptosis of gliomas . Cancer Gene Ther. ( 1999. ), in press . [DOI] [PubMed]
  • 34. ) Shinoura , N. , Yoshida , Y. , Asai , A. , Kirino , T. and Hamada , H.Relative level of expression of Bax and Bcl‐XL determines the cellular fate of apoptosis/necrosis induced by the overexpression of Bax . Oncogene ( 1999. ), in press . [DOI] [PubMed]
  • 35. ) Yoshida , Y. and Hamada , H.Adenovirus‐mediated inducible gene expression through tetracycline‐controllable transactivator with nuclear localization signal . Biochem. Biophys. Res. Commun. , 230 , 426 – 430 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) Miyake , S. , Makimura , M. , Kanegae , Y. , Harada , S. , Sato , Y. , Takamori , K. , Tokuda , C. and Saito , I.Efficient generation of recombinant adenoviruses using adenovirus DNA‐terminal protein complex and a cosmid bearing the full‐length virus genome . Proc. Natl. Acad. Sci. USA , 93 , 1320 – 1324 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. ) Kanegae , Y. , Lee , G. , Sato , Y. , Tanaka , M. , Nakai , M. , Sakaki , T. , Sugano , S. and Saito , I.Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site‐specific Cre recombinase . Nucleic Acids Res. , 23 , 3816 – 3821 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. ) Watanabe , N. , Iwamura , T. , Shinoda , T. and Fujita , T.Regulation of NFkB1 proteins by the candidate oncoprotein BCL‐3: generation of NF‐kB homodimers from the cytoplasmic pool of p50‐p105 and nuclear translocation . EMBO J. , 16 , 3609 – 3620 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. ) Yoneyama , M. , Suhara , W. , Fukuhara , Y. , Fukuda , M. , Nishida , E. and Fujita , T.Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF‐3 and CBP/p300 . EMBO J. , 17 , 1087 – 1095 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. ) Yoshida , Y. , Sadata , A. , Zhang , W. , Saito , K. , Shinoura , N. and Hamada , H.Generation of fiber‐mutant recombinant adenoviruses for gene therapy of malignant glioma . Hum. Gene Ther. , 9 , 2503 – 2515 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 41. ) Kato , T. , Sawamura , Y. , Tada , M. , Sakuma , S. , Sudo , M. and Abe , H.p55 and p75 tumor necrosis factor receptor expression on human glioblastoma cells . Neurol. Med. Chir. (Tokyo) , 35 , 567 – 574 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 42. ) Morgavi , P. , Cimoli , G. , Ottoboni , C. , Michelotti , A. , Conte , P. , Parodi , S. and Russo , P.Sensitization of human glioblastoma T98G cells to VP16 and VM26 by human necrosis factor . Anticancer Res. , 15 , 1423 – 1428 ( 1995. ). [PubMed] [Google Scholar]
  • 43. ) Tartaglia , L. A. , Rothe , M. , Hu , Y. T. and Goeddel , D. V.Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor . Cell , 73 , 213 – 216 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 44. ) Regnier , C. H. , Song , H. Y. , Gao , X. , Goeddel , D. V. , Cao , Z. and Rothe , M.Identification and characterization of an IkappaB kinase . Cell , 90 , 373 – 383 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 45. ) Didonato , J. A. , Hayakawa , M. , Rothwarf , D. M. , Zandi , E. and Karin , M.A cytokine‐responsive IkappaB kinase that activates the transcription factor NF‐kappaB . Nature , 388 , 548 – 554 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 46. ) Maruno , M. , Yoshimine , T. , Isaka , T. , Ghulam Muhammad , A. , Nishioka , K. and Hayakawa , T.Cellular targets of exogenous tumour necrosis factor‐alpha (TNF alpha) in human gliomas . Acta Neurochir. (Wien) , 138 , 1437 – 1441 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 47. ) Yoshida , J. , Wakabayashi , T. , Mizuno , M. , Sugita , K. , Yoshida , T. , Hori , S. , Mori , T. , Sato , T. , Karashima , A. , Kurisu , K. , Kiya , K. and Uozumi , T.Clinical effect of intra‐arterial tumor necrosis factor‐alpha for malignant glioma J. Neurosurg , 77 , 78 – 83 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 48. ) Kondo , S. , Yin , D. , Takeuchi , J. , Morimura , T. , Miyatake , S. I. , Nakatsu , S. , Oda , Y. and Kikuchi , H.Tumor necrosis factor‐α induces an increase in susceptibility of human glioblastoma U87‐MG cells to natural killer cell‐mediated lysis . Br. J. Cancer , 69 , 627 – 632 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. ) Niida , H. , Takeuchi , S. , Tanaka , R. and Minakawa , T.Angiogenesis in microvascular endothelial cells induced by glioma cells and inhibited by tumor necrosis factor in vitro . Neurol. Med. Chir. (Tokyo) , 35 , 209 – 214 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 50. ) Iwasaki , K. , Rogers , L. R. , Barnett , G. H. , Estes , M. L. and Barna , B. P.Effect of recombinant tumor necrosis factor‐alpha on three dimensional growth, morphology, and invasiveness of human glioblastoma cells in vitro . J. Neurosurg. , 78 , 952 – 958 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 51. ) Cai , Z. , Korner , M. , Tarantino , N. and Chouaib , S.IkBα overexpression in human breast carcinoma MCF7 cells inhibits nuclear factor‐kB activation but not tumor necrosis factor‐α‐induced apoptosis . J. Biol. Chem. , 272 , 96 – 101 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 52. ) Chresta , C. M. , Masters , J. R. W. and Hickman , J. A.Hypersensitivity of human testicular tumors to etoposide induced apoptosis is associated with functional p53 and a high bax:bcl‐2 ratio . Cancer Res. , 56 , 1834 – 1841 ( 1996. ). [PubMed] [Google Scholar]
  • 53. ) Strobel , T. , Swanson , L. , Korsmeyer , S. and Cannistra , S. A.Bax enhances paclitaxel‐induced apoptosis through a p53‐independent pathway . Proc. Natl. Acad. Sci. USA , 93 , 14094 – 14099 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. ) Wagener , C. , Bargou , R. C. , Daniel , P. T. , Bommert , K. , Mapara , M. Y. , Royer , H. D. and Dorken , B.Induction of the death‐promoting gene bax‐a sensitizes cultured breast cancer cells to drug‐induced apoptosis . Int. J. Cancer , 67 , 138 – 141 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 55. ) Boersma , A. W. M. , Nooter , K. , Burger , H. , Kortland , C. J. and Stoter , G.Bax upregulation is an early event in cisplatin‐induced apoptosis in human testicular germ‐cell tumor cell line NT2, as quantitated by flow cytometry . Cytometry , 27 , 275 – 282 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 56. ) Wang , C.‐Y. , Cusack , J. C. , Jr. , Liu , R. and Baldwin , A. S. , Jr.Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF‐kB . Nat. Med. , 5 , 412 – 417 ( 1999. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES