Abstract
To identify additional genes targeted for microsatellite instability (MSI), we search for human genes which contain mononucleotide repeats in their coding region, selected 7 genes (RAD50, DNA‐PKcs, FLASH, Apaf‐1, XPG, CtIP, and MLSN1), and analyzed frameshift mutations in them. Here we report that 60% (3 out of 5) of human colorectal cancer cell lines exhibiting a high frequency of MSI (MSI‐H) and 46% (6 out of 13) of MSI‐H primary colorectal tumors had mutations in the (A)9 repeat of RAD50 recombinational repair gene. In contrast, no frameshift mutations were found in any of the 5 MSI‐negative colorectal cancer cell lines, 8 colorectal tumors exhibiting a low frequency of MSI (MSI‐L), or 28 MSI‐negative colorectal tumors. No mutations were found in the mononucleotide repeats of 6 other genes, even in MSI‐H cancers. These results suggest that RAD50 frameshift mutations may play a role in the tumorigenesis of MSI‐H colorectal cancers.
Keywords: Microsatellite instability, Frameshift mutation, RAD50, Recombinational DNA repair, Colorectal cancer
Full Text
The Full Text of this article is available as a PDF (107.3 KB).
Reference
- 1.Ionov , Y. , Peinado , M. A. , Malkhosyan , S. , Shibata , D. and Perucho , M.Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis . Nature , 363 , 558 – 561 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 2.Kolodner , R.Mismatch repair: mechanisms and relationship to cancer susceptibility . Trends. Biochem. Sci. , 20 , 397 – 401 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 3.Aaltonen , L. A. , Peltomaki , P. , Leach , F. S. , Sistonen , P. , Pylkkanen , L. , Mecklin , J. P. , Javinen , H. , Powell , S. M. , Jen , J. , Hamilton , S. R. , Petersen , G. M. , Kinzler , K. W. , Vogelstein , B. and Chapelle , A.Clues to the pathogenesis of familial colorectal cancer . Science , 260 , 812 – 816 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 4.Thibodeau , S. N. , Bren , G. and Schaid , D.Microsatellite instability in cancer of the proximal colon . Science , 260 , 816 – 819 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 5.Markowitz , S. D. , Wang , J. , Myeroff , L. , Parsons , R. , Sun , L. , Lutterbaugh , J. , Fan , R. S. , Zborowska , E. , Kinzler , K. W. , Vogelstein , B. , Brattain , M. and Wilson , J. K. V.Inactivation of the type II TGF‐beta receptor in colon cancer cells with microsatellite instability . Science , 268 , 1336 – 1338 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 6.Rampino , N. , Yamamoto , H. , Ionov , Y. , Li , Y. , Sawai , H. , Reed , J. C. and Perucho , M.Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype . Science , 275 , 967 – 969 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 7.Malkhosyan , S. , Rampino , N. , Yamamoto , H. and Perucho , M.Frameshift mutator mutations . Nature , 382 , 499 – 500 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 8.Souza , R. F. , Appel , R. , Yin , J. , Wang , S. , Smolinski , K. N. , Abraham , J. M. , Zou , T.‐T. , Shi , Y.‐Q. , Cottell , J. , Cymes , K. , Biden , K. , Simms , L. , Leggett , B. , Lynch , P. M. , Frazier , M. , Powell , S. M. , Harpaz , N. , Sugimura , H. , Young , J. and Meltzer , S. J.Microsatellite instability in insulin‐like growth factor U receptor gene in gastrointestinal tumors . Nat. Genet. , 14 , 255 – 257 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 9.Souza , R. F. , Yin , J. , Smolinski , K. N. , Zou , T.‐T. , Wang , S. , Shi , Y.‐Q. , Rhyu , M.‐G. , Cottell , J. , Abraham , J. M. , Biden , K. , Simms , L. , Leggett , B. , Bova , G. S. , Frank , T. , Powell , S. M. , Sugimura , H. , Young , J. , Harpaz , N. , Shimizu , K. , Matsubara , N. and Meltzer , S. J.Frequent mutation of the E2F‐4 cell cycle gene in primary human gastrointestinal tumors . Cancer Res. , 57 , 2350 – 2353 ( 1997. ). [PubMed] [Google Scholar]
- 10.Petrini , J. H. J.The mammalian Mrell‐Rad50‐nbsl protein complex: integration of functions in the cellular DNA‐damage response . Am. J. Hum. Genet , 64 , 1264 – 1269 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Smith , G. C. M. and Jackson , S. P.The DNA‐dependent protein kinase . Genes Dev. , 13 , 916 – 934 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 12.Blunt , T. , Finnie , N. J. , Taccioli , G. E. , Smith , G. C. M. , Demengeot , J. , Gottlieb , T. M. , Mizuta , R. , Varghese , A. J. , Alt , F. W. , Jeggo , P. A. and Jackson , S. P.Defective DNA‐dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine SCID mutation . Cell , 80 , 813 – 823 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 13.Kurimasa , A. , Ouyang , H. , Dong , L.‐J. , Wang , S. , Li , X. , Cordon‐Cardo , C. , Chen , D. J. and Li , G. C.Catalytic sub‐unit of DNA‐dependent protein kinase: impact on lymphocyte development and tumorigenesis . Proc. Natl. Acad. Sci. USA , 96 , 1403 – 1408 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Imai , Y. , Kimura , T. , Murakami , A. , Yajima , N. , Sakamaki , K. and Yonehara , S.The CED‐4‐homologous protein FLASH is involved in Fas‐mediated activation of caspase‐8 during apoptosis . Nature , 398 , 777 – 785 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 15.Koonin , E. V. , Aravind , L. , Hofmann , K. , Tschopp , J. and Dixit , V. M.Apoptosis. Searching for FLASH domains . Nature , 401 , 662 – 663 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 16.Zou , H. , Henzel , W. J. , Liu , X. , Lutschg , A. and Wang , X.Apaf‐1, a human protein homologous to C. elegans CED‐4, participates in cytochrome c‐dependent activation of caspase‐3 . Cell , 90 , 405 – 413 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 17.O'Donovan , A. and Wood , R. D.Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5 . Nature , 363 , 185 – 188 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 18.Yu , X. and Baer , R.Nuclear localization and cell cycle‐specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor . J. Biol. Chem. , 275 , 18541 – 18549 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 19.Duncan , L. M. , Deeds , J. , Hunter , J. , Shao , J. , Holmgren , L. M. , Woolf , E. A. , Tepper , R. I. and Shyjan , A. W.Down‐regulation of the novel gene melastatin correlates with potential for melanoma metastasis . Cancer Res. , 58 , 1515 – 1520 ( 1998. ). [PubMed] [Google Scholar]
- 20.Togo , G. , Toda , N. , Kanai , R , Kato , N. , Shiratori , Y. , Kishi , K. , Imazeki , F. , Makuuchi , M. and Omata , M.A transforming growth factor beta type II receptor gene mutation common in sporadic cecum cancer with microsatellite instability . Cancer Res. , 56 , 5620 – 5623 ( 1996. ). [PubMed] [Google Scholar]
- 21.Cottus , P. H. , Muzeau , F. , Estreicher , A. , Flejou , J. F. , Iggo , R. , Thomas , G. and Hamelin , R.Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines . Oncogene , 13 , 2727 – 2730 ( 1996. ). [PubMed] [Google Scholar]
- 22.Efstathiou , J. A. , Liu , D. , Wheeler , J. M. , Kim , H. C. , Beck , N. E. , Ilyas , M. , Karayiannakis , A. J. , Mortensen , N. J. , Kmiot , W. , Playford , R. J. , Pignatelli , M. and Bodmer , W. F.Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells . Proc. Natl. Acad. Sci. USA , 96 , 2316 – 2321 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Togo , G. , Shiratori , Y. , Okamoto , M. , Yamaji , Y. , Matsumura , M. , Sano , T. , Motojima , T. and Omata , M.The relationship between the grade of microsatellite instability and the target genes of mismatch repair pathways in sporadic colorectal carcinoma . Dig. Dis. Sci. , in press . [DOI] [PubMed] [Google Scholar]
- 24.Varon , R. , Vissinga , C. , Platzer , M. , Cerosaletti , K. M. , Chrzanowska , K. H. , Saar , K. , Beckmann , G. , Seemanova , E. , Cooper , P. R. , Nowak , N. J. , Stumm , M. , Weemaes , C. M. R. , Gatti , R. A. , Wilson , R. K. , Digweed , M. , Rosenthal , A. , Sperling , K. , Concannon , P. and Reis , A.Nibrin, a novel DNA double‐strand break repair protein, is mutated in Nijmegen breakage syndrome . Cell , 93 , 467 – 476 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 25.Carney , J. P. , Maser , R. S. , Olivares , H. , Davis , E. M. , Le Beau , M. , Yates , J. R. , III , Hays , L. , Morgan , W. F. and Petrini , J. H. J.The hMrell/hRadSO protein complex and Nijmegen breakage syndrome: linkage of double‐strand break repair to the cellular DNA damage response . Cell , 93 , 477 – 486 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 26.Nelms , B. E. , Maser , R. S. , MacKay , J. F. , Lagally , M. G. and Petrini , J. H. J.In situ visualization of DNA double‐strand break repair in human fibroblasts . Science , 280 , 590 – 592 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 27.Lengauer , C. , Kinzler , K. W. and Vogelstein , B.Genetic instability in colorectal cancers . Nature , 386 , 623 – 627 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 28.Chamankhah , M. and Xiao , W.Formation of the yeast Mrell‐Rad50‐Xrs2 complex is correlated with DNA repair and telomere maintenance . Nucleic Acids Res. , 27 , 2072 – 2079 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Luo , G. , Yao , M. S. , Bender , C. F. , Mills , M. , Bladl , A. R. , Bradley , A. and Petrini , J. H. J.Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation . Proc. Natl. Acad. Sci. USA , 96 , 7376 – 7381 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]