Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2000 May;91(5):560–565. doi: 10.1111/j.1349-7006.2000.tb00981.x

Effects of Photodynamic Therapy Using Mono‐l‐aspartyl Chlorin e6 on Vessels and Its Contribution to the Antitumor Effect

Koichi Saito 1,2,, Naoko Mikuniya 1, Katsuo Aizawa 2
PMCID: PMC5926381  PMID: 10835502

Abstract

The effect of photodynamic therapy (PDT) on the vascular system has a significant role in tumor tissue destruction. We investigated the contribution of vascular damage to the antitumor effects of PDT and analyzed the quantitative vascular changes after PDT. Fibrosarcoma‐bearing BALB/c male mice were injected with mono‐L‐aspartyl chlorin e6 (NPe6) at a dose of 0.25, 5 or 15 mg/kg, and photoradiation was performed with a diode laser 10 min, 2 h or 24 h after injection, respectively. Ten minutes after injection of 0.25 mg/kg, NPe6 was found to be present only in plasma, while at 2 h after injection of 5 mg/kg it was present in both plasma and tumor, and 24 h after injection of 15 mg/kg it was present only in the tumor. The antitumor effects observed in the 5 mg/ kg‐2 h and 0.25 mg/kg‐10 min groups were virtually the same, whereas the effect in the 15 mg/kg‐ 24 h group was weaker. The damage to the tumor vasculature and tumor cells in the 15 mg/kg‐24 h group occurred later than under the other conditions, and vascular damage in the tumor‐surrounding tissue was also less marked even 24 h after PDT. These results suggested that the plasma NPe6 concentration during laser irradiation contributed more than the tumor NPe6 concentration to the antitumor effect, and that the minimal damage to blood vessels around the tumor at the low plasma NPe6 concentration may be one reason for the failure to obtain a marked antitumor effect.

Keywords: Photodynamic therapy, Mono‐L‐aspartyl chlorin e6, Mouse fibrosarcoma, Vascular damage

Full Text

The Full Text of this article is available as a PDF (70.4 KB).

REFERENCES

  • 1. ) Dougherty , T. J. , Gomer , C. J. , Henderson , B. W. , Jori , G. , Kessel , D. , Korbelik , M. , Moan , J. and Peng , Q.Photodynamic therapy (review) . J. Natl. Cancer Inst. , 90 , 889 – 905 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. ) Sharman , W. M. , Allen , C. M. and van Lier , J. E.Photodynamic therapeutics: basic principles and clinical applications (review) . Drug Discovery Today , 4 , 507 – 517 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Fingar , V. H.Vascular effects of photodynamic therapy . J. Clin. Laser Med. , 14 , 323 – 328 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Roberts , W. G. , Shiau , F. Y. , Nelson , J. S. , Smith , K. M. and Berns , M. W.In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy . J. Natl. Cancer Inst. , 80 , 330 – 336 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Moan , J. , Peng , Q. , Sorensen , R. , Iani , V. and Nesland , J. M.The biophysical foundation of photodynamic therapy (review) . Endoscopy , 30 , 387 – 391 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Roberts , W. G. , Smith , K. M. , McCullough , J. L. and Berns , M. W.Skin photosensitivity and photodestruction of several potential photodynamic sensitizers . Photochem. Photobiol. , 49 , 431 – 438 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Aizawa , K. , Kadowaki , O. , Kawabe , H. , Yasunaka , Y. and Kato , H.Effect of NPe6 or Photofrin II with subsequent exposure to light . Lasers Life Sci. , 3 , 187 – 196 ( 1990. ). [Google Scholar]
  • 8. ) Nelson , J. S. , Roberts , W. J. and Berns , M. W.In vivo studies on the utilization of mono‐L‐aspartyl chlorin (NPe6) for photodynamic therapy . Cancer Res. , 47 , 4681 – 4685 ( 1987. ). [PubMed] [Google Scholar]
  • 9. ) Katsumi , T. , Aizawa , K. , Okunaka , T. , Kuroiwa , Y. , Ii , Y. , Saito , K. , Konaka , C. and Kato , H.Photodynamic therapy using a diode laser with mono‐L‐aspartyl chlorin e6 for implanted fibrosarcoma in mice . Jpn. J. Cancer Res. , 85 , 1165 – 1170 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. ) Katsumi , T. A. , Aizawa , K. , Kuroiwa , Y. , Saito , K. , Kurata , Y. , Ii , Y. , Okunaka , T. , Konaka , C. and Kato , H.Photodynamic therapy with a diode laser for implanted fibrosarcoma in mice employing mono‐L‐aspartyl chlorin e6 . Photochem. Photobiol. , 64 , 671 – 675 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Song , L.‐M. W. K. , Wang , K. K. and Zinsmeister , A. R.Mono‐L‐aspartyl chlorin e6 (NPe6) and hematoporphyrin derivative (HpD) in photodynamic therapy administered to a human cholangiocarcinoma model . Cancer , 82 , 421 – 427 ( 1998. ). [PubMed] [Google Scholar]
  • 12. ) Gomer , C. J. and Ferrario , A.Tissue distribution and photosensitizing properties of mono‐L‐aspartyl chlorin e6 in a mouse tumor model . Cancer Res. , 50 , 3985 – 3990 ( 1990. ). [PubMed] [Google Scholar]
  • 13. ) Ferrario , A. , Kessel , D. and Gomer , C. J.Metabolic properties and photosensitizing responsiveness of mono‐L‐aspartyl chlorin e6 in a mouse tumor model . Cancer Res. , 52 , 2890 – 2893 ( 1992. ). [PubMed] [Google Scholar]
  • 14. ) Nelson , J. S. , Liaw , L. H. , Orenstein , A. , Roberts , W. J. and Berns , M. W.Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine . J. Natl. Cancer Inst. , 80 , 1599 – 1605 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Yamamoto , Y. , Shibuya , H. , Okunaka , T. , Aizawa , K. and Kato , H.Fibrin plugging as a cause of microcirculatory occlusion during photodynamic therapy . Lasers Med. Sci. , 14 , 129 – 135 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Sheyhedin , I. , Aizawa , K. , Araake , M. , Kumasaka , H. , Okunaka , T. and Kato , H.The effects of serum on cellular uptake and phototoxicity of mono‐L‐aspartyl chlorin e6 (NPe6) in vitro . Photochem. Photobiol. , 68 , 110 – 114 ( 1998. ). [PubMed] [Google Scholar]
  • 17. ) Fingar , V. H. , Wieman , T. J. , Wiehle , S. A. and Cerrito , P. B.The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion . Cancer Res. , 52 , 4914 – 4921 ( 1992. ). [PubMed] [Google Scholar]
  • 18. ) Fingar , V. H. , Wieman , T. J. and Doak , K. W.Role of thromboxane and prostacyclin release on photodynamic therapy‐induced tumor destruction . Cancer Res. , 50 , 2599 – 2603 ( 1990. ). [PubMed] [Google Scholar]
  • 19. ) Fingar , V. H. , Siegel , K. A. , Wieman , T. J. and Doak , K. W.The effects of thromboxane inhibitors on the microvascular and tumor response to photodynamic therapy . Photochem. Photobiol. , 58 , 393 – 399 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Fingar , V. H. , Wieman , T. J. and Hydon , P. S.The effects of thrombocytopenia on vessel stasis and macromolecular leakage after photodynamic therapy using Photofrin . Photochem. Photobiol , 66 , 513 – 517 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) McMahon , K. S. , Wieman , T. J. , Moore , P. H. and Fingar , V. H.Effects of photodynamic therapy using mono‐L‐aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response . Cancer Res. , 54 , 5374 – 5379 ( 1994. ). [PubMed] [Google Scholar]
  • 22. ) Star , W. M. , Marijnissen , H. P. A. , van den Berg‐Blok , A. E. , Versteeg , J. A. C. , Franken , K. A. P. and Reinhold , H. S.Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers . Cancer Res. , 46 , 2532 – 2540 ( 1986. ). [PubMed] [Google Scholar]
  • 23. ) Fingar , V. H. , Kik , P. K. , Haydon , P. S. , Tseng , M. , Abang , E. and Wieman , T. J.Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD) . Br. J. Cancer , 79 , 1702 – 1708 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. ) Lin , G. C. , Tsoukas , M. L. , Lee , M. S. , Gonzalez , S. , Vibhagool , C. , Anderson , R. R. and Kollias , N.Skin necrosis due to photodynamic action of benzoporphyrin depends on circulating rather than tissue drug levels: implications for control of photodynamic therapy . Photochem. Photobiol. , 68 , 575 – 583 ( 1998. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES