Abstract
Most anticancer agents induce cell cycle arrest (cytostatic effect) and cell death (cytotoxic effect), resulting in the inhibition of population growth of cancer cells. When asynchronous cells are to be examined, the currently used flow cytometric method can not provide checkpoint‐specific and quantitative information on the drug‐induced cell cycle arrest. Hence, despite its significance, no good method to analyze in detail the mechanism of cell cycle arrest and its contribution to overall growth inhibition induced by an anticancer agent has yet been established. We describe in this study the development of a discrete time (Markov model)‐based computational model for cell cycle progression/arrest with transition probability (TPi) as a model parameter. TPi was calculated using model equations that include easily measurable parameters such as the fraction of cells in each cell cycle phase and population doubling time. The TPi was then used to analyze checkpoint‐specific and quantitative changes in cell cycle progression. We also used TPi in a Monte‐Carlo simulation to predict growth inhibition caused by cell cycle arrest only. Human SCLC cells (SBC‐3) exposed to UCN‐01 were used to validate the model. The model‐predicted growth curves agreed with the observed data for SBC‐3 cells not treated or treated at a cytostatic concentration (0.2μM) of UCN‐ 01, indicating validity of the present model. The changes in TPi indicated that UCN‐01 reduced the G1‐to‐S transition rate and increased the S‐to‐G2/M and G2/M‐to‐G1 transition rates of SBC‐3 cells in a concentration‐ and time‐dependent manner. When the model‐predicted growth curves were compared with the observed data for cells treated at a cytotoxic concentration (2 μM, they suggested that 22% out of 65% and 32% out of 73% of the growth inhibition could be attributed to the cell cycle arrest effect after 48 h and 72 h exposure, respectively. In conclusion, we report here the establishment of a novel method of analysis that can provide checkpoint‐specific and quantitative information about cell cycle arrest induced by an anticancer agent and that can be used to assess the contribution of cell cycle arrest effect to the overall growth inhibition.
Keywords: Transition probability, Computational model, Cell cycle arrest, UCN‐01, Cytostatic effect
Full Text
The Full Text of this article is available as a PDF (118.4 KB).
REFERENCES
- 1. ) Akinaga , S. , Nomura , K. , Gomi , K. and Okabe , M.Diverse effects of indolocarbazole compounds on the cell cycle progression of ras‐transformed rat fibroblast cells . J. Antibiot. (Tokyo) , 46 , 1767 – 1771 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Akinaga , S. , Nomura , K. , Gomi , K. and Okabe , M.Effect of UCN‐01, a selective inhibitor of protein kinase C, on the cell‐cycle distribution of human epidermoid carcinoma, A431 cells . Cancer Chemother. Pharmacol. , 33 , 273 – 280 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Kawakami , K. , Futami , H. , Takahara , J. and Yamaguchi , K.UCN‐01, 7‐hydroxylstaurosporine, inhibits kinase activity of cyclin‐dependent kinases and reduces the phosphorylation of the retinoblastoma susceptibility gene product in A549 human lung cancer cell line . Biochem. Biophys. Res. Commun , 219 , 778 – 783 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Sausville , E. A. , Lush , R. D. , Headlee , D. , Smith , A. C. , Figg , W. D. , Arbuck , S. G. , Senderowicz , A. M. , Fuse , E. , Tanii , H. , Kuwabara , T. and Kobayashi , S.Clinical pharmacology of UCN‐01: initial observation and comparison to preclinical models . Cancer Chemother. Pharmacol. , 42 , S50 – S54 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Seynaeve , C. M. , Stetler‐Stevenson , M. , Sebers , S. , Kaur , G. , Sausville , E. A. and Worland , P. J.Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN‐01 in human breast carcinoma cells . Cancer Res. , 53 , 2081 – 2086 ( 1993. ). [PubMed] [Google Scholar]
- 6. ) Bunch , R. T. and Eastman , A.7‐Hydroxystaurosporine (UCN‐01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin‐induced S‐phase arrest in Chinese hamster ovary cells . Cell Growth Differ. , 8 , 779 – 788 ( 1997. ). [PubMed] [Google Scholar]
- 7. ) Wang , Q. , Fan , S. , Eastman , A. , Worland , P. J. , Sausville , E. A. and O'Connor , P. M.UCN‐01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53 . J. Natl. Cancer Inst. , 88 , 956 – 965 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Shao , R. G. , Cao , C. X. , Shimizu , T. , O'Connor , P. M. , Kohn , K. W. and Pommier , Y.Abrogation of an S‐phase checkpoint and potentiation of camptothecin cytotoxicity by 7‐hydroxystaurosporine (UCN‐01) in human cancer cell lines, possibly influenced by p53 function . Cancer Res. , 57 , 4029 – 4035 ( 1997. ). [PubMed] [Google Scholar]
- 9. ) Eastman , A. , DiPetrillo , K. J. and Brown , M. K.Abrogation of irinotecan‐mediated S and G2 arrest by 7‐hydroxystaurosporine (UCN‐01) and the impact of p53 status . Proc. Am. Assoc. Cancer Res. , 40 , 305 ( 1999. ). [Google Scholar]
- 10. ) Shi , Z. and Plunkett , W.Induction of apoptosis without cell cycle progression by UCN‐01 abrogates gemcitabine induced S phase arrest in human myeloid ML‐1 cells . Proc. Am. Assoc. Cancer Res. , 40 , 305 ( 1999. ). [Google Scholar]
- 11. ) Morikage , T. , Ohmori , T. , Nishio , K. , Fujiwara , Y. , Takeda , Y. and Saijo , N.Modulation of cisplatin sensitivity and accumulation by amphotericin B in cisplatin‐resistant human lung cancer cell lines . Cancer Res. , 53 , 3302 – 3307 ( 1993. ). [PubMed] [Google Scholar]
- 12. ) Smith , J. A. and Martin , L.Do cells cycle ?,. Proc. Natl. Acad. Sci. USA , 70 , 1263 – 1267 ( 1973. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Robinson , J. H. , Smith , J. A. , Totty , N. F. and Riddle , P. N.Transition probability and the hormonal and density‐dependent regulation of cell proliferation . Nature , 262 , 298 – 300 ( 1976. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Shields , R.Further evidence for a random transition in the cell cycle . Nature , 273 , 755 – 758 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Shields , R. , Brooks , R. F. , Riddle , P. N. , Capellaro , D. F. and Delia , D.Cell size, cell cycle and transition probability in mouse fibroblasts . Cell , 15 , 469 – 474 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Steel , G. G.Growth kinetics of tumors . “ Cell Population Kinetics in Relation to the Growth and Treatment of Cancer ,” pp. 59 – 61 ( 1977. ). Clarendon Press; , Oxford . [Google Scholar]
- 17. ) Akiyama , T. , Yoshida , T. , Tsujita , T. , Shimizu , M. , Mizukami , T. , Okabe , M. and Akinaga , S.G1 phase accumulation induced by UCN‐01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1/WAF1/Sdi1 in p53‐mutated human epidermoid carcinoma A431 cells . Cancer Res. , 57 , 1495 – 1501 ( 1977. ). [PubMed] [Google Scholar]
- 18. ) Brown , J. M. and Wouters , B. G.Apoptosis, p53, and tumor cell sensitivity to anticancer agents . Cancer Res. , 59 , 1391 – 1399 ( 1999. ). [PubMed] [Google Scholar]
- 19. ) Wang , Q. , Worland , P. J. , Clark , J. L. , Carlson , B. A. and Sausville , E. A.Apoptosis in 7‐hydroxystaurosporinetreated T lymphoblasts correlates with activation of cyclindependent kinases 1 and 2 . Cell Growth Differ , 6 , 927 – 936 ( 1995. ). [PubMed] [Google Scholar]
- 20. ) Johnson , K. R. , Wang , L. , Miller , M. C. , 3rd , Willingham , M. C. and Fan , W.5‐Fluorouracil interferes with paclitaxel cytotoxicity against human solid tumor cells . Clin. Cancer Res. , 3 , 1739 – 1745 ( 1997. ). [PubMed] [Google Scholar]
- 21. ) Fan , W.Possible mechanisms of paclitaxel‐induced apoptosis . Biochem. Pharmacol. , 57 , 1215 – 1221 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Kuh , H.‐J. , Jang , S. H. , Tran , A. Q. , Wientjes , M. G. and Au , J. L.‐S.Computational model of intracellular pharmacokinetics of paclitaxel . J. Pharmacol. Exp. Ther. , 293 , 761 – 770 ( 2000. ). [PubMed] [Google Scholar]