Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Mar;92(3):257–268. doi: 10.1111/j.1349-7006.2001.tb01090.x

Targets of Transcriptional Regulation by Transforming Growth Factor‐β: Expression Profile Analysis Using Oligonucleotide Arrays

Shingo Akiyoshi 1,3, Masami Ishii 2, Nobuo Nemoto 3, Masahiro Kawabata 1,, Hiroyuki Aburatani 2, Kohei Miyazono 1,4
PMCID: PMC5926719  PMID: 11267935

Abstract

Transforming growth factor‐βs (TGF‐βs) are potent inhibitors of cell proliferation, and disruption of components of the TGF‐β signaling pathway leads to tumorigenesis. Mutations of transmem‐brane receptors and Smads mediating intracellular signaling have been reported in various cancers. To identify transcriptional targets of TGF‐β, we conducted an expression profile analysis. HaCaT cells derived from human keratinocytes and highly sensitive to TGF‐β were treated with TGF‐β in the absence or presence of cycloheximide (CHX). mRNAs extracted from the HaCaT cells were used for hybridization of oligonucleotide arrays representing approximately 5600 human genes. TGF‐β increased the expression of PAI‐1, junB, p21 cdk inhibitor, Smad7, βIG‐H3, and involucrin that have been reported to be up‐regulated by TGF‐β, validating the usefulness of this approach. The induction of βIG‐H3 by TGF‐β was completely abolished by CHX, suggesting that the transcription of βIG‐H3 is not directly regulated by TGF‐β. Unexpectedly, we identified more genes down‐regulated by TGF‐β than up‐regulated ones. TGF‐β repressed the expression of epithelial specific Ets that may be involved in breast and lung tumorigenesis, which could contribute to tumor suppression by TGF‐β. Among a panel of cell cycle regulators, TGF‐β induced the expression of p21 cdk inhibitor; however, the induction of other cdk inhibitors was not significant in the present study. Taken together, the results suggest that TGF‐β may suppress tumorigenesis through positive and negative regulation of transcription.

Keywords: TGF‐P, DNA chip, HaCaT, p21, Ets

Full Text

The Full Text of this article is available as a PDF (212.0 KB).

References

  • 1.Derynck , R. . and Feng , X.‐H . TGF‐β receptor signaling . Biochim. Biophys. Acta 1333 , F105 – F150 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 2.Polyak , K . Negative regulation of cell growth by TGF β . Biochim. Biophys. Acta , 1242 , 185 – 199 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 3.Markowitz , S. D . and Roberts , A. B . Tumor suppressor activity of the TGF‐β pathway in human cancers . Cytokine Growth Factor Rev , 7 , 93 – 102 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 4.Oft , M. , Heider , K. H . and Beug , H.TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis . Curr. Biol , 8 , 1243 – 1252 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 5.Heldin , C.‐H. , Miyazono , K. and ten Dijke , P . TGF‐P signalling from cell membrane to nucleus through SMAD proteins . Nature , 390 , 465 – 471 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 6.Massague , J.TGF‐β signal transduction . Annu. Rev. Bio-chem 67 , 753 – 791 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 7.Derynck , R. , Zhang , Y. and Feng , X.‐H . Smads: transcrip‐tional activators of TGF‐β responses . Cell , 95 , 737 – 740 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 8.Janknecht , R. , Wells , N. J . and Hunter , T.TGF‐β‐stimu‐lated cooperation of Smad proteins with the coactivators CBP/p300 . Genes Dev , 12 , 2114 – 2119 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Feng , X.‐H. , Zhang , Y. , Wu , R. Y . and Derynck , R . The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for SmadS in TGF‐β‐induced transcriptional activation . Genes Dev , 12 , 2153 – 2163 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Nishihara , A. , Hanai , J. , Okamoto , N. , Yanagisawa , J. , Kato , S. , Miyazono , K. . and Kawabata , M.Role of p300, a transcriptional coactivator, in signalling of TGF‐β . Genes Cells , 3 , 613 – 623 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 11.Wotton , D. , Lo , R. S. , Lee , S . and Massague , J . A Smad transcriptional corepressor . Cell , 97 , 29 – 39 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 12.Luo , K. , Stroschein , S. L. , Wang , W. , Chen , D. , Martens , E. , Zhou , S . and Zhou , Q . The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling . Genes Dev. , 13 , 2196 – 2206 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sun , Y. , Liu , X. , Eaton , E. N. , Lane , W. S. , Lodish , H. F . and Weinberg , R. A . Interaction of the Ski oncoprotein with Smad3 regulates TGF‐β signaling . Mol. Cell , 4 , 499 – 509 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 14.Akiyoshi , S. , Inoue , H. , Hanai , J. , Kusanagi , K. , Nemoto , N. , Miyazono , K. . and Kawabata , M.c‐Ski acts as a transcriptional co‐repressor in transforming growth factor‐β signaling through interaction with Smads . J. Biol. Chem 274 , 35269 – 35277 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 15.Hahn , S. A. , Schutte , M. , Hoque , A. T. , Moskaluk , C. A. , da Costa , L. T. , Rozenblum , E. , Weinstein , C. L. , Fischer , A. , Yeo , C. J. , Hruban , R. H . and Kern , S. E.DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1 . Science 271 , 350 – 353 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 16.Markowitz , S. , Wang , J. , Myeroff , L. , Parsons , R. , Sun , L. , Lutterbaugh , J. , Fan , R. S. , Zborowska , E. , Kinzler , K. W. , Vogelstein , B. , Brattain , M . and Willson , K. V . Inactivation of the type II TGF‐β receptor in colon cancer cells with microsatellite instability . Science , 268 , 1336 – 1338 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 17.Lu , S. L. , Kawabata , M. , Imamura , T. , Akiyama , Y. , Nomizu , T. , Miyazono , K . and Yuasa , Y . HNPCC associated with germline mutation in the TGF‐β type II receptor gene . Nat. Genet , 19 , 17 – 18 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 18.Hahm , K. B. , Cho , K. , Lee , C. , Im , Y. H. , Chang , J. , Choi , S. G. , Sorensen , P. H. , Thiele , C. J. and Kim , S. J . Repression of the gene encoding the TGF‐β type II receptor is a major target of the EWS‐FLI1 oncoprotein . Nat. Genet , 23 , 222 – 227 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 19.DeCoteau , J. F. , Knaus , P. L , Yankelev , H. , Reis , M. D. , Lowsky , R. , Lodish , H. F. and Kadin , M. E . Loss of functional cell surface transforming growth factor P (TGF‐β) type 1 receptor correlates with insensitivity to TGF‐β in chronic lymphocytic leukemia . Proc. Natl. Acad. Sci. USA , 94 , 5877 – 5881 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Duff , E. K . and Clarke , A. R . Smad4 (DPC4)‐a potent tumour suppressor ? Br. J. Cancer 78 , 1615 – 1619 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Eppert , K. , Scherer , S. W. , Ozcelik , H. , Pirone , R. , Hoodless , P. , Kim , H. , Tsui , L. C. , Bapat , B. , Gallinger , S. , Andrulis , I. L. , Thomsen , G. H. , Wrana , J. L . and Attisano , L.MADR2 maps to 18q21 and encodes a TGFβ‐regulated MAD‐related protein that is functionally mutated in colo‐rectal carcinoma . Cell , 86 , 543 – 552 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 22.Uchida , K. , Nagatake , M. , Osada , H. , Yatabe , Y. , Kondo , M. , Mitsudomi , T. , Masuda , A. . and Takahashi , T . Somatic in vivo alterations of the JV18‐1 gene at 18q21 in human lung cancers . Cancer Res 56 , 5583 – 5585 ( 1996. ). [PubMed] [Google Scholar]
  • 23.Takaku , K. , Oshima , M. , Miyoshi , H. , Matsui , M. , Seldin , M. F . and Taketo , M. M . Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Ape genes . Cell , 92 , 645 – 656 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 24.Takaku , K. , Miyoshi , H. , Matsunaga , A. , Oshima , M. , Sasaki , N . and Taketo , M. M . Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice . Cancer Res , 59 , 6113 – 6117 ( 1999. ). [PubMed] [Google Scholar]
  • 25.Zhu , Y. , Richardson , J. A. , Parada , L. F . and Graff , J. M . Smad3 mutant mice develop metastatic colorectal cancer . Cell , 94 , 703 – 714 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 26.Tang , B. , Böttinger , E. P. , Jakowlew , S. B. , Bagnall , K. M. , Mariano , J. , Anver , M. R. , Letterio , J. J . and Wakefield , L. M . Transforming growth factor‐Pi is a new form of tumor suppressor with true haploid insufficiency . Nat. Med , 4 , 802 – 807 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 27.Chang , C. H. , Scott , G. K. , Kuo , W. L. , Xiong , X. , Suzdaltseva , Y. , Park , J. W. , Sayre , P. , Erny , K. , Collins , C. , Gray , J. W . and Benz , C. C . ESX: a structurally unique Ets overexpressed early during human breast tumorigenesis . Oncogene , 14 , 1617 – 1622 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 28.Tymms , M. J. , Ng , A. Y. , Thomas , R. S. , Schutte , B. C. , Zhou , J. , Eyre , H. J. , Sutherland , G. R. , Seth , A. , Rosenberg , M. , Papas , T. , Debouck , C . and Kola , I.A novel epithelial‐expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to Iq32.2 and expression in tissues and cancer . Oncogene , 15 , 2449 – 462 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 29.Goto , D. , Yagi , K. , Inoue , H. , Iwamoto , I. , Kawabata , M. , Miyazono , K. . and Kato , M. Asingle missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF‐β signals . FEES Lett , 430 , 201 – 204 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 30.Takase , M. , Imamura , T. , Sampath , T. K. , Takeda , K. , Ichijo , H. , Miyazono , K. and Kawabata , M . Induction of Smad6 mRNA by bone morphogenetic proteins . Biochem. Biophys. Res. Commun , 244 , 26 – 29 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 31.Wodicka , L. , Dong , H. , Mittmann , M. , Ho , M. H. and Lockhart , D. J . Genome‐wide expression monitoring in Saccharomyces cerevisiae . Nat. Biotechnol 15 , 1359 – 1367 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 32.Lockhart , D. J. , Dong , H. , Byrne , M. C. , Follettie , M. T. , Gallo , M. V. , Chee , M. S. , Mittmann , M. , Wang , C. , Kobayashi , M. , Horton , H . and Brown , E. L . Expression monitoring by hybridization to high‐density oligonucleotide arrays . Nat. Biotechnol , 14 , 1675 – 1680 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 33.Lee , C. K. , Klopp , R. G. , Weindruch , R. and Prolla , T. A . Gene expression profile of aging and its retardation by caloric restriction . Science , 285 , 1390 – 1393 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 34.Boukamp , P. , Petrussevska , R. T. , Breitkreutz , D. , Hornung , J. , Markham , A . and Fusenig , N . E. Normal keratinization in a spontaneously immortalized aneuploid human kerati‐nocyte cell line . J. Cell Biol , 106 , 761 – 771 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Cone , J. L. , Brown , D. R . and DeLarco , J. E . An improved method of purification of transforming growth factor, type P from platelets . Anal. Biochem , 168 , 71 – 74 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 36.Fambrough , D. , McClure , K. , Kazlauskas , A . and Lander , E. S . Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes . Cell , 97 , 727 – 741 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 37.de Groot , R. P. , Kranenburg , O. , de Wit , L. , van den Eijnden‐van Raaij , J. , Mummery , C. , van der Eb , A. J . and Zantema , A . Adenovirus El A antagonizes both negative and positive growth signals elicited by transforming growth factor pi . Cell Growth Differ , 6 , 531 – 540 ( 1995. ). [PubMed] [Google Scholar]
  • 38.Keeton , M. R. , Curriden , S. A. , van Zonneveld , A. J. . and Loskutoff , D. J . Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor β . J. Biol. Chem 266 , 23048 – 23052 ( 1991. ). [PubMed] [Google Scholar]
  • 39.Datto , M. B. , Yu , Y. and Wang , X.‐F . Functional analysis of the transforming growth factor β responsive elements in the WAFl/Cipl/p21 promoter . J. Biol. Chem. , 270 , 28623 – 28628 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 40.Nakao , A. , Afrakhte , M. , Moren , A. , Nakayama , T. , Christian , J. L. , Heuchel , R. , Itoh , S. , Kawabata , M. , Heldin , N.‐E. , Heldin , C.‐H. and ten Dijke , P . Identification of Smad7, a TGFβ‐inducible antagonist of TGF‐β signalling . Nature , 389 , 631 – 635 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 41.Skonier , J. , Neubauer , M. , Madisen , L. , Bennett , K. , Plowman , G. D . and Purchio , A. F . cDNA cloning and sequence analysis of βIG‐H3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor‐β . DNA Cell Biol , 11 , 511 – 522 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 42.Matsumoto , K. , Hashimoto , K. , Hashiro , M. , Yoshimasa , H. and Yoshikawa , K . Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor‐β . J. Cell. Physiol , 145 , 95 – 101 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 43.Landesman , Y. , Bringold , F. , Milne , D. D . and Meek , D. W . Modifications of p53 protein and accumulation of p21 and gadd45 mRNA in TGF‐β1 growth inhibited cellsCell. Signal , 9 , 291 – 298 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 44.Degen , W. G. , Weterman , M. A. , van Groningen , J. J. , Cornelissen , I. M. , Lemmers , J. P. , Agterbos , M. A. , Geurts van Kessel , A. , Swart , G. W . and Bloemers , H. P . Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and xenografts . Int. J. Cancer , 65 , 460 – 465 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 45.Onichtchouk , D. , Chen , Y. G. , Dosch , R. , Gawantka , V. , Delius , H. , Massague , J. and Niehrs , C . Silencing of TGF‐β signalling by the pseudoreceptor BAMBI . Nature , 401 , 480 – 485 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 46.Thomas , B. L. , Liu , J. K. , Rubenstein , J. L . and Sharpe , P. T . Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch . Development , 127 , 217 – 24 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 47.Cohen , D. R . and Curran , T.fra‐1: a serum‐inducible, cellular immediate‐early gene that encodes a fos‐related antigen . Mol. Cell. Biol , 8 , 2063 – 2069 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Bitzer , M. , von Gersdorff , G. , Liang , D. , Dominguez‐Rosales , A. , Beg , A. A. , Rojkind , M. and Bottinger , E. P . A mechanism of suppression of TGF‐β/SMAD signaling by NF‐KB/RelA . Genes Dev , 14 , 187 – 197 ( 2000. ). [PMC free article] [PubMed] [Google Scholar]
  • 49.Yu , M. , Tong , J. H. , Mao , M. , Kan , L. X. , Liu , M. M. , Sun , Y. W. , Fu , G. , Jing , Y. K. , Yu , L. , Lepaslier , D. , Lanotte , M. , Wang , Z. Y. , Chen , Z. , Waxman , S. , Wang , Y. X. , Tan , J. Z. and Chen , S. J . Cloning of a gene (RIG‐G) associated with retinoic acid‐induced differentiation of acute promye‐locytic leukemia cells and representing a new member of a family of interferon‐stimulated genes . Proc. Natl. Acad. Sci. USA , 94 , 7406 – 7411 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Wathelet , M. , Moutschen , S. , Defilippi , P. , Cravador , A. , Collet , M. , Huez , G . and Content , J . Molecular cloning, full‐length sequence and preliminary characterization of a 56‐kDa protein induced by human interferons . Eur. J. Biochem , 155 , 11 – 17 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 51.Choi , S. G. , Yi , Y. , Kim , Y. S. , Kato , M. , Chang , J. , Chung , H. W. , Hahm , K. B. , Yang , H. K. , Rhee , H. H. , Bang , Y. J . and Kim , S. J . A novel ets‐related transcription factor, ERT/ESX/ESE‐1, regulates expression of the transforming growth factor‐β type II receptor . J. Biol. Chem , 273 , 110 – 117 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 52.Chang , J. , Lee , C. , Hahm , K. B. , Yi , Y. , Choi , S. G . and Kim , S. J.Over‐expression of ERT(ESX/ESE‐1/ELF3), an ets‐related transcription factor, induces endogenous TGF‐β type II receptor expression and restores the TGF‐β signaling pathway in Hs578t human breast cancer cells . Oncogene , 19 , 151 – 154 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 53.Lo , R. S. . and Massague , J.Ubiquitin‐dependent degradation of TGF‐β‐activated Smad2 . Nat. Cell Biol 1 , 472 – 478 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 54.Hannon , G. J. and Beach , D . pl5INK4B is a potential effector of TGF‐β‐induced cell cycle arrest . Nature , 371 , 257 – 261 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 55.Pietenpol , J. A. , Holt , J. T. , Stein , R. W . and Moses , H. L . Transforming growth factor Pl suppression of c‐myc gene transcription: role in inhibition of keratinocyte proliferation . Proc. Natl. Acad. Sci. USA , 87 , 3758 – 3762 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Ewen , M. E. , Sluss , H. K. , Whitehouse , L. L . and Livingston , D. M.TGF β inhibition of Cdk4 synthesis is linked to cell cycle arrest . Cell , 74 , 1009 – 1020 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 57.Lavarone , A. . and Massague , J . Repression of the CDK activator Cdc25A and cell‐cycle arrest by cytokine TGF‐β in cells lacking the CDK inhibitor p15Nature , 387 , 417 – 422 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 58.Nagahara , H. , Ezhevsky , S. A. , Vocero‐Akbani , A. M. , Kaldis , P. , Solomon , M. J . and Dowdy , S. F . Transforming growth factor β targeted inactivation of cyclin E: cyclin‐dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity . Proc. Natl. Acad. Sci. USA , 96 , 14961 – 14966 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Geng , Y . and Weinberg , R. A . Transforming growth factor β effects on expression of Gl cyclins and cyclin‐dependent protein kinases . Proc. Natl. Acad. Sci. USA , 90 , 10315 – 10319 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Pietenpol , J. A. , Stein , R. W. , Moran , E. , Yaciuk , P. , Schlegel , R. , Lyons , R. M. , Pittelkow , M. R. , Munger , K. , Howley , P. M . and Moses , H. L.TGF‐β1 inhibition of c‐myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains . Cell , 61 , 777 – 785 ( 1990. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES