Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Feb;92(2):193–202. doi: 10.1111/j.1349-7006.2001.tb01082.x

Different Susceptibilities of Postmitotic Checkpoint‐proficient and ‐deficient Balb/3T3 Cells to ICRF‐193, a Catalytic Inhibitor of DNA Topoisomerase II

Keiko Nishida 1, Masao Seto 1, Ryoji Ishida 1,
PMCID: PMC5926697  PMID: 11223549

Abstract

Two distinct types of Balb/3T3 cells were isolated which exhibit either 4 N DNA or both 4 N and 8 N DNA after exposure to colcemid for 48 h. They were found to differ with respect to the postmi‐totic checkpoint, but not the mitotic checkpoint. Firstly, the checkpoint‐proficient and ‐deficient cells exhibited the same accumulation and subsequent decrease in the number of mitotic cells following exposure to microtubule inhibitors. Secondly, after exit from abnormal mitosis in the presence of ICRF (Imperial Cancer Research Fund)‐193, the checkpoint‐proficient cells were arrested in the next cycle Gl, while the checkpoint‐deficient cells progressed into S and G2 phase. When either mitotic or asynchronous cells were exposed to ICRF‐193, the checkpoint‐proficient cells proved more sensitive to the cytotoxic effect of this agent than the checkpoint‐deficient cells. The different susceptibilities of the two types of cells to ICRF‐193 were not caused by variation in topoisomerase (topo) II function since both the biochemical activity of this enzyme and chromosome segregation were inhibited by similar concentrations of ICRF‐193 in both checkpoint‐proficient and ‐deficient cells. We propose that the inhibition of chromosome segregation by ICRF‐193 is monitored by the next Gl checkpoint, resulting in an irreversible Gl block in the case of postmi‐totic checkpoint‐proficient cells. As the checkpoint‐deficient cells can escape this Gl block, these cells have an increased survival capacity. In summary, ICRF‐193 may prove to be a very useful drug for examination of the postmitotic checkpoint.

Keywords: Drug sensitivity, Postmitotic checkpoint, Topoisomerase II inhibitor, ICRF‐193, Balb/3T3 checkpoint mutant

Full Text

The Full Text of this article is available as a PDF (216.1 KB).

References

  • 1.Takano , H. , Kohno , K. , Matsuo , K. , Matsuda , T . and Kuwano , M . DNA topoisomerase‐targeting antitumor agents and drug resistance . Anti-Cancer Drugs , 3 , 323 – 330 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 2.Beck , W. T. , Banks , M. K. , Wolverton , J. S. , Chen , M. , Granzen , B. , Kim , R . and Suttle , D. P . Resistance of mammalian tumor cells to inhibitors of DNA topoisomerase II . In “ DNA Topoisomerases: Topoisomerase‐Targeting Drugs ,” ed. Liu L. F. , pp . 145 – 169 ( 1994. ). Academic Press; , San Diego . [DOI] [PubMed] [Google Scholar]
  • 3.Barrand , M. A. , Heppell‐Parton , A. C. , Wright , K. A. , Rabbitts , P. H . and Twentymann , P. R. A . 190‐Kilodalton protein overexpressed in non‐P‐glycoprotein‐ containing multidrug‐resistant cells and its relationship to the MRP gene . J. Natl. Cancer Inst. , 86 , 110 – 117 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 4.Nielsen , D . and Skovsgaard , T . P‐Glycoprotein as multidrug transporter: a critical review of current multidrug resistant cell lines . Biochim. Biophys. Acta , 1139 , 169 – 183 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 5.Kataoka , S. , Naito , M. , Tomita , A . and Tsuruo , T . Resistance to antitumor agent‐induced apoptosis in a mutant of human myeloid leukemia U937 cells . Exp. Cell Res. , 215 , 199 – 205 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 6.Hartwell , L. H . and Weinert , T. A . Checkpoints: controls that ensure the order of cell cycle events . Science , 246 , 629 – 634 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 7.Weinert , T. A . and Hartwell , L. H . Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage . Mol. Cell. BioL , 10 , 6554 – 6564 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kuerbitz , S. J. , Plunkett , B. S. , Walsh , W. V . and Kastan , M. B . Wild‐type p53 is a cell cycle checkpoint determinant following irradiation . Proc. Natl. Acad. Sci. USA , 89 , 7491 – 7495 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kastan , M. B. , Zhan , Q. S. , El‐Deiry , W. S. , Carrier , F. , Jacks , T. , Walsh , W. V. , Plunkett , B. S. , Vogelstein , B . and Fornace , A. J . , Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia‐telangiectasia . Cell , 71 , 587 – 597 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 10.Brugarolas , J. , Chandrasekaran , C. , Gordon , J. I. , Beach , D. , Jacks , T . and Hannon , G. J . Radiation induced cell cycle arrest compromised by p21 deficiency . Nature , 377 , 552 – 557 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 11.Waldman , T. , Kizler , K. W . and Vogelstein , B . Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21 . Nature , 381 , 713 – 716 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 12.Gorbsky , G. J . Cell cycle checkpoints: arresting progress in mitosis . Bioessays , 19 , 193 – 197 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 13.Li , Y . and Benerza , R . Identification of a human mitotic checkpoint gene: hsMAD2 . Science , 274 , 246 – 248 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 14.Lee , H. , Trainer , A. M. , Friedman , L. S. , Thistlethwaite , F. C. , Evans , M. J. , Ponder , B. A . and Venkitaraman , A. R . Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca 2 . Mol. Cell , 4 , 1 – 10 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 15.Kung , A. L. , Sherwood , S. W . and Schimke , R. T . Differences in the regulation of protein synthesis, cyclin B accumulation, and cellular growth in response to the inhibition of DNA synthesis in Chinese hamster ovary and HeLa S3 cells . J. Biol Chem. , 268 , 23072 – 23080 ( 1993. ). [PubMed] [Google Scholar]
  • 16.Slichenmyer , W. J. , Nelson , W. G. , Slebos , R. J . and Kastan , M. B . Loss of a p53‐associated Gl checkpoint does not decrease cell survival following DNA damage . Cancer Res. , 53 , 4164 – 4168 ( 1993. ). [PubMed] [Google Scholar]
  • 17.Yount , G. L. , Haas‐Kogan , D. R. , Vidair , C. A. , Haas , M. , Dewey , W. C . and Israel , M. A . Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells . Cancer Res. , 56 , 500 – 506 ( 1996. ). [PubMed] [Google Scholar]
  • 18.Fan , S. , el‐Deiry , W. S. , Bae , I. , Freeman , J. , Jondle , D. , Bhatia , K. , Fornace , A. J. , Jr. , Magrath , I. , Kohn , W . and O'Connor , P. M . p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents . Cancer Res. , 54 , 5824 – 5830 ( 1994. ). [PubMed] [Google Scholar]
  • 19.Yu , Y. , Li , C. Y . and Little , J. B . Abrogation of p53 function by HPV16 E6 gene delays apoptosis and enhances mutagenesis but does not alter radiosensitivity in TK6 human lymphoblast cells . Oncogene , 14 , 1661 – 1667 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 20.Deweese , T. L. , Walsh , J. C , Dillehayle , E. , Kessis , T. D. , Hedrick , L. , Cho , K. R . and Nelson , W. G . Human papillo‐mavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low‐dose‐rate radiation . Int. J. Radial. Oncol. Biol Phys. , 37 , 145 – 154 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 21.Tanabe , K. , Ikegami , Y. , Ishida , R . and Andoh , T . Inhibition of topoisomerase II by antitumor agent bis(2,6‐dioxo‐piperazine) derivatives . Cancer Res. , 51 , 4903 – 4908 ( 1991. ). [PubMed] [Google Scholar]
  • 22.Ishida , R. , Miki , T. , Narita , T. , Yui , R. , Sato , M. , Utsumi , K. R. , Tanabe , K . and Andoh , T . Inhibition of intracellular topoisomerase II by antitumor bis(2,6‐dioxopiperazine) derivatives: mode of cell growth inhibition distinct from that of cleavable complex‐forming type inhibitors . Cancer Res. , 51 , 4909 – 4916 ( 1991. ). [PubMed] [Google Scholar]
  • 23.Roca , J. , Ishida , R. , Berger , J. M. , Andoh , T . and Wang , J. C . Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp . Proc. Natl. Acad. Sci. USA , 91 , 1781 – 1785 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ishida , R. , Tanabe , K. , Narita , T. , Sato , M. , Yui , R. , Utsumi , K. R . and Andoh , T . Mechanism of action of non‐cleavable complex‐forming type of topoisomerase II inhibitors, bis(2,6‐dioxopiperazine) derivatives . In “ Molecular Biology of DNA Topoisomerases and Its Application to Chemotherapy ,” ed. Andoh T. , Ikeda H. and Oguro M. , pp . 207 – 214 ( 1993. ). CRC Press; , Boca Raton . [Google Scholar]
  • 25.Clarke , D. J. , Johnson , R. T . and Downes , C. S . Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks . J. Cell Sci. , 105 , 563 – 569 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 26.Ishida , R. , Sato , M. , Narita , T. , Utsumi , K. R. , Nishimoto , T. , Morita , T. , Nagata , H . and Andoh , T . Inhibition of DNA topoisomerase U by ICRF‐193 induces polyploidiza‐tion by uncoupling chromosome dynamics from other cell cycle events . J. Cell BioL , 126 , 1341 – 1351 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu , L. F . DNA topoisomerase poisons as antitumor drugs . Annu. Rev. Biochem. , 58 , 351 – 375 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 28.Ishimi , Y. , Ishida , R . and Andoh , T . Synthesis of SV40 C‐family catenated dimers in vivo in the presence of ICRF‐193 . J. Mol. Biol. , 247 , 835 – 839 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 29.Downes , C. S. , Clarke , D. J. , Mullinger , A. M. , Gimenez‐Abian , J. F. , Creghton , A. M . and Johnson , R. T . A topoisomerase II‐dependent G2 cycle checkpoint in mammalian cells . Nature , 372 , 467 – 470 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 30.Andoh , T . and Ishida , R . Catalytic inhibitors of DNA topoisomerase U . Biochim. Biophys. Acta , 1400 , 155 – 171 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 31.Iwai , M. , Andoh , T . and Ishida , R . ICRF‐193, a catalytic inhibitor of DNA topoisomerase II delays the cell cycle progression from metaphase, but not from anaphase to the Gl phase in mammalian cells . FEES Lett. , 406 , 267 – 270 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 32.Ohno , R. , Masaoka , T. , Shirakawa , S. , Sakamoto , S. , Hirano , M. , Hanada , S. , Yasunaga , K. , Yokomaku , S. , Mitomo , Y. , Nagai , K. , Yamada , K. , Furue , H . , for the MST‐16 Study Group. Treatment of adult T‐cell leukemia/ lymphoma with MST‐16, a new oral antitumor drug and a derivative of bis(2,6‐dioxopiperazine) . Cancer , 71 , 2217 – 2221 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 33.Dewald , M. G. , Shama , R. C. , Kung , R. L. , Wang , H. E. , Sherwood , S. W . and Schimke , R. T . Heterogeneity in mitotic checkpoint control of BALB/3T3 cells and a correlation with gene amplification propensity . Cancer Res. , 54 , 5064 – 5070 ( 1994. ). [PubMed] [Google Scholar]
  • 34.Sanchez‐Prieto , R. , Vargas , J. A. , Carnero , A. , Marchetti , E. , Romero , J. , Durantez , A. , Lacal , J. C . and Ramon y Cajal , S . Modulation of cellular chemoresistance in kerati‐nocytes by activation of different oncogenes . Int. J. Cancer , 60 , 235 – 243 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 35.Holm , C. , Goto , T. , Wang , J. C . and Bostein , D . DNA topoisomerase II is required at the time of mitosis in yeast . Cell , 41 , 553 – 563 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 36.Cross , S. M. , Sanchez , C. A. , Morgan , C. A. , Schimke , M. K. , Ramel , S. , Idzerda , R. L. , Raskind , W. H . and Reid , B. J . A p53‐dependent mouse spindle checkpoint . Science , 267 , 1353 – 1356 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 37.Lanni , J. S . and Jacks , T . Characterization of the p53‐dependent postmitotic checkpoint following spindle disruption . Mol. Cell. Biol , 18 , 1055 – 1064 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hussain‐Khan , S . and Wahl , G. H . p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible Gl arrest . Cancer Res. , 58 , 396 – 401 ( 1998. ). [PubMed] [Google Scholar]
  • 39.Kung , A. L. , Sherwood , S. W . and Schimke , R. T . Cell line‐specific differences in the control of cell cycle progression in the absence of mitosis . Proc. Natl. Acad. Sci. USA , 87 , 9553 – 9557 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ishida , R. , Iwai , M. , Kara , A . and Andoh , T . The combination of different types of antitumor topoisomerase II inhibitors, ICRF‐193 and VP‐16 has additive and antagonistic effects on cell survival, depending on treatment schedule . Anticancer Res. , 16 , 2735 – 2740 ( 1996. ). [PubMed] [Google Scholar]
  • 41.Leonardo , A. D. , Hussain‐Khan , S. , Linke , S. P. , Greco , V. , Seidita , G . and Wahl , G. M . DNA replication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRB function . Cancer Res. , 57 , 1013 – 1019 ( 1997. ). [PubMed] [Google Scholar]
  • 42.Stewart , Z. A. , Leach , S. D . and Pietenpol , J. A . p21Waf1/CiP1 inhibition of cyclin E/Cdk2 activity prevents endoredupli‐cation after mitotic spindle disruption . Mol. Cell. Biol. , 19 , 205 – 215 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Campisi , J . Replicative senescence: an old live's tale ? Cell , 84 , 497 – 500 ( 1996. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES