Abstract
Preimplantation stage mouse embryos are known to be highly sensitive to the killing effect of DNA damaging agents such as radiation. Interestingly, however, this stage of development is well protected from radiation induction of malformation and carcinogenesis in postnatal life. In recent years, it has become clear that the stem cells of preimplantation stage embryos undergo extensive apoptosis after DNA damage. It has been postulated that this apoptosis is likely to be responsible for the resistance to malformation, by excluding cells carrying deleterious DNA damage. We have tested the possible role of apoptosis in elimination of gene and chromosome mutations in undifferentiated mouse embryonal carcinoma cell line, F9, transfected with human bcl‐2 cDNA. The colony radiosensitivity of F9 cells was not affected by overexpression of the bcl‐2 gene, but the apoptotic cell death was suppressed, as examined by DNA ladder assay and Hoechst staining. This suppression was accompanied by an increase in the frequencies of hprt mutation and micronucleus formation after X‐irradiation. These results support the idea that maintenance of genomic integrity during early development is likely to be executed by apoptotic elimination of cells at risk.
Keywords: Radiation, Mutation, Apoptosis, bcl‐2, Embryonal carcinoma cell
Full Text
The Full Text of this article is available as a PDF (105.3 KB).
REFERENCES
- 1. ) Kronenberg , A.Radiation‐induced genomic instability . Int. J. Radiat. Biol. , 66 , 603 – 609 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Little , J. B.Radiation‐induced genomic instability . Int. J. Radiat. Biol. , 74 , 663 – 671 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Ullrich , R. L. and Ponnaiya , B.Radiation‐induced instability and its relation to radiation carcinogenesis . Int. J. Radiat. Biol. , 74 , 747 – 754 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Alexandre , H. L.Effects of X‐irradiation on preimplantation mouse embryos cultured in vitro . J. Reprod. Fertil. , 36 , 417 – 420 ( 1974. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Goldstein , L. S. , Spindle , A. I. and Pedersen , R. A.X‐ray sensitivity of the preimplantation mouse embryo in vitro . Radiat. Res. , 62 , 276 – 287 ( 1975. ). [PubMed] [Google Scholar]
- 6. ) Ku , K. Y. and Voytek , P.The effects of UV light, ionizing radiation and the carcinogen N‐acetoxy‐2‐fluorenylacetamide on the development in vitro of one‐ and two‐cell mouse embryos . Int. J. Radiat. Biol. , 30 , 401 – 408 ( 1976. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Eibs , H. G. and Spielmann , H.Differential sensitivity of preimplantation mouse embryos to UV irradiation in vitro and evidence for postreplication repair . Radiat. Res. , 71 , 367 – 376 ( 1977. ). [PubMed] [Google Scholar]
- 8. ) Russell , L. B. and Russell , W. L.An analysis of the changing radiation response of the developing mouse embryo . J. Cell. Comp. Physiol. , 43 ( Suppl. 1 ), 103 – 149 ( 1954. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Mole , R. H.Expectation of malformations after irradiation of the developing human in utero: the experimental basis for predictions . In “ Advances in Radiation Biology ,” ed. Altman K. I. and Lett J. T. , pp. 217 – 301 ( 1992. ). Academic Press; , San Diego . [Google Scholar]
- 10. ) Kondo , S.Empirical rules for radiation‐induced teratogenesis and defense mechanisms against teratogenic injury . In “ Health Effects of Low‐level Radiation ,” by Kondo S. , pp. 73 – 92 ( 1993. ). Kinki University Press, Osaka and Medical Physics Publishing; , Madison . [Google Scholar]
- 11. ) Norimura , T. , Nomoto , S. , Katsuki , M. , Gondo , Y. and Kondo , S.p53‐dependent apoptosis suppresses radiationinduced teratogenesis . Nat. Med. , 2 , 577 – 580 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Robertson , E. J. “ Teratocarcinomas and Embryonic Stem Cells ( 1987. ). IRL Press; , Oxford . [Google Scholar]
- 13. ) Niwa , O. , Seyama , T. , Takebe , H. and Sugahara , T.High sensitivity of murine teratocarcinoma cells to UV radiation and the effect of post‐irradiation treatment with caffeine . Mutat. Res. , 145 , 195 – 200 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Murty , V. V. , Bosl , G. J. , Houldsworth , J. , Meyers , M. , Mukherjee , A. B. , Reuter , V. and Chaganti , R. S.Allelic loss and somatic differentiation in human male germ cell tumors . Oncogene , 9 , 2245 – 2251 ( 1994. ). [PubMed] [Google Scholar]
- 15. ) Riou , G. , Barrois , M. , Prost , S. , Terrier , M. J. , Theodore , C. and Levine , A. J.The p53 and mdm‐2 genes in human testicular germ‐cell tumors . Mol. Carcinog. , 12 , 124 – 131 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Langley , R. E. , Palayoor , S. T. , Coleman , C. N. and Bump , E. A.Radiation‐induced apoptosis in F9 teratocarcinoma cells . Int. J. Radiat. Biol. , 65 , 605 – 610 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Tsujimoto , Y. , Finger , L. R. , Yunis , J. , Nowell , P. C. and Croce , C. M.Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation . Science , 226 , 1097 – 1099 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Reed , J. C.Bcl‐2 family proteins . Oncogene , 17 , 3225 – 3236 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Adams , J. M. and Cory , S.The Bcl‐2 protein family: arbiters of cell survival . Science , 281 , 1322 – 1326 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Korsmeyer , S. J.BCL‐2 gene family and the regulation of programmed cell death . Cancer Res. , 59 ( Suppl. ), 1693s – 1700s ( 1999. ). [PubMed] [Google Scholar]
- 21. ) Vander Heiden , M. G. and Thompson , C. B.Bcl‐2 proteins: regulators of apoptosis or of mitochondrial homeostasis ? Nat. Cell. Biol. , 1 , E209 – E216 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Strasser , A. , Harris , A. W. , Jacks , T. and Cory , S.DNA damage can induce apoptosis in proliferating lymphoid cells via p53‐independent mechanisms inhibitable by Bcl‐2 . Cell , 79 , 329 – 339 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Fukunaga‐Johnson , N. , Ryan , J. J. , Wicha , M. , Nunez , G. and Clarke , M. F.Bcl‐2 protects murine erythroleukemia cells from p53‐dependent and ‐independent radiationinduced cell death . Carcinogenesis , 16 , 1761 – 1767 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Korsmeyer , S. J.Bcl‐2 initiates a new category of oncogenes: regulators of cell death . Blood , 80 , 879 – 886 ( 1992. ). [PubMed] [Google Scholar]
- 25. ) Bernstine , E. G. , Hooper , M. L. , Grandchamp , S. and Ephrussi , B.Alkaline phosphatase activity in mouse teratoma . Proc. Natl. Acad. Sci. USA , 70 , 3899 – 3903 ( 1973. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. ) Pennica , D. , Goeddel , D.V. , Hayflick , J. S. , Reich , N. C. , Anderson , C. W. and Levine , A. J.The amino acid sequence of murine p53 determined from a c‐DNA clone . Virology , 134 , 477 – 482 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 27. ) Tsujimoto , Y. and Croce , C. M.Analysis of the structure, transcripts, and protein products of bcl‐2, the gene involved in human follicular lymphoma . Proc. Natl. Acad. Sci. USA , 83 , 5214 – 5218 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. ) Wyllie , A. H.Glucocorticoid‐induced thymocyte apoptosis is associated with endogenous endonuclease activation . Nature , 284 , 555 – 556 ( 1980. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Sellins , K. S. and Cohen , J. J.Gene induction by γ‐irradiation leads to DNA fragmentation in lymphocytes . J. Immunol. , 139 , 3199 – 3206 ( 1987. ). [PubMed] [Google Scholar]
- 30. ) Sasaki , S.Influence of the age of mice at exposure to radiation on life‐shortening and carcinogenesis . J. Radiat. Res. (Tokyo) , 32 ( Suppl. 2 ), 73 – 85 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Jurisicova , A. , Varmuza , S. and Casper , R. F.Programmed cell death and human embryo fragmentation . Mol. Hum. Reprod. , 2 , 93 – 98 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 32. ) Anderson , J. A. , Lewellyn , A. L. and Maller , J. L.Ionizing radiation induces apoptosis and elevates cyclin A1‐Cdk2 activity before but not after the midblastula transition in Xenopus . Mol. Biol. Cell. , 8 , 1195 – 1206 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. ) Ikegami , R. , Hunter , P. and Yager , T. D.Developmental activation of the capability to undergo checkpoint‐induced apoptosis in the early zebrafish embryo . Dev. Biol. , 209 , 409 – 433 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 34. ) Taga , M. , Shiraishi , K. , Shimura , T. , Uematsu , N. , Kato , T. , Nishimune , Y. , Aizawa , S. , Oshimura , M. and Niwa , O.The effect of caffeine on p53 dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after Xray and UV‐irradiations . J. Radiat. Res. (Tokyo) , in press . [DOI] [PubMed]
- 35. ) Lee , J. M. , Abrahamson , J. L. , Kandel , R. , Donehower , L. A. and Bernstein , A.Susceptibility to radiation‐carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice . Oncogene , 9 , 3731 – 3736 ( 1994. ). [PubMed] [Google Scholar]
- 36. ) Cherbonnel‐Lasserre , C. , Gauny , S. and Kronenberg , A.Suppression of apoptosis by Bcl‐2 or Bcl‐xL promotes susceptibility to mutagenesis . Oncogene , 13 , 1489 – 1497 ( 1996. ). [PubMed] [Google Scholar]
- 37. ) Zamble , D. B. , Jacks , T. and Lippard , S. J.p53‐dependent and ‐independent responses to cisplatin in mouse testicular teratocarcinoma cells . Proc. Natl. Acad. Sci. USA , 95 , 6163 – 6168 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. ) Kyprianou , N. , King , E. D. , Bradbury , D. and Rhee , J. G.bcl‐2 over‐expression delays radiation‐induced apoptosis without affecting the clonogenic survival of human prostate cancer cells . Int. J. Cancer , 70 , 341 – 348 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 39. ) Haimovitz‐Friedman , A. , Kolesnick , R. N. and Fuks , Z.Modulation of the apoptotic response: potential for improving the outcome in clinical radiotherapy . Semin. Radiat. Oncol. , 6 , 273 – 283 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 40. ) Huang , L. C. , Clarkin , K. C. and Wahl , G. M.Sensitivity and selectivity of the DNA damage sensor responsible for activating p53‐dependent G1 arrest . Proc. Natl. Acad. Sci. USA , 93 , 4827 – 4832 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
