Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2000 May;91(5):504–509. doi: 10.1111/j.1349-7006.2000.tb00974.x

Infrequent Mutation of the hBUB1 and hBUBR1 Genes in Human Lung Cancer

Mitsuo Sato 1, Yoshitaka Sekido 2,, Yoshitsugu Horio 1, Masahide Takahashi 3, Hidehiko Saito 1, John D Minna 4, Kaoru Shimokata 2, Yoshinori Hasegawa 1
PMCID: PMC5926378  PMID: 10835495

Abstract

Mitotic checkpoint defects of the cell cycle have been implicated in the development of human cancers. Since hBUB1 and hBUBR1, whose products function in the spindle checkpoint pathway, have been shown to be mutated in a subset of colon cancers with chromosomal instability, we investigated the contribution of these genes to lung cancer development. One hundred and two lung cancer (50 small cell lung cancers and 52 non‐small cell lung cancers) and 4 mesothelioma cell line DNAs were analyzed by Southern blot analysis, but no rearrangements or deletions of hBUB1 and hBUBR1 were detected. Using single strand conformation polymorphism analysis, we studied all the 25 exons except exon 1 of the hBUB1 gene in 88 lung cancer DNAs. One lung cancer cell line, NCI‐H345, showed a single nucleotide substitution, which resulted in an Arg‐to‐Gln change at codon 209 (CGA to CAA). Eleven cell line DNAs exhibited a single nucleotide polymorphism in intron 9 of hBUB1, all of which were heterozygous. Similar mutation analysis of hBUBR1 in 47 lung cancer cell line cDNAs revealed a frequent polymorphism at codon 349 (CAA to CGA) leading to a substitution of Gln to Arg but no mutations. Northern blot analyses showed that both hBUB1 and hBUBR1 genes were expressed in all of 31 lung cancer cell lines tested with no significant difference in the expression level. Our results suggest that alterations in hBUB1 and hBUBR1 rarely contributed to the genetic change of lung cancers.

Keywords: Mitotic checkpoint, hBUB1, hBUBR1, Lung cancer

Full Text

The Full Text of this article is available as a PDF (174.0 KB).

REFERENCES

  • 1. ) Testa , J. R.Chromosome alterations in human lung cancer . In“Lung Cancer: Principles and Practice ,” ed. Pass H. I. , Mitchell J. B. , Johnson D. H. and Turrisi A. T. , pp. 55 – 71 ( 1996. ). Lippincott‐Raven Publication; , Philadelphia . [Google Scholar]
  • 2. ) Mitelman , F. , Mertens , F. and Johansson , B.A breakpoint map of recurrent chromosomal rearrangements in human neoplasia . Nat. Genet. , 15 , 417 – 474 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Pangilinan , F. , Li , Q. , Weaver , T. , Lewis , B. C. , Dang , C. V. and Spencer , F.Mammalian BUB1 protein kinases: map positions and in vivo expression . Genomic , 46 , 379 – 388 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Hoyt , M. A. , Totis , L. and Roberts , B. T.S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function . Cell , 66 , 507 – 517 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Roberts , B. T. , Farr , K. A. and Hoyt , M. A.The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase . Mol. Cell. Biol. , 14 , 8282 – 8291 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Li , R. and Murray , A. W.Feedback control of mitosis in budding yeast . Cell , 66 , 519 – 531 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Li , Y. and Benezra , R.Identification of a human mitotic checkpoint gene: hsMAD2 . Science , 274 , 246 – 248 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Lengauer , C. , Kinzler , K. W. and Vogelstein , B.Genetic instability in colorectal cancers . Nature , 386 , 623 – 627 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Cahill , D. P. , Lengauer , C. , Yu , J. , Riggins , G. J. , Willson , J. K. , Markowitz , S. D. , Kinzler , K. W. and Vogelstein , B.Mutations of mitotic checkpoint genes in human cancers . Nature , 392 , 300 – 303 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Jin , D. Y. , Spencer , F. and Jeang , K. T.Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1 . Cell , 93 , 81 – 91 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Phelps , R. M. , Johnson , B. E. , Ihde , D. C. , Gazdar , A. F. , Carbone , D. P. , McClintock , P. R. , Linnoila , R. I. , Matthews , M. J. , Bunn , P. A. , Jr. , Carney , D. , Minna , J. D. and Mulshine , J. L.NCI‐Navy Medical Oncology Branch cell line data base . J. Cell. Biochem. , 24 , ( Suppl. ), 32 – 91 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Sambrook , J. , Fritsch , E. F. and Maniatis , T.“Molecular Cloning” ( 1989. ). Cold Spring Harbor Laboratory Press; , New York . [Google Scholar]
  • 13. ) Cahill , D. P. , da Costa , L. T. , Carson‐Walter , E. B. , Kinzler , K. W. , Vogelstein , B. and Lengauer , C.Characterization of MAD2B and other mitotic spindle checkpoint genes . Genomics , 58 , 181 – 187 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Testa , J. R. , Liu , Z. , Feder , M. , Bell , D. W. , Balsara , B. , Cheng , J. Q. and Taguchi , T.Advances in the analysis of chromosome alterations in human lung carcinomas . Cancer Genet. Cytogenet. , 95 , 20 – 32 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Testa , J. R. and Siegfried , J. M.Chromosome abnormalities in human non‐small cell lung cancer . Cancer Res. , 52 , 2702s – 2706s ( 1992. ). [PubMed] [Google Scholar]
  • 16. ) Whang‐Peng , J. , Knutsen , T. , Gazdar , A. , Steinberg , S. M. , Oie , H. , Linnoila , I. , Mulshine , J. , Nau , M. and Minna , J. D.Nonrandom structural and numerical chromosome changes in non‐small‐cell lung cancer . Genes Chromosom. Cancer , 3 , 168 – 188 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Sekido , Y. , Fong , K. M. and Minna , J. D.Progress in understanding the molecular pathogenesis of human lung cancer . Biochim. Biophys. Acta , 1378 , 21 – 59 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Lengauer , C. , Kinzler , K. W. and Vogelstein , B.Genetic instabilities in human cancers . Nature , 396 , 643 – 649 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Takahashi , T. , Haruki , N. , Nomoto , S. , Masuda , A. , Saji , S. , Osada , H. and Takahashi , T.Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers . Oncogene , 18 , 4295 – 4300 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Katagiri , T. , Futamura , M. and Nakamura , Y.A Gln/Arg polymorphism at codon 349 of the hBUBR1 gene . J. Hum. Genet. , 44 , 131 – 132 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Yamaguchi , K. , Okami , K. , Hibi , K. , Wehage , S. L. , Jen , J. and Sidransky , D.Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines . Cancer Lett. , 139 , 183 – 187 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Imai , Y. , Shiratori , Y. , Kato , N. , Inoue , T. and Omata , M.Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers . Jpn. J. Cancer Res. , 90 , 837 – 840 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. ) Spruck , C. H. , Won , K. A. and Reed , S. I.Deregulated cyclin E induces chromosome instability . Nature , 401 , 297 – 300 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Felsher , D. W. and Bishop , J. M.Transient excess of MYC activity can elicit genomic instability and tumorigenesis . Proc. Natl. Acad. Sci. USA , 96 , 3940 – 3944 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. ) Hollander , M. C. , Sheikh , M. S. , Bulavin , D. V. , Lundgren , K. , Augeri‐Henmueller , L. , Shehee , R. , Molinaro , T. A. , Kim , K. E. , Tolosa , E. , Ashwell , J. D. , Rosenberg , M. P. , Zhan , Q. , Fernández‐Salguero , P. M. , Morgan , W. F. , Deng , C. X. and Fornace , A. J. , Jr.Genomic instability in Gadd45a‐deficient mice . Nat. Genet. , 23 , 176 – 184 ( 1999. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES