Abstract
Myelotoxicity is the main factor which decides the maximum tolerated dose (MTD) in radioimmunotherapy (RIT). Since bone marrow is mostly irradiated from blood radioactivity, enhancing the clearance of unbound circulating radiolabeled antibody is important to reduce myelotoxicity and to increase the MTD. We applied the avidin chase method, which was devised to obtain high tumorto‐background ratios in tumor‐targeting, to RIT of experimental liver micrometastases and evaluated its influence on the side effects and therapeutic outcome. Seven days after intrasplenic injection of human colon cancer LS174T cells, nude mice were intravenously injected with biotinylated 131I‐labeled anti‐CEA monoclonal antibody (MAb) (24–38 μg, 11.1 MBq). Mice of the chase group then received an intravenous injection of avidin twice (24 and 30 h, 72–115 μg each). Biodistribution, side effects (white blood cell counts and body weight change), and short‐ and long‐term therapeutic effects were determined. Avidin chase markedly accelerated the clearance of radiolabeled MAb from the blood (P< 0.0001) and normal tissues, resulting in milder leukocytopenia and body weight loss, both of which recovered earlier than in the non‐chase group (P< 0.01). The tumor uptake of radiolabeled MAb was also decreased by avidin chase, but the metastases‐to‐background ratios were increased. Avidin chase gave the therapeutic gain ratio of 1.89. Treated groups with and without avidin chase showed significant therapeutic effects compared to the non‐treated group. There was no significant difference in the therapeutic effects between the two treated groups. Avidin chase effectively reduced the side effects of RIT and should increase the MTD.
Keywords: Avidin chase, Radioimmunotherapy, Myelotoxicity, Liver metastasis, Antibody
Full Text
The Full Text of this article is available as a PDF (93.2 KB).
REFERENCES
- 1. ) Meredith , R. F. , Bueschen , A. J. , Khazaeli , M. B. , Plott , W. E. , Grizzle , W. E. , Wheeler , R. H. , Schlom , J. , Russell , C. D. , Liu , T. and LoBuglio , A. F.Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49 . J. Nucl. Med. , 35 , 1017 – 1022 ( 1994. ). [PubMed] [Google Scholar]
- 2. ) Behr , T. M. , Sharkey , R. M. , Juweid , M. E. , Dunn , R. M. , Vagg , R. C. , Ying , Z. , Zhang , C.‐H. , Swayne , L. C. , Vardi , Y. , Siegel , J. A. and Goldenberg , D. M.Phase I/II clinical radioimmunotherapy with an iodine‐131‐labeled anti‐carcinoembryonic antigen murine monoclonal antibody IgG . J. Nucl. Med. , 38 , 858 – 870 ( 1997. ). [PubMed] [Google Scholar]
- 3. ) Behr , T. M. , Goldenberg , D. M. and Becker , W. S.Radioimmunotherapy of solid tumors: a review “of mice and men” . Hybridoma , 16 , 101 – 107 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Vogel , C. A. , Galmiche , M. C. and Buchegger , F.Radioimmunotherapy and fractionated radiotherapy of human colon cancer liver metastases in nude mice . Cancer Res. , 57 , 447 – 453 ( 1997. ). [PubMed] [Google Scholar]
- 5. ) Behr , T. M. , Sharkey , R. M. , Juweid , M. E. , Dunn , R. M. , Ying , Z. , Zhang , C.‐H. , Siegel , J. A. and Goldenberg , D. M.Variables influencing tumor dosimetry in radioimmunotherapy of CEA‐expressing cancers with anti‐CEA and antimucin monoclonal antibodies . J. Nucl. Med. , 38 , 409 – 418 ( 1997. ). [PubMed] [Google Scholar]
- 6. ) Hagan , P. L. , Halpern , S. E. , Dillman , R. O. , Shawler , D. L. , Johnson , D. E. , Chen , A. , Krishnan , L. , Frincke , J. , Bartholomew , R. M. , David , G. S. and Carlo , D.Tumor size: effect on monoclonal antibody uptake in tumor models . J. Nucl. Med. , 27 , 422 – 427 ( 1986. ). [PubMed] [Google Scholar]
- 7. ) Fowler , J. F.Radiobiological aspects of low dose rates in radioimmunotherapy . Int. J. Radiat. Oncol. Biol. Phys. , 18 , 1261 – 1269 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Saga , T. , Sakahara , H. , Nakamoto , Y. , Sato , N. , Zhao , S. , Iida , Y. , Kuroki , M. , Endo , K. and Konishi , J.Radioimmunotherapy for liver micrometastases in mice: pharmacokinetics, dose estimation, and long‐term effect . Jpn. J. Cancer Res. , 90 , 342 – 348 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. ) Sato , N. , Saga , T. , Sakahara , H. , Nakamoto , Y. , Zhao , S. , Iida , Y. , Kuroki , M. , Matsuoka , Y. and Konishi , J.Intratumoral distribution of radiolabeled antibody and radioimmunotherapy in experimental liver metastases model of nude mouse . J. Nucl. Med. , 40 , 685 – 692 ( 1999. ). [PubMed] [Google Scholar]
- 10. ) Muthuswamy , M. S. , Robersin , P. L. and Buchsbaum , D. J.A mouse bone marrow dosimetry model . J. Nucl. Med. , 39 , 1243 – 1247 ( 1998. ). [PubMed] [Google Scholar]
- 11. ) Blumenthal , R. D. , Sharkey , R. M. , Snyder , D. and Goldenberg , D. M.Reduction by anti‐antibody administration of the radiotoxicity associated with 131I‐labeled antibody to carcinoembryonic antigen in cancer radioimmunotherapy . J. Natl. Cancer Inst. , 81 , 194 – 199 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Sharkey , R. M. , Primus , F. J. and Goldenberg , D. M.Second antibody clearance of radiolabeled antibody in cancer radioimmunodetection . Proc. Natl. Acad. Sci. USA , 81 , 2843 – 2846 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Casey , J. L. , King , D. J. , Pedley , R. B. , Boden , J. A. , Boden , R. , Chaplin , L. C. , Dorning , M. and Begent , R. H. J.Clearance of yttrium‐90‐labeled anti‐tumor antibodies with antibodies raised against the 12N4 DOTA macrocycle . Br. J. Cancer , 78 , 1307 – 1312 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. ) Klibanov , A. L. , Martynov , A. V. , Slinkin , I. Y. , Smirnov , M. D. , Muzykantov , V. R. , Danilov , S. M. and Torchilin , V. P.Blood clearance of radiolabeled antibody: enhancement by lactosamination and treatment with biotin‐avidin or antimouse IgG antibodies . J. Nucl. Med. , 29 , 1951 – 1956 ( 1988. ). [PubMed] [Google Scholar]
- 15. ) Kobayashi , H. , Sakahara , H. , Hosono , M. , Yao , Z. , Toyama , S. , Endo , K. and Konishi , J.Improved clearance of radiolabeled biotinylated monoclonal antibody following the infusion of avidin as a “chase” without decreased accumulation in the target tumor . J. Nucl. Med. , 35 , 1677 – 1684 ( 1994. ). [PubMed] [Google Scholar]
- 16. ) Marshall , D. , Pedley , R. B. , Melton , R. G. , Boden , J. A. , Boden , R. and Begent , R. H. J.Galactosylated streptavidin for improved clearance of biotinylated intact and F(ab')2 fragments of an anti‐tumor antibody . Br. J. Cancer , 71 , 18 – 24 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. ) Chen , J. Q. , Atrand , S.‐E. , Tennvall , J. , Lindgren , L. , Hidorf , C. and Sjögren , H.‐O.Extracorporeal immunoadsorption compared to avidin chase: enhancement of tumorto‐normal tissue ratio for biotinylated rhenium‐188‐chimeric BR96 . J. Nucl. Med. , 38 , 1934 – 1939 ( 1997. ). [PubMed] [Google Scholar]
- 18. ) Warren , R. S. , Yuan , H. , Matli , M. R. , Gillett , N. A. and Ferrara , N.Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in mouse model of experimental liver metastasis . J. Clin. Invest. , 95 , 1789 – 1797 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. ) Kuroki , M. , Arakawa , F. , Higuchi , H. , Matsunaga , A. , Okamoto , N. , Takakura , K. and Matsuoka , Y.Epitope mapping of the carcinoembryonic antigen by monoclonal antibodies and establishment of a new improved radioimmunoassay system . Jpn. J. Cancer Res. ( Gann ), 78 , 386 – 396 ( 1987. ). [PubMed] [Google Scholar]
- 20. ) Green , N. M.A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin . Biochem. J. , 94 , 23c – 24c ( 1965. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Hunter , W. N. and Greenwood , F. C.Preparation of iodine‐131 labeled human growth hormone of high specific activity . Nature , 194 , 495 – 496 ( 1962. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Lindmo , T. , Boven , E. , Cuttitta , F. , Fedorco , J. and Bunn , P. A. , Jr.Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess . J. Immunol. Methods , 72 , 77 – 89 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Bardies , M. and Chatal , J.‐F.Absorbed dose for internal radiotherapy from 22 beta‐emitting radionuclides: beta dosimetry of small spheres . Phys. Med. Biol. , 39 , 961 – 981 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Press , O. W. , Farr , A. G. , Borroz , K. I. , Anderson , S. K. and Martin , P. J.Endocytosis and degradation of monoclonal antibodies targeting human B‐cell malignancies . Cancer Res. , 49 , 4906 – 4012 ( 1989. ). [PubMed] [Google Scholar]
- 25. ) Kobayashi , H. , Sakahara , H. , Endo , K. , Yao , Z. , Toyama , S. and Konishi , J.Repeating the avidin “chase” markedly improved the biodistribution of radiolabelled biotinylated antibodies and promoted the excretion of additional background radioactivity . Eur. J. Cancer , 31 , 1689 – 1696 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Vriesendorp , H. M. , Quadri , S. M. , Andersson , B. S. and Dicke , K. A.Hematologic side effects of radiolabeled immunoglobulin therapy . Exp. Hematol. , 24 , 1183 – 1190 ( 1996. ). [PubMed] [Google Scholar]
- 27. ) Neta , R. , Douches , S. and Oppenheim , J. J.Interleukin 1 is a radioprotector . J. Immunol. , 136 , 2483 – 2485 ( 1986. ). [PubMed] [Google Scholar]
- 28. ) Blummenthal , R. D. , Sharkey , R. M. and Goldenberg , D. M.Dose escalation of radioantibody in a mouse model with the use of recombinant human interleukin‐1 and granulocyte‐macrophage colony‐stimulating factor intervention to reduce myelosuppression . J. Natl. Cancer Inst. , 84 , 399 – 407 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Richman , C. M. , DeNardo , S. J. , O'Grady , L. F. and DeNardo , G. L.Radioimmunotherapy for breast cancer using escalating fractionated dose of 131I‐labeled chimeric L6 antibody with peripheral blood progenitor cell transfusions . Cancer Res. , 55 , ( Suppl. ), 5916s – 5920s ( 1995. ). [PubMed] [Google Scholar]
- 30. ) Schlom , J. , Molinolo , A. , Simpson , J. F. , Siler , K. , Roselli , M. , Hinkle , G. , Houchens , D. P. and Colcher , D.Advantage of dose fractionation in monoclonal antibody‐targeted radioimmunotherapy . J. Natl. Cancer Inst. , 82 , 763 – 771 ( 1990. ). [DOI] [PubMed] [Google Scholar]