Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2000 May;91(5):527–533. doi: 10.1111/j.1349-7006.2000.tb00977.x

Ras and Signal Transducer and Activator of Transcription (STAT) Are Essential and Sufficient Downstream Components of Janus Kinases in Cell Proliferation

Rumiko Mizuguchi 1, Satoshi Noto 1, Masafumi Yamada 1, Satoshi Ashizawa 1, Hideaki Higashi 1, Masanori Hatakeyama 1,2,
PMCID: PMC5926385  PMID: 10835498

Abstract

Cytokines exert their activities in cell growth and differentiation by binding specific cell membrane receptors. Janus kinases (JAKs) are cytoplasmic protein tyrosine kinases that physically interact with intracellular domains of the cytokine receptors and they play crucial roles in transducing signals triggered by the cytokine‐receptor interaction. We have previously shown that conditional activation of JAK through membrane‐proximal dimerization confers cytokine‐independence on interleukin‐3 (IL‐3)‐dependent Ba/F3 lymphoid cells and that the cytokine‐independent proliferation is completely inhibited by dominant negative Ras. In this work, we demonstrate that ectopic expression of a dominant negative form of Stat5, a major signal transducer and activator of transcription (STAT) expressed in Ba/F3 cells, also inhibits JAK‐triggered mitogenesis. In contrast, overexpression of constitutively active Ras or conditional activation of Stat5 by chemical dimerization fails to confer cytokine‐independence. However, concomitant activation of ectopic Ras and Stat5 molecules in Ba/F3 cells suffices for cell proliferation in the absence of IL‐3. Our results indicate that Ras and STAT are essential and sufficient components of JAK‐triggered mitogenesis. Our findings further indicate that the cytokine signal bifurcates into Ras and STAT pathways following JAK activation.

Keywords: Cytokine, JAK, Ras, STAT, Chemical dimerizer

Full Text

The Full Text of this article is available as a PDF (108.3 KB).

REFERENCES

  • 1. ) Paul , W. E. and Seder , R. A.Lymphocyte responses and cytokines . Cell , 76 , 241 – 251 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Kishimoto , T. , Taga , T. and Akira , S.Cytokine signal transduction . Cell , 76 , 253 – 262 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Taniguchi , T.Cytokine signaling through non‐receptor protein tyrosine kinase . Science , 268 , 251 – 255 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Ihle , J. N.Cytokine receptor signaling . Nature , 377 , 591 – 594 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Schindler , C. and Darnell , J. E. , Jr.Transcriptional responses to polypeptide ligands: the JAK‐STAT pathway . Annu. Rev. Biochem. , 64 , 621 – 651 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Darnell , J. E. , Jr.STATs and gene regulation . Science , 277 , 1630 – 1635 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Hatakeyama , M. , Mori , H. , Doi , T. and Taniguchi , T.A restricted cytoplasmic region of IL‐2 receptor β chain is essential for growth signal transduction but not for ligand binding and internalization . Cell , 59 , 837 – 845 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Horak , I. D. , Gress , R. E. , Lucas , P. J. , Horak , E. M. , Waldmann , T. A. and Bolen , J. B.T‐lymphocyte interleukin 2‐dependent tyrosine kinase signal transduction involves the activation of p56lck . Proc. Natl. Acad. Sci. USA , 88 , 1996 – 2000 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Torigoe , T. , O'Connor , R. , Santoli , D. and Reed , J. C.Interleukin‐3 regulates the activity of the LYN proteintyrosine kinase in myeloid‐committed leukemic cell lines . Blood , 80 , 617 – 624 ( 1992. ). [PubMed] [Google Scholar]
  • 10. ) Corey , S. , Eguinoa , A. , Puyana‐Theall , K. , Bolen , J. B. , Cantley , L. , Mollinedo , F. , Jackson , T. R. , Hawkins , P. T. and Stephens , L. R.Granulocyte macrophage‐colony stimulating factor stimulates both association and activation of phosphoinositide 3OH‐kinase and src‐related tyrosine kinase(s) in human myeloid derived cells . EMBO J. , 12 , 2681 – 2690 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. ) Corey , S. J. , Burkhardt , A. L. , Bolen , J. B. , Geahlen , R. L. , Tkatch , L. S. and Tweardy , D. J.Granulocyte colony‐stimulating factor receptor signaling involves the formation of a three‐component complex with Lyn and Syk proteintyrosine kinases . Proc. Natl. Acad. Sci. USA , 91 , 4683 – 4687 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. ) Ernst , M. , Gearing , D. P. and Dunn , A. R.Functional and biochemical association of Hck with the LIF/IL‐6 receptor signal transducing subunit gp130 in embryonic stem cells . EMBO J. , 13 , 1574 – 1584 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Mizuguchi , R. and Hatakeyama , M.Conditional activation of Janus kinase (JAK) confers factor independence upon IL‐3‐dependent cells. Essential role of Ras in JAK‐triggered mitogenesis . J. Biol. Chem. , 273 , 32297 – 32303 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Farrar , M. A. , Alberola‐lla , J. and Perlmutter , R. M.Activation of Raf‐1 kinase cascade by courmermycin‐induced dimerization . Nature , 383 , 178 – 181 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Hoshikawa , Y. , Amimoto , K. , Mizuguchi , R. and Hatakeyama , M.Highly controlled heterologous gene expression through combined utilization of the tetracyclinerepressible transactivator and the lac repressor . Anal. Biochem. , 261 , 211 – 218 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Hoshikawa , Y. , Mori , A. , Amimoto , K. , Iwabe , K. and Hatakeyama , M.Control of pRB‐independent hematopoietic cell cycle by the pRB‐related p130 . Proc. Natl. Acad. Sci. USA , 95 , 8574 – 8579 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. ) Terada , K. , Kaziro , Y. and Satoh , T.Ras is not required for the interleukin 3‐induced proliferation of a mouse pro‐B cell line, BaF3 . J. Biol. Chem. , 270 , 27880 – 27886 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Nagata , Y. and Todokoro , K.Interleukin 3 activates not only JAK2 and STAT5, but also Tyk2, STAT1, and STAT3 . Biochem. Biophys. Res. Commun. , 221 , 785 – 789 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Mui , A. L. , Wakao , H. , O'Farrell , A. M. , Harada , H. and Miyajima , A.Interleukin‐3, granulocyte‐macrophage colony stimulating factor and interleukin‐5 transduce signals through two STAT5 homologs . EMBO J. , 14 , 1166 – 1175 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. ) Pallard , C. , Gouelleux , F. , Charon , M. , Gisselbrecht , S. and Dusanter‐Fourt , I.Interleukin‐3, erythropoietin, and prolactin activate a STAT5‐like factor in lymphoid cells . J. Biol. Chem. , 270 , 15942 – 15945 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Mui , A. L. , Wakao , H. , Kinoshita , T. , Kitamura , T. and Miyajima , A.Suppression of interleukin‐3‐induced gene expression by a C‐terminal truncated Stat5: role of Stat5 in proliferation . EMBO J. , 15 , 2425 – 2433 ( 1996. ). [PMC free article] [PubMed] [Google Scholar]
  • 22. ) Mori , A. , Higashi , H. , Hoshikawa , Y. , Imamura , M. , Asaka , M. and Hatakeyama , M.Granulocytic differentiation of myeloid progenitor cells by p130, the retinoblastoma tumor suppressor homologue . Oncogene , 18 , 6209 – 6221 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Beijersbergen , R. L. and Bernards , R.Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins . Biochim. Biophys. Acta , 1287 , 103 – 120 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Grana , X. , Garriga , J. and Mayol , X.Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth . Oncogene , 17 , 3365 – 3383 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Matsushime , H. , Roussel , M. F. , Ashmun , R. A. and Sherr , C. J.Colony‐stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle . Cell , 65 , 701 – 713 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Winston , J. T. , Coats , S. R. , Wang , Y. Z. and Pledger , W. J.Regulation of the cell cycle machinery by oncogenic ras . Oncogene , 12 , 127 – 134 ( 1996. ). [PubMed] [Google Scholar]
  • 27. ) Peeper , D. S. , Upton , T. M. , Ladha , M. H. , Neuman , E. , Zalvide , J. , Bernards , R. and DeCaprio , J. A.Ras signalling linked to the cell‐cycle machinery by the retinoblastoma protein . Nature , 386 , 177 – 181 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Aktas , H. , Cai , H. and Cooper , G. M.Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1 . Mol. Cell. Biol. , 17 , 3850 – 3857 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. ) Ohtani , K. , DeGregori , J. and Nevins , J. R.Regulation of the cyclin E gene by transcription factor E2F1 . Proc. Natl. Acad. Sci. USA , 92 , 12146 – 12150 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. ) Herrera , R. E. , Sah , V. P. , Williams , B. O. , Makela , T. P. , Weinberg , R. A. and Jacks , T.Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rbdeficient fibroblasts . Mol. Cell. Biol. , 16 , 2402 – 2407 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. ) Geng , Y. , Eaton , E. N. , Picon , M. , Roberts , J. M. , Lundberg , A. S. , Gifford , A. , Sardet , C. and Weinberg , R. A.Regulation of cyclin E transcription by E2Fs and retinoblastoma protein . Oncogene , 12 , 1173 – 1180 ( 1996. ). [PubMed] [Google Scholar]
  • 32. ) Leone , G. , DeGregori , J. , Sears , R. , Jakoi , L. and Nevins , J. R.Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F . Nature , 387 , 422 – 426 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Hatakeyama , M. , Brill , J. A. , Fink , G. R. and Weinberg , R. A.Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein . Genes Dev. , 8 , 1759 – 1771 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Lundberg , A. S. and Weinberg , R. A.Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin‐cdk complexes . Mol. Cell. Biol. , 18 , 753 – 761 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. ) Harbour , J. W. , Luo , R. X. , Dei Santi , A. , Postigo , A. A. and Dean , D. C.Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1 . Cell , 98 , 759 – 869 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) Sherr , C. J. and Roberts , J. M.CDK inhibitors: positive and negative regulations of G1‐phase progression . Genes Dev. , 13 , 1501 – 1512 ( 1999. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES