Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Jun;92(6):649–658. doi: 10.1111/j.1349-7006.2001.tb01144.x

A Murine Osteosarcoma Cell Line with a Potential to Develop Ossification upon Transplantation

Tomomi Kusumi 1,, Takashi Nishi 1,2, Masanori Tanaka 1, Shigeki Tsuchida 3, Hajime Kudo 1
PMCID: PMC5926767  PMID: 11429054

Abstract

An Osteosarcoma cell line has been established from a soft tissue tumor that occurred spontaneously in a BALB/c mouse. This cell line showed ossification when transplanted into syngeneic mice. To examine the mechanism of bone formation, the expression of mRNAs for osteoblastic and chon‐droblastic markers and factors associated with ossification has been investigated. In culture, the cells exhibited a spindle shape in the growth phase, but had a polygonal shape in the stationary phase. Reverse transcription‐polymerase chain reaction analysis showed that the cells expressed mRNAs for pro‐α(I) chain of type I collagen, alkaline phosphatase, osteopontin, osteocalcin, and core binding factor al, suggesting differentiation into the stage of osteoblasts during the stationary phase. After transplantation, histological examination revealed small foci of pale blue material and basophilic networks that were scattered in the tumor tissues at one week. The former stained positive with alcian blue, suggesting a chondroid matrix. Pro‐α(II) chain of type II collagen mRNA was expressed at one week. A large part of tumors at two and three weeks consisted of basophilic networks, which stained positive via von Kossa's method, indicating a calcified woven bone. In situ hybridization analysis showed strong expression of osteopontin and osteocalcin mRNAs in tumor cells surrounding the bone matrix. Bone morphogenetic protein‐6 and ‐7 mRNAs were detected in transplanted tumors, but not in cultured cells. These results suggest that the cell line has the properties of an osteoblastic lineage when cultured in vitro and has an ossifying ability through endochondral bone formation processes when transplanted in vivo.

Keywords: Murine Osteosarcoma, Cell line, Transplantation, Osteoblastic differentiation, Endochondral ossification

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Reference

  • 1.Aubin , J. E. , Liu , F. , Malaval , L. and Gupta , A. K . Osteo‐blast and chondroblast differentiation . Bone , 17 , 77S – 83S ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 2.Ducy , P. , Zhang , R. , Geoffrey , V. , Ridall , A. L. and Karsenty , G . Osf2/Cbfal: a transcriptional activator of osteoblast differentiation . Cell , 89 , 747 – 754 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 3.Komori , T. , Yagi , H. , Nomura , S. , Yamaguchi , A. , Sasaki , K. , Deguchi , K. , Shimizu , Y. , Bronson , R. T. , Gao , Y.‐H. , Inada , M. , Sato , M. , Okamoto , R. , Kitamura , Y. , Yoshiki , S. and Kishimoto , T . Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts . Cell , 89 , 755 – 764 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 4.Otto , R , Thornell , A. P. , Crompton , T. , Denzel , A. , Gilmour , K. C. , Rosewell , I. R. , Stamp , G. W. H. , Beddington , R. S. P. , Mundlos , S. , Olsen , B. R. , Selby , P. B. and Owen , M. J . Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development . Cell , 89 , 765 – 771 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 5.Ducy , P. , Starbuck , M. , Priemel , M. , Shen , J. , Pinero , G. , Geoffrey , V. , Amling , M. and Karsenty , G . A Cbfal‐dependent genetic pathway controls bone formation beyond embryonic development . Genes Dev. , 13 , 1025 – 1036 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Triffitt , J. T . The stem cell of the osteoblast . In “ Principles of Bone Biology ,” ed. Bilezikian J. P. , Raisz L. G. and Rodan G. A. , pp. 39 – 50 ( 1996. ). Academic Press; , San Diego . [Google Scholar]
  • 7.Stein , G. S. , Lian , J. B. , Stein , J. L. , van Wijnen , A. J. , Frenkel , B. and Montecino , M . Mechanisms regulating osteoblast proliferation and differentiation . In “ Principles of Bone Biology ,” ed. Bilezikian J. P. , Raisz L. G. and Rodan G. A. , pp. 69 – 86 ( 1996. ). Academic Press; , San Diego . [Google Scholar]
  • 8.Erlebacher , A. , Filvaroff , E. H. , Gitelman , S. E. and Derynck , R . Toward a molecular understanding of skeletal development . Cell , 80 , 371 – 378 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 9.Majeska , R. J . Culture of osteoblastic cells . In “ Principles of Bone Biology ,” ed. Bilezikian J. P. , Raisz L. G. and Rodan G. A. , pp. 1229 – 1237 ( 1996. ). Academic Press; , San Diego . [Google Scholar]
  • 10.Majeska , R. J. , Rodan , S. B. and Rodan , G. A . Parathyroid hormone‐responsive clonal cell lines from rat osteosarcoma . Endocrinology , 107 , 1494 – 1503 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 11.Partridge , N. C. , Alcorn , D. , Michelangeli , V. P. , Ryan , G. and Martin , T. J . Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin . Cancer Res. , 43 , 4308 – 4314 ( 1983. ). [PubMed] [Google Scholar]
  • 12.Kawai , A . A newly established human osteosarcoma cell line with osteoblastic properties . Clin. Orthop. , 259 , 256 – 267 ( 1990. ). [PubMed] [Google Scholar]
  • 13.Ogose , A. , Motoyama , T. , Hotta , T. , Watanabe , H. and Takahashi , H. E . Bone formation in vitro and in nude mice by human osteosarcoma cells . Virchows Arch. , 426 , 117 – 125 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 14.Dunn , T. B. and Andervont , H. B . Histology of some neoplasms and non‐neoplastic lesions found in wild mice maintained under laboratory conditions . J. Natl. Cancer Inst. , 31 , 873 – 901 ( 1963. ). [PubMed] [Google Scholar]
  • 15.Schmidt , J. , StrauB , G. P. , Schon , A. , Luz , A. , Murray , A. B. , Melchiori , A. , Aresu , O. and Erfle , V . Establishment and characterization of osteogenic cell lines from a spontaneous murine osteosarcoma . Differentiation , 39 , 151 – 160 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 16.Nakayama , T. , Kanoe , H. , Sasaki , M. S. , Aizawa , S. , Nakamura , T. and Toguchida , J . Establishment of an osteoblast‐like cell line, MMC2, from p53‐deficient mice . Bone , 21 , 313 – 319 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 17.Sudo , H. , Kodama , H. , Amagai , Y. , Yamamoto , S. and Kasai , S . In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria . J. Cell Biol , 96 , 191 – 198 ( 1983. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Hara , A. , Ikeda , T. , Nomura , S. , Yagita , H. , Okumura , K. and Yamauchi , Y . In vivo implantation of human osteosarcoma cells in nude mice induces bones with human‐derived osteoblasts and mouse‐derived osteocytes . Lab. Invest. , 75 , 707 – 717 ( 1996. ). [PubMed] [Google Scholar]
  • 19.Sibalic , V. , Fan , X. , Loffing , J. and Wuthrich , R. P . Upregulated renal tubular CD44, hyaluronan, and osteopontin in kdkd mice with interstitial nephritis . Nephrol. Dial. Transplant. , 12 , 1344 – 1353 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 20.Zhang , R. , Ducy , P. and Karsenty , G . 1,25‐Dihydroxyvita‐min D3 inhibits osteocalcin expression in mouse through an indirect mechanism . J. Biol Chem. , 272 , 110 – 116 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 21.Werenskiold , A. K. , Schmidt , J. , Rupp , B. , Gossner , W. and Hofler , H . Suppression of Tl‐receptor expression by anti‐sense RNA abrogates differentiation of osteogenic osteosarcoma cells . Lab. Invest. , 79 , 529 – 536 ( 1999. ). [PubMed] [Google Scholar]
  • 22.Nakamura , T. , Aikawa , T. , Iwamoto‐Enomoto , M. , Iwamoto , M. , Higuchi , Y. , Maurizio , P. , Kinto , N. , Yamaguchi , A. , Noji , S. , Kurisu , K. and Matsuya , T . Induction of osteogenic differentiation by hedgehog proteins . Biochem. Biophys. Res. Commun. , 237 , 465 – 469 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 23.Ide , K. , Hayakawa , H. , Yagi , T. , Sato , A. , Koide , Y. , Yoshida , A. , Uchijima , M. , Suda , T. , Chida , K. and Nakamura , H . Decreased expression of Th2 type cytokine mRNA contributes to the lack of allergic bronchial inflammation in aged rats . J. Immunol. , 163 , 396 – 402 ( 1999. ). [PubMed] [Google Scholar]
  • 24.Kojima , K . Analysis of electrophoretic patterns by NIH image . Jpn. J. Comp. Sci. , 1 , 17 – 23 ( 1994. )) in Japanese ). [Google Scholar]
  • 25.Schajowictz , F. , Ackerman , L. V. , Adler , C. P. , Bertoni , F. , Donate de Prospero , J. , Martinez Tello , F. J. , Mazabraud , A. , Matsuno , T. , Povysil , C. , Salzer‐Kuntschik , M. , Sissons , H. A. , Sobin , L. H. and Unni , K. K . Bone‐forming tumours. In“Histological Typing of Bone Tumours ,” 2nd Ed. , World Health Organization, International Histological Classification of Tumours , ed. Schajowitz F. , pp. 7 – 13 ( 1993. ). Springer‐Verlag; , Berlin . [Google Scholar]
  • 26.Enzinger , F. M. and Weiss , S. W . Osseous soft tissue tumors . In “ Soft Tissue Tumors ,” 3rd Ed. , ed. Enzinger F. M. and Weiss S. W. , pp. 1013 – 1037 ( 1995. ). Mosby , St. Louis . [Google Scholar]
  • 27.Ferguson , C. M. , Miclau , T. , Hu , D. , Alpern , E. and Helms , J. A . Common molecular pathways in skeletal morphogenesis and repair . Ann. N. Y. Acad. Sci. , 857 , 33 – 42 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 28.Rosen , V. , Cox , K. and Hattersley , G . Bone morphogenetic proteins . In “ Principles of Bone Biology ,” ed. Bilezikian J. P. , Raisz L. G. and Rodan G. A. , pp. 661 – 671 ( 1996. ). Academic Press; , San Diego . [Google Scholar]
  • 29.Wang , E. A. , Rosen , V. , Cordes , P. , Hewick , R. M. , Kriz , M. J. , Luxenberg , D. P. , Sibley , B. S. and Wozney , J. M . Purification and characterization of other distinct bone‐inducing factors . Proc. Natl. Acad. Sci. USA , 85 , 9484 – 9488 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wozney , J. M. , Rosen , V. , Celeste , A. J. , Mitsock , L. M. , Whitters , M. J. , Kriz , R. W. , Hewick , R. M. and Wang , E. A . Novel regulators of bone formation: molecular clones and activities . Science , 242 , 1528 – 1534 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 31.Sampath , T. K. , Maliakal , J. C. , Hauschka , P. V. , Jones , W. K. , Sasak , H. , Tucker , R. F. , White , K. H. , Coughlin , J. E. , Tucker , M. M. , Pang , R. H. L. , Corbett , C. , Ozkaynak , E. , Oppermann , H. and Rueger , D. C . Recombinant human osteogenic protein‐1 (hOP‐1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro . J. Biol. Chem. , 267 , 20352 – 20362 ( 1992. ). [PubMed] [Google Scholar]
  • 32.Gitelman , S. R , Kobrin , M. S. , Ye , J.‐Q. , Lopez , A. R. , Lee , A. and Derynck , R . Recombinant Vgr‐l/BMP‐6‐expressing tumors induce fibrosis and endochondral bone formation in vivo . J. Cell Biol. , 126 , 1595 – 1609 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Hirota , S. , Takaoka , K. , Hashimoto , J. , Nakase , T. , Takemura , T. , Morii , E. , Fukuyama , A. , Morihana , K. , Kitamura , Y. and Nomura , S . Expression of mRNA of murine bone‐related proteins in ectopic bone induced by murine bone morphogenetic protein‐4 . Cell Tissue Res. , 277 , 27 – 32 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 34.Ahrens , M. , Ankenbauer , T. , Schroder , D. , Hollnagel , A. , Mayer , H. and Gross , G . Expression of human bone morphogenetic proteins‐2 or ‐4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages . DNA Cell Biol. , 12 , 871 – 880 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 35.Raval , P. , Hsu , H. H. T. , Schneider , D. J. , Sarras , M. P. , Jr. , Masuhara , K. , Bonewald , L. F. and Anderson , H. C . Expression of bone morphogenetic proteins by osteoinductive and non‐osteoinductive human osteosarcoma cells . J. Dent. Res. , 75 , 1518 – 1523 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 36.Lyons , K. M. , Pelton , R. W. and Hogan , B. L. M . Patterns of expression of murine Vgr‐1 and BMP‐2a RNA suggest that transforming growth factor‐β‐like genes coordinately regulate aspects of embryonic development . Genes Dev. , 3 , 1657 – 1668 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 37.Carey , D. E. and Liu , X . Expression of bone morphogenetic protein‐6 messenger RNA in bovine growth plate chondrocytes of different size . J. Bone Miner. Res. , 10 , 401 – 405 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 38.Grimsrud , C. D. , Romano , P. R. , D'Sorza , M. , Puzas , J. E. , Reynolds , P. R. , Rosier , R. N. and O'Keefe , R. J . BMP‐6 is an autocrine stimulator of chondrocyte differentiation . J. Bone Miner. Res. , 14 , 475 – 482 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 39.Rickard , D. J. , Hofbauer , L. C. , Bonde , S. K. , Gori , F. , Spelsberg , T. C. and Riggs , B. L . Bone morphogenetic protein‐6 production in human osteoblastic cell lines: selective regulation by estrogen . J. Clin. Invest , 101 , 413 – 422 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Honda , Y. , Knutsen , R. , Strong , D. D. , Sampath , T. K. , Baylink , D. J. and Mohan , S . Osteogenic protein‐1 stimulates mRNA levels of BMP‐6 and decreases mRNA levels of BMP‐2 and ‐4 in human osteosarcoma cells . Calcif. Tissue Int. , 60 , 297 – 301 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 41.Koenig , B. B. , Cook , J. S. , Wolsing , D. H. , Ting , J. , Tiesman , J. P. , Correa , P. E. , Olson , C. A. , Pecquet , A. L. , Ventura , F. , Grant , R. A. , Chen , G.‐X. , Wrana , J. L. , Massague , J. and Rosenbaum , J. S . Characterization and cloning of a receptor for BMP‐2 and BMP‐4 from NIH3T3 cells . Mol. Cell. Biol. , 14 , 5961 – 5974 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.ten Dijke , P. , Yamashita , H. , Sampath , T. K. , Reddi , A. H. , Estevez , M. , Riddle , D. L. , Ichijo , H. , Heldin , C.‐H. and Miyazono , K . Identification of type I receptors for osteogenic protein‐1 and bone morphogenetic protein‐4 . J. Biol. Chem. , 269 , 16985 – 16988 ( 1994. ). [PubMed] [Google Scholar]
  • 43.Zou , H. , Wieser , R. , Massague , J. and Niswander , L . Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage . Genes Dev. , 11 , 2191 – 2203 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Suzawa , M. , Takeuchi , Y. , Fukumoto , S. , Kato , S. , Ueno , N. , Miyazono , K. , Matsumoto , T. and Fujita , T . Extracellular matrix‐associated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro . Endocrinology , 140 , 2125 – 2133 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 45.Lee , K. , Deeds , J. D. and Segre , G. V . Expression of parathyroid hormone‐related peptide and its receptor messenger ribonucleic acids during fetal development of rats . Endocrinology , 136 , 453 – 463 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 46.Rosen , V. , Nove , J. , Song , J. J. , Thies , R. S. , Cox , K. and Wozney , J. M . Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes . J. Bone Miner. Res. , 9 , 1759 – 1768 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 47.Cancedda , F. G. , Gentili , C. , Manduca , P. and Cancedda , R . Hypertrophic chondrocytes undergo further differentiation in culture . J. Cell Biol. , 117 , 427 – 435 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Roach , H. L , Erenpreisa , J. and Aigner , T . Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis . J. Cell Biol. , 131 , 483 – 494 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Sato , M. , Yasui , N. , Nakase , T. , Kawahata , H. , Sugimoto , M. , Hirota , S. , Kitamura , Y. , Nomura , S. and Ochi , T . Expression of bone matrix proteins mRNA during distraction osteogenesis . J. Bone Miner. Res. , 13 , 1221 – 1231 ( 1998. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES