Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Mar;92(3):343–351. doi: 10.1111/j.1349-7006.2001.tb01101.x

Antitumor Activity and Pharmacokinetics of TAS‐106, l‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine

Yuji Shimamoto 1, Akio Fujioka 1, Hiromi Kazuno 1, Yuko Murakami 1, Hideyuki Ohshimo 1, Toshiyuki Kato 1, Akira Matsuda 2, Takuma Sasaki 3, Masakazu Fukushima 1,
PMCID: PMC5926715  PMID: 11267946

Abstract

We examined the effects of dosage schedule on antitumor activity in vitro and in vivo to determine the optimal administration schedule for a new nucleoside antimetabolite l‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd, TAS‐106). The cytotoxicity of TAS‐106 in vitro against human tumors was evaluated at three drug exposure periods. TAS‐106 exhibited fairly potent cytotoxicity even with 4 h exposure, and nearly equivalent and sufficiently potent cytotoxicity with 24 and 72 h exposures. These results suggest that long‐term exposure to TAS‐106 will not be required to achieve maximal cytotoxicity. The antitumor activity of TAS‐106 in vivo was compared in nude rat models bearing human tumors on three administration schedules, once weekly, 3 tunes weekly, and 5 tunes weekly for 2 or 4 consecutive weeks. TAS‐106 showed strong antitumor activity without serious toxicity on all three schedules, but the antitumor activity showed no obvious schedule‐dependency in these models. When tumor‐bearing nude rats were given a single i.v. dose of [3H]TAS‐106, tumor tissue radioactivity tended to remain high for longer periods of time as compared to the radioactivity in various normal tissues. Furthermore, when the metabolism of TAS‐106 in the tumor was examined, it was found that TAS‐106 nucleotides (including the active metabolite, the triphosphate of TAS‐106) were retained at high concentrations for prolonged periods. These pharmacodynamic features of TAS‐106 may explain the strong antitumor activity without serious toxicity, observed on intermittent administration schedules, in nude rat models with human tumors. We therefore consider TAS‐106 to be a promising compound which merits further investigation in patients with solid tumors.

Keywords: 1‐(3‐C‐Ethynyl‐βD‐ribo‐pentofuranosyl)cytosine, TAS‐106, TAS‐106 nucleotides, Antitumor activity, Pharmacokinetics

Full Text

The Full Text of this article is available as a PDF (150.7 KB).

References

  • 1.Takenuki , K. , Matsuda , A. , Ueda , T. , Sasaki , T. , Fujii , A. . and Yamagami , K.Design, synthesis, and antineoplastic activity of 2‐deoxy‐2‐methylidenecytidine . J. Med. Chem. , 31 , 1063 – 1064 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 2.Yamagami , K. , Fujii , A. , Arita , M. , Okumoto , T. , Sakata , S. , Matsuda , A. , Ueda , T. . and Sasaki , T.Antitumor activity of 2‐deoxy‐2‐methylidenecytidine, a new 2‐deoxycytidine derivative . Cancer Res. , 51 , 2319 – 2323 ( 1991. ). [PubMed] [Google Scholar]
  • 3.Hertel , L. W. , Kroin , J. S. , Misner , J. W. . and Tustin , J. M.Synthesis of 2‐deoxy‐2,2‐difluoro‐D‐ribose and 2‐deoxy‐2,2‐difluoro‐D‐ribofuranosyl nucleosides . J. Org. Chem. , 53 , 2406 – 2409 ( 1988. ). [Google Scholar]
  • 4.Hertel , L. W. , Boder , G. B. , Kroin , J. S. , Rinzel , S. M. , Poore , G. A. , Todd , G. C. . and Grindey , G. B.Evaluation of the antitumor activity of Gemcitabine (2′,2′‐difluoro‐2′‐deoxycytidine) . Cancer Res. , 50 , 4417 – 4422 ( 1990. ). [PubMed] [Google Scholar]
  • 5.Matsuda , A. , Nakajima , Y. , Azuma , A. , Tanaka , M. . and Sasaki , T.Nucleosides and nucleotides. 100. 2′‐C‐Cyano‐2′‐deoxy‐1‐β‐D‐arabinofuranosylcytosine (CNDAC): design of a potential mechanism‐based DNA‐strand‐breaking antineoplastic nucleoside . J. Med. Chem. , 34 , 2917 – 2919 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 6.Azuma , A. , Nakajima , Y. , Nishizono , N. , Minakawa , N. , Suzuki , M. , Hanaoka , K. , Kobayashi , T. , Tanaka , M. , Sasaki , T. . and Matsuda , A.Nucleosides and nucleotides. 122. 2′‐C‐Cyano‐2′‐deoxy‐l‐β‐D‐arabinofuranosylcytosine and its derivatives. A new class of nucleoside with a broad antitumor spectrum . J. Med. Chem. , 36 , 4183 – 4189 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 7.Tanaka , M. , Matsuda , A. , Terao , T. . and Sasaki , T . Antitumor activity of a novel nucleoside, 2′‐C‐cyano‐2′‐deoxy‐l‐β‐D‐arabinofuranosylcytosine (CNDAC) against murine and human tumors . Cancer Lett. , 64 , 67 – 74 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 8.McCarthy , J. R. , Matthews , D. P. , Stemerick , D. M. , Huber , E. W. , Bey , P. , Lippert , B. J. , Snyder , R. D. . and Sunkara , P. S.Stereospecific method to E and Z terminal fluoro olefins and its application to the synthesis of 2′‐deoxy‐2′‐fluoromethylene nucleosides as potential inhibitors of ribonucleo‐side diphosphate reductase . J. Am. Chem. Soc. , 113 , 7439 – 7440 ( 1991. ). [Google Scholar]
  • 9.Bitonti , A. J. , Dumont , J. A. , Bush , T. L. , Cashman , E. A. , Cross‐Doersen , D. E. , Wright , P. S. , Matthews , D. P. , McCarthy , J. R. . and Kaplan , D. A.Regression of human breast tumor xenografts in response to (E)‐2′‐deoxy‐2′‐(fluoromethylene) cytidine, an inhibitor of ribonucleoside diphosphate reductase . Cancer Res. , 54 , 1485 – 1490 ( 1994. ). [PubMed] [Google Scholar]
  • 10.Hattori , H. , Tanaka , M. , Fukushima , M. , Sasaki , T. . and Matsuda , A.Nucleosides and nucleotides. 158. l‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine, l‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil, and their nucleobase analogues as new potential multifunctional antitumor nucleosides with a broad spectrum of activity . J. Med. Chem. , 39 , 5005 – 5011 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 11.Tabata , S. , Tanaka , M. , Matsuda , A. , Fukushima , M. . and Sasaki , T.Antitumor effect of a novel multifunctional antitumor nucleoside, 3′‐ethynylcytidine, on human cancers . Oncol. Rep. , 3 , 1029 – 1034 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 12.Azuma , A. , Emura , T. , Huang , P. . and Plunkett , W.Intracellular metabolism and actions of a novel antitumor nucleoside, l‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd, TAS‐106) . Proc. Am. Assoc. Cancer Res. , 40 , 298 ( 1999. ). [Google Scholar]
  • 13.Takatori , S. , Kanda , H. , Takenaka , K. , Wataya , Y. , Matsuda , A. , Fukushima , M. , Shimamoto , Y. , Tanaka , M. . and Sasaki , T.Antitumor mechanisms and metabolism of the novel antitumor nucleoside analogues, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine and 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil . Cancer Chemother. Pharma-col. , 44 , 97 – 104 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 14.Tabata , S. , Tanaka , M. , Endo , Y. , Obata , T. , Matsuda , A. . and Sasaki , T.Antitumor mechanisms of 3‐ethynyluridine and 3′‐ethynylcytidine as RNA synthesis inhibitors: development and characterization of 3′‐ethynyluridine‐resistant cells . Cancer Lett. , 116 , 225 – 231 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 15.Ozawa , S. , Sugiyama , Y. , Mitsuhashi , Y. , Kobayashi , T. . and Inaba , M.Cell killing action of cell cycle phase‐nonspecific antitumor agents is dependent on concentration‐time product . Cancer Chemother. Pharmacol. , 21 , 185 – 190 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 16.Ozawa , S. , Sugiyama , Y. , Mitsuhashi , J. . and Inaba , M.Kinetic analysis of cell killing effect induced by cytosine arabinoside and cisplatin in relation to cell cycle phase specificity in human colon cancer and Chinese hamster cells Cancer Res. , 49 , 3823 – 3828 ( 1989. ). [PubMed] [Google Scholar]
  • 17.Maehara , Y. , Nakamura , H. , Nakane , Y. , Kawai , K. , Okamoto , M. , Nagayama , S. , Shirasaka , T. . and Fujii , S.Activities of various enzymes of pyrimidine nucleotide and DNA synthesis in normal and neoplastic human tissues . Gann , 73 , 289 – 298 ( 1982. ). [PubMed] [Google Scholar]
  • 18.Ahmed , N. K. , Haggitt , R. C. . and Welch , A. D.Enzymes of salvage and de novo pathways of synthesis of pyrimidine nucleotides in human colorectal adenocarcinomas . Biochem. Pharmacol. , 31 , 2485 – 2488 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 19.Ahmed , N. K.Enzymes of the de novo and salvage pathways for pyrimidine biosynthesis in normal colon, colon carcinoma, and xenografts . Cancer , 54 , 1370 – 1373 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 20.Maehara , Y. , Kusumoto , T. , Sakaguchi , Y. , Kusumoto , H. , Kido , Y. , Anai , H. and Sugimachi , K.Pyrimidine nucleotide synthesis is more extensive in poorly differentiated than in well‐differentiated human gastric carcinoma . Cancer , 63 , 96 – 101 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 21.Maehara , Y. , Moriguchi , S. , Emi , Y. , Watanabe , A. , Kohnoe , S. , Tsujitani , S. . and Sugimachi , K.Comparison of pyrimidine nucleotide synthetic enzymes involved in 5‐fluorouracil metabolism between human adenocarcinomas and squamous cell carcinomas . Cancer , 66 , 156 – 161 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 22.Luccioni , C. , Beaumatin , J. , Bardot , V. . and Lefrancois , D.Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts . Int. J. Cancer , 58 , 517 – 522 ( 1994. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES