Abstract
To elucidate involvement of the transforming growth factor‐β (TGF‐β) signaling pathway in endogenous and exogenous liver carcinogenesis, we investigated mutations of TGF‐β receptor type II (TGF‐βRII), Smad2 and Smad4 genes, and expression of TGF‐βRII in hepatocellular carcinomas (HCCs) induced by a choline‐deficient L‐amino acid‐defined (CDAA) diet and by N‐nitrosodiethyl‐amine (DEN). Male Fischer 344 rats received a CDAA diet continuously and HCCs were sampled after 75 weeks. Administration of DEN was followed by partial hepatectomy (PH), with colchicine to induce cell cycle disturbance and a selection pressure regimen, HCCs being obtained after 42 weeks. Total RNAs were extracted from individual HCCs and mutations in TGF‐PRH, Smad2 and Smad4 were investigated by reverse transcription (RT)‐polymerase chain reaction (PCR)‐restric‐tion‐single‐strand conformation polymorphism (SSCP) analysis followed by sequencing analysis. Mutations of Smad2 were detected in 2 out of 12 HCCs (16.7%) induced by the CDAA diet, a GGT‐to‐GGC transition (Gly to Gly) at codon 30 and a TCT‐to‐GCT (Ser to Ala) transversion at codon 118, without any TGF‐βRII or Smad4 alterations. No mutations of TGF‐βRII, Smad2 and Smad4 were encountered in eleven HCCs induced by the exogenous carcinogen. Semi‐quantitative RT‐PCR revealed reduced expression of TGF‐βRII in 2 HCCs (16.7%) without Smad2 mutations out of 12 HCCs induced by the CDAA diet and none of 11 induced by DEN. These results suggest that the TGF‐p signaling pathway may be disturbed in endogenous liver carcinogenesis in rats.
Keywords: TGF, βreceptor type II, Smad2, Smad4, HCC, Rat
Full Text
The Full Text of this article is available as a PDF (180.4 KB).
References
- 1.Nakae , D. , Yoshiji , H. , Mizumoto , Y. , Horiguchi , K. , Shiraiwa , K. , Tamura , K. , Denda , A . and Konishi , Y . High incidence of hepatocellular carcinomas induced by a choline deficient L‐amino acid defined diet in rats . Cancer Res. , 52 , 5042 – 5045 ( 1992. ). [PubMed] [Google Scholar]
- 2.Nakae , D. , Yoshiji , H. , Maruyama , H. , Kinugasa , T. , Denda , A . and Konishi , Y . Production of both 8‐hydrox‐ydeoxyguanosine in liver DNA and γ‐glutamyltransferase‐positive hepatocellular lesions in rats given a choline‐defi‐cient, L‐amino acid‐defined diet . Jpn. J. Cancer Res. , 81 , 1081 – 1084 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Ohashi , K. , Tsutsumi , M. , Tsujiuchi , T. , Kobitsu , K. , Okajima , E. , Nakajima , Y. , Nakano , H. , Takahashi , M. , Mori , Y . and Konishi , Y . Enhancement of N‐nitrosodiethyl‐amine‐initiated hepatocarcinogenesis caused by a colchi‐cine‐induced cell cycle disturbance in partially hepatec‐tomized rats . Cancer Res. , 56 , 3473 – 3479 ( 1996. ). [PubMed] [Google Scholar]
- 4.Tsutsumi , M. , Ohashi , K. , Tsujiuchi , T. , Kobayashi , E. , Kobitsu , K. , Kitada , H. , Majima , T. , Okajima , E. , Endoh , T. , Hasegawa , K. , Mori , T . and Konishi , Y . Disturbance of the cell cycle with colchicine enhances the growth advantage of diethylnitrosamine‐initiated hepatocytes in rats . Jpn. J. Cancer Res. , 87 , 5 – 9 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tamura , K. , Nakae , D. , Horiguchi , K. , Akai , H. , Kobayashi , Y. , Satoh , H. , Tsujiuchi , T. , Denda , A . and Konishi , Y . Inhibition by green tea extract of diethylnitrosamine‐initiated but not choline‐deficient, L‐amino acid‐defined diet‐associated development of putative preneoplastic, glu‐tathione S‐transferase placental form‐positive lesions in rat liver . Jpn. J. Cancer Res. , 88 , 356 – 362 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kobayashi , Y. , Nakae , D. , Akai , H. , Kishida , H. , Okajima , E. , Kitayama , Y. , Denda , A. , Tsujiuchi , T. , Murakami , A. , Koshimizu , K. , Ohigashi , H . and Konishi, Y. Prevention by ľ‐acetoxychavicol acetate of the induction but not growth of putative preneoplastic, glutathione S‐transferase placental form‐positive, focal lesions in the livers of rats fed a choline‐deficient, L‐amino acid‐defined diet . Carcinogenesis , 19 , 1809 – 1814 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 7.Rizzino , A . Transforming growth factor‐β: multiple effects on cell differentiation and extracellular matrices . Dev. Biol , 130 , 411 – 422 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 8.Roberts , A. B . and Sporn , M. B . The transforming growth factor‐betas . In “Peptide Growth Factors and Their Receptors‐Handbook of Experimental Pharmacology,” ed. Sporn M. B. and Roberts A. B. , pp . 419 – 472 ( 1990. ). Springer‐Verlag; , Heidelberg . [Google Scholar]
- 9.Roberts , A. B . and Sporn , M. B . Physiological actions and clinical applications of transforming growth factor‐beta (TGF‐beta) . Growth Factors , 8 , 1 – 9 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 10.Kingsley , D. M . The TGF‐β superfamily: new members, new receptors, and genetic tests of function in different organisms . Genes Dev. , 8 , 133 – 146 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 11.Lin , H. Y. , Wang , X. F. , Ng‐Eaton , E. , Weinberg , R. A . and Lodish , H. F . Expression cloning of the TGF‐β type II receptor, a functional transmembrane serine/threonine kinase . Cell , 68 , 775 – 785 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 12.Wrana , J. L. , Attisano , L. , Wieser , R. , Ventura , F . and Massague , J . Mechanism of activation of the TGF‐β receptor . Nature , 370 , 341 – 347 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 13.Franzen , P. , ten Dijke , P. , Ichijo , H. , Yamashita , H. , Schulz , P. , Heldin , C. H . and Miyazono , K . Cloning of the TGF‐β type I receptor that forms a heterometric complex with the TGF‐P type H receptor . Cell , 75 , 681 – 692 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 14.Wieser , R. , Wrana , J. L . and Massague , J . GS domain mutations that constitutively activate TβR‐I, the downstream signaling component in the TGF‐β receptor complex . EMBO J. , 14 , 2199 – 2208 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Derynck , R. , Gelbart , W. , Harland , R. , Heldin , C. , Kern , S. , Massague , J. , Melton , D. , Mlodzik , M. , Padgett , R. , Robert , A. , Smith , J. , Thomsen , G. , Vogelstein , B . and Wang , X . Nomenclature: vertebrate mediators of TGFβ family signals . Cell , 87 , 173 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 16.Massague , J . TGF‐β signaling: receptors, transducers, and mad protein . Cell , 85 , 947 – 950 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 17.Derynck , R . and Zhang , Y . Intracellular signaling: the Mad way to do it . Curr. BioL , 6 , 1226 – 1229 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 18.Liu , F. , Hata , A. , Baker , J. , Doody , J. , Carcamo , J. , Harland , R . and Massague , J . A human Mad protein acting as a BMP‐regulated transcriptional activator . Nature , 381 , 620 – 623 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 19.Yingling , J. , Das , P. , Savage , S. , Zhang , M. , Padgett , R . and Wang , X . Mammalian dwarfins are phosphorylated in response to transforming growth factor β and are implicated in control of cell growth . Proc. Natl. Acad. Sci. USA , 93 , 8940 – 8944 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Heldin , C.‐H. , Miyazomo , K . and ten Dijke , P . TGF‐β signaling from cell membrane to nucleus through SMAD proteins . Nature , 390 , 465 – 471 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 21.Kretzschmar , M . and Massague , J . SMADS: mediators and regulators of TGF‐β signaling . Curr. Opin. Genet. Dev. , 8 , 103 – 111 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 22.Hahn , S. A. , Schutte , M. , Hoque , A. T. M. S. , Moskaluk , C. A. , Dacosta , L. T. , Rozenblum , E. , Weinstein , C. L. , Fischer , A. , Yeo , C. J. , Hrunban , R. H . and Kern , S. E . Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1 . Science , 271 , 350 – 353 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 23.Thiagalingam , S. , Lengauer , C. , Leach , F. S. , Schutte , M. , Hahn , S. A. , Overhauser , J. , Willson , J. K. V. , Markowitz , S. , Hamilton , S. R. , Kern , S. E. , Kinzler , K. W . and Vogelstein , B . Evaluation of chromosome 18q in colorectal cancers . Nat. Genet. , 13 , 343 – 346 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 24.Eppert , K. , Scherer , S. W. , Ozcelik , H. , Pirone , R. , Hoodless , P. , Kim , H. , Tsui , L. C. , Bapat , B. , Gallinger , S. , Andrulis , I. L. , Thomsen , G. H. , Wrana , J. L . and Attissano , L . MADR2 maps to 18q21 and encodes a TGF‐β‐regulated MAD‐related protein that is mutated in colorectal carcinoma . Cell , 86 , 543 – 552 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 25.Takagi , Y. , Koumura , H. , Futamura , M. , Aoki , S. , Yamaguchi , K. , Kida , H. , Tanemura , H. , Shimokawa , K . and Saji , S . Somatic alterations of the SMAD‐2 gene in human colorectal cancers . Br. J. Cancer , 78 , 1152 – 1155 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Nagatake , M. , Takagi , Y. , Osada , H. , Uchida , K. , Mitsudomi , T. , Saji , S. , Shimokata , K. , Takahashi , T . and Takahashi , T . Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers . Cancer Res. , 56 , 2718 – 2720 ( 1996. ). [PubMed] [Google Scholar]
- 27.Uchida , K. , Nagatake , M. , Osada , H. , Yatabe , Y. , Kondo , M. , Mitsudomi , T. , Masuda , A. , Takahashi , T . and Takahashi , T . Somatic in vivo alterations of the JV18‐1 gene at 18q21 in human lung cancers . Cancer Res. , 56 , 5583 – 5585 ( 1996. ). [PubMed] [Google Scholar]
- 28.Markowitz , S. , Wang , J. , Myeroff , L. , Parsons , R. , Sun , L. , Lutterbaugh , J. , Fan , R. S. , Zborowska , E. , Kinzler , K. W. , Vogelstein , B. , Brattain , M . and Willson , J. K. V . Inactiva‐tion of the type II TGF‐β receptors in colon cancer cells with microsatellite instability . Science , 268 , 1336 – 1338 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 29.Lu , S. L. , Akiyama , Y. , Nagasaki , H. , Saito , K . and Yuasa , Y . Mutations of the transforming growth factor‐beta type II receptor gene and genomic instability in hereditary non‐polyposis colorectal cancer . Biochem. Biophys. Res. Com-mun. , 216 , 452 – 457 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 30.Parsons , R. , Myeroff , L. L. , Liu , B. , Willson , J. K. V. , Markowitz , S. D. , Kinzler , K. W . and Vogelstein , B . Microsatellite instability and mutations of the tranforming growth factor β type II receptor gene in colorectal cancer . Cancer Res. , 55 , 5548 – 5550 ( 1995. ). [PubMed] [Google Scholar]
- 31.Park , K. , Kim , S. J. , Bang , Y. J. , Park , J. G. , Kim , N. K. , Roberts , A. B . and Sporn , M. B . Genetic changes in the transforming growth factor beta (TGF‐beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF beta . Proc. Natl. Acad. Set. USA , 91 , 8772 – 8776 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Myeroff , L. L. , Parsons , R. , Kim , S.‐J. , Hedrick , L. , Cho , K. R. , Orth , K. , Mathis , M. , Kinzler , K. W. , Lutterbaugh , J. , Park , K. , Bang , Y. J. , Lee , H. Y. , Park , J. G. , Lynch , H. T. , Roberts , A. B. , Vogelstein , B . and Markowitz , S. D . A transforming growth factor P receptor type β gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability . Cancer Res. , 55 , 5545 – 5547 ( 1995. ). [PubMed] [Google Scholar]
- 33.Lazzereschi , D. , Ranieri , A. , Mincione , G. , Taccogna , S. , Nardi , F . and Colletta , G . Human malignant thyroid tumors displayed reduced levels of transforming growth factor β receptor type II messenger RNA and protein . Cancer Res. , 57 , 2071 – 2076 ( 1997. ). [PubMed] [Google Scholar]
- 34.de Jonge , R. R. , Garrigue‐Antar , L. , Vellucci , V. F . and Reiss , M . Frequent inactivation of the transforming growth factor β type II receptor in small‐cell lung carcinoma cells . Oncol. Res. , 9 , 89 – 98 ( 1997. ). [PubMed] [Google Scholar]
- 35.Norgaard , P. , Spang‐Thomsen , M . and Poulsen , H. S . Expression and autoregulation of transforming growth factor P receptor mRNA in small‐cell lung cancer cell lines . Br. J. Cancer , 73 , 1037 – 1043 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kim , W. S. , Park , C. , Jung , Y. S. , Kim , H. S. , Han , J. , Park , C. H. , Kim , K. , Kim , J. , Shim , Y. M . and Park , K . Reduced transforming growth factor‐β type II receptor (TGF‐β RII) expression in adenocarcinoma of the lung . Anticancer Res. , 19 , 301 – 306 ( 1999. ). [PubMed] [Google Scholar]
- 37.Jakowlew , S. B. , Moody , T. W. , You , L . and Mariano , J. M . Reduction in transforming growth factor‐β type II receptor in mouse lung carcinogenesis . Mol. Carcinog. , 22 , 46 – 56 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 38.Devereux , T. R. , Anna , C. H. , Patel , A. C. , White , C. M. , Festing , M. F. W . and You , M . Smad4 (homolog of human DPC4) and Smad2 (homolog of human JV18‐1): candidates for murine lung tumor resistance and suppressor genes . Carcinogenesis , 18 , 1751 – 1755 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 39.Tsujiuchi , T. , Sasaki , Y. , Tsutsumi , M . and Konishi , Y . Mutations of Smad2 and Smad4 genes in lung adenocarci‐nomas induced by N‐nitrosobis(2‐hydroxypropyl)amine in rats . Mol. Carcinog. , 29 , 87 – 91 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 40.Higgins , G. M . and Anderson , R. M . Experimental pathology of the liver. 1. Restoration of the liver of the white rat following partial surgical removal . Arch. Pathol. Lab. Med. , 12 , 1186 – 1202 ( 1931. ). [Google Scholar]
- 41.Cayama , E. , Tsuda , H. , Sarma , D. S. R . and Farber , E . Initiation of chemical carcinogenesis requires cell proliferation . Nature , 275 , 60 – 62 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 42.Swafford , D. S. , Middleton , S. K. , Palmisano , W. A. , Nikula , K. J. , Tesfaigzi , J. , Baylin , S. B. , Herman , J. G . and Belinsky , S. A . Frequent aberrant methylation of p16 INK4a in primary rat lung tumors . Mol. Cell. Biol. , 17 , 1366 – 1374 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Kawate , S. , Takenoshita , S. , Ohwada , S. , Mogi , A. , Fukusato , T. , Makita , F. , Kuwano , H . and Morishita , Y . Mutation analysis of transforming growth factor β type II receptor, Smad2, and Smad4 in hepatocellular carcinoma . Int. J. Oncol , 14 , 127 – 131 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 44.Sue , S. R. , Chari , R. S. , Kong , F. M. , Mills , J. J. , Fine , R. L. , Jirtle , R. L . and Meyers , W. C . Transforming growth factor‐β receptors and mannose 6‐phosphate/insulin‐like growth factor‐II receptor expression in human hepatocellu‐lar carcinoma . Ann. Surg. , 222 , 171 – 178 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Abou‐Shady , M. , Baer , H. U. , Friess , H. , Berberat , P. , Zimmermann , A. , Graber , H. , Gold , L. I. , Korc , M . and Buchler , M. W . Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma . Am. J. Surg. , 177 , 209 – 215 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 46.Riggins , G. J. , Kinzler , K. W. , Vogelstein , B . and Thiagalingam , S . Frequency of Smad gene mutations in human cancers . Cancer Res. , 57 , 2578 – 2580 ( 1997. ). [PubMed] [Google Scholar]
- 47.Yakicier , M. C. , Irmak , M. B. , Romano , A. , Kew , M . and Ozturk , M . Smad2 and Smad4 gene mutations in hepatocellular carcinoma . Oncogene , 18 , 4879 – 4883 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 48.Heldin , C. H. , Miyazomo , K . and ten Dijke , P . TGF‐β signaling from cell membrane to nucleus through SMAD proteins . Nature , 390 , 465 – 471 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 49.Kretzschmar , M . and Massague , J . SMADS: mediators and regulators of TGF‐β signaling . Curr. Opin. Genet. Dev. , 8 , 103 – 111 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 50.Yoshiji , H. , Nakae , D. , Mizumoto , Y. , Horiguchi , K. , Tamura , K. , Denda , A. , Tsujii , T . and Konishi , Y . Inhibitory effect of dietary iron deficiency on inductions of putative preneoplastic lesions as well as 8‐hydroxydeoxyguanosine in DNA and lipid peroxidation in livers of rats caused by exposure to a choline‐deficient, L‐amino acid defined diet . Carcinogenesis , 13 , 1227 – 1233 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 51.Cheng , K. C. , Cahill , D. S. , Kasai , H. , Nishimura , S . and Loeb , L. A . 8‐Hydroxyguanine, an abundant form of oxida‐tive DNA damage, causes G→T and A→C substitutions . J. Biol. Chem. , 267 , 166 – 172 ( 1992. ). [PubMed] [Google Scholar]
- 52.Polyak , K. , Li , Y. , Zhu , H. , Lengauer , C. , Willson , J. K. , Markowitz , S. D. , Trash , M. A. , Kinzler , K. W . and Vogelstein , B . Somatic mutations of the mitochondrial genome in human colorectal tumors . Nat. Genet. , 20 , 291 – 293 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 53.Tsujiuchi , T. , Tsutsumi , M. , Sasaki , Y. , Takahama , M . and Konishi , Y . Different frequencies and patterns of β‐catenin mutations in hepatocellular carcinomas induced by N‐nitrosodiethylamine and a choline‐deficient L‐amino acid diet in rats . Cancer Res. , 59 , 3904 – 3907 ( 1999. ). [PubMed] [Google Scholar]