Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Aug;92(8):854–862. doi: 10.1111/j.1349-7006.2001.tb01172.x

Frequent Increase of DNA Copy Number in the 2q24 Chromosomal Region and Its Association with a Poor Clinical Outcome in Hepatoblastoma: Cytogenetic and Comparative Genomic Hybridization Analysis

Kazuko Kumon 1, Hirofumi Kobayashi 1, Takeshi Namiki 1, Yukiko Tsunematsu 2, Jun Miyauchi 2, Atsushi Kikuta 3, Yasuo Horikoshi 4, Yoshihiro Komada 5, Yoshiro Hatae 6, Haruhiko Eguchi 7, Yasuhiko Kaneko 1,
PMCID: PMC5926834  PMID: 11509117

Abstract

In a cytogenetic and comparative genomic hybridization (CGH) study of 38 hepatoblastomas, we found gain of Iq in 17 tumors (44.7%), that of 2/2q in 14 (36.8%), that of 20/20q in 9 (23.7%) and that of 8/8q in 8 (21.0%), loss of 4q in 4 (10.5%) and no DNA copy changes with normal karyotype or no mitotic cells in 11 (28.9%). Eleven tumors with 2/2q gain detected by CGH had a total chromosome 2 gain, a partial 2q gain, or a total chromosome 2 gain with an augmented partial 2q region; the common region for DNA copy gain was 2q24. Two‐color fluorescence in situ hybridization (FISH) analyses using probes covering the centromere of chromosome 2 or HOXD13 (2q31) confirmed the CGH findings, and showed that the common region for gain in 2q was centromeric to HOXD13. Event‐free survival (EFS)±standard error (SE) at 5 years was lowest in patients with 2q gain [37±15%], highest in those with no DNA copy changes [82±12%], and intermediate in those with DNA copy changes other than 2q gain [74±13%] (P=0.0549). Multivariate analysis showed that 2q gain was an independent factor predicting a poor outcome. These findings suggest the presence of a growth‐promoting gene or an oncogene in the 2q24 chromosome band, and a tumor suppressor gene in terminal 4q, which have important roles in the development and progression of hepatoblastoma.

Keywords: Hepatoblastoma, CGH, FISH, Chromosome abnormalities, 2q gain

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • 1.Greenberg , M. and Filler , R. M.Hepatic tumors . In “ Principles and Practice of Pediatric Oncology ,” ed. Pizzo P. A. and Poplack D. G. , pp . 717 – 732 ( 1997. ). Lippincott‐Raven Publ. , Philadelphia . [Google Scholar]
  • 2.Rodriguez , E. , Reuter , V. E. , Mies , C. , Bosl , G. J. and Chaganti , R. S. K.Abnormalities of 2q: a common genetic link between rhabdomyosarcoma and hepatoblastoma ? Genes Chromosom. Cancer , 3 , 122 – 127 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 3.Schneider , N. R. , Cooley , L. D. , Finegold , M. J. , Douglass , E.C. and Tomlinson , G. E.The first recurring chromosometranslocationinhepatoblastoma:der(4)t(l;4) (q12;q34) . Genes Chromosom. Cancer , 19 , 291 – 294 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 4.Sainati , L. , Leszl , A. , Stella , M. , Montaldi , A. , Perilongo , G. , Rugge , M. , Bolcato , S. , Lolascon , A. and Basso , G.Cytogenetic analysis of hepatoblastoma: hypothesis of cytogenetic evolution in such tumors and results of a multicentric study . Cancer Genet. Cytogenet , 104 , 39 – 44 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 5.Nagata , T. , Mugishima , H. , Shichino , H. , Suzuki , T. , Chin , M. , Koshinaga , S. , Inoue , M. and Harada , K.Karyotypic analyses of hepatoblastoma: report of two cases and review of the literature suggesting chromosomal loci responsible for the pathogenesis of this disease . Cancer Genet. Cytogenet. , 114 , 42 – 50 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 6.Steenman , M. , Tomlinson , G. , Westerveld , A. and Mannens , M.Comparative genomic hybridization analysis of hepatoblastomas: additional evidence for a genetic link with Wilms tumor and rhabdomyosarcoma . Cytogenet. Cell Genet. , 86 , 157 – 161 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 7.Hu , J. , Baker , B.A. and Perlman , E.J.Comparative genomic hybridization analysis of hepatoblastomas . Genes Chromosom. Cancer , 27 , 196 – 201 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 8.Weber , R. G. , Pietsch , T. , von Schweinitz , D. and Lichter , P.Characterization of genomic alterations in hepatoblastoma: a role of gains on chromosomes 8q and 20 as predictors of poor prognosis . Am.J.Pathol. , 157 , 571 – 578 ( 2000. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.DeBaun , M. R. and Tucker , M. A.Risk of cancer during the first four years of life in children from the Beckwith‐Wiedemann syndrome registry . J. Pediatr. , 132 , 398 – 400 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 10.Garber , J. E. , Li , F. P. , Kingston , J. E. , Krush , A. J. , Strong , L. C. , Finegold , M. J. , Bertario , L. , Bulow , S. , Filippone , A. , Jr. , Gedde‐Dahl , T. , Jr. and Jarvinen , H. J.Hepatoblastoma and familial adenomatous polyposis . J. Natl. Cancer Inst. , 80 , 1626 – 1628 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 11.Oda , H. , Imai , Y. , Nakatsuru , Y. , Hata , J. and Ishikawa , T.Somatic mutations of the APC gene in sporadic hepatoblastomas . Cancer Res. , 56 , 3320 – 3323 ( 1996. ). [PubMed] [Google Scholar]
  • 12.Kurahashi , H. , Takami , K. , Oue , T. , Kusafuka , T. , Okada , A. , Tawa , A. , Okada , S. and Nishisho , I.Biallelic inactivation of the APC gene in hepatoblastoma . Cancer Res. , 55 , 5007 – 5011 ( 1995. ). [PubMed] [Google Scholar]
  • 13.Koch , A. , Denkhaus , D. , Albrecht , S. , Leuschner , I. , von Schweinitz , D. and Pietsch , T.Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β‐catenin gene . Cancer Res. , 59 , 269 – 273 ( 1999. ). [PubMed] [Google Scholar]
  • 14.King , D. R. , Ortega , J. , Campbell , J. , Haas , J. , Ablin , A. , Lloyd , D. , Newman , K. , Quinn , J. , Krailo , M. , Feusner , J. and Hammond , D.The surgical management of children with incompletely resected hepatic cancer is facilitated by intensive chemotherapy . J. Pediatr. Surg. , 26 , 1074 – 1081 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 15.Japanese Study Group for Pediatric Liver Tumor . Treatment of childhood malignant liver tumors . Jpn. J. Pediatr. Oncol , 32 , 121 – 124 ( 1995. ). [Google Scholar]
  • 16.Haas , J. E. , Muczynski , K. A. , Krailo , M. , Ablin , A. , Land , V. , Vietti , T. J. and Hammond , D.Histopathology and prognosisin childhoodhepatoblastoma andhepatocarcinoma . Cancer , 64 , 1082 – 1095 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 17.Kaneko , Y. , Homma , C. , Maseki , N. , Sakurai , M. and Hata , J.Correlation of chromosome abnormalities with histological and clinical features in Wilms'and other childhood renal tumors . Cancer Res. , 51 , 5937 – 5942 ( 1991. ). [PubMed] [Google Scholar]
  • 18.ISCN . “ An International System for Human Cytogenetic Nomenclature ,” ed. Mitelman F. ( 1995. ). S. Karger; , Basel . [Google Scholar]
  • 19.Apiou , F. , Flagiello , D. , Cillo , C , Malfoy , B. , Poupon , M. and Dutrillaux , B.Fine mapping of human HOX gene clusters . Cytogenet. Cell Genet. , 73 , 114 – 115 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 20.Kobayashi , H. , Satake , N. , Maseki , N. , Sakashita , A. and Kaneko , Y.The der(21)t(12;21) chromosome is always formed in a 12;21 translocation associated with childhood acute lymphoblastic leukemia . Br. J. Haematol. , 94 , 105 – 111 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 21.Mitelman , F. “ Catalog of Chromosome Aberrations in Cancer '98. Version 1 ” ( 1998. ). Wiley‐Liss; , New York . [Google Scholar]
  • 22.Knuutila , S. , Bjorkqvist , A. M. , Autio , K. , Tarkkanen , M. , Wolf , M. , Monni , O. , Szymanska , J. , Larramendy , M. L. , Tapper , J. , Pere , H. , El‐Rifai , W. , Hemmer , S. , Wasenius , V. M. , Vidgren , V. and Zhu , Y.DNA copy number amplifications in human neoplasms . Am. J. Pathol. , 152 , 1107 – 1123 ( 1998. ). [PMC free article] [PubMed] [Google Scholar]
  • 23.Tapper , J. , Sarantaus , L. , Vahteristo , P. , Nevanlinna , H. , Hemmer , S. , Seppala , M. , Knuutila , S. and Butzow , R.Genetic changes in inherited and sporadic ovarian carcinomas by comparative genomic hybridization: extensive similarity except for a difference at chromosome 2q24‐q32 . Cancer Res. , 58 , 2715 – 2719 ( 1998. ). [PubMed] [Google Scholar]
  • 24.ten Dijke , P. , Ichijo , H. , Franzen , P. , Saras , J. , Toyoshima , H. , Heldin , C. H. and Miyazono , K.Activin receptor‐like kinases: a novel subclass of cell‐surface receptors with predicted serine/threonine kinase activity . Oncogene , 8 , 2879 – 2887 ( 1993. ). [PubMed] [Google Scholar]
  • 25.Rothe , M. , Xiong , J. , Shu , H. B. , Williamson , K. , Goddard , A. and Goeddel , D. V.I‐TRAF is a novel TRAF‐interacting protein that regulates TRAF‐mediated signal transduction . Proc. Natl. Acad. Sci. USA , 93 , 8241 – 8246 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Leyns , L. , Bouwmeester , T. , Kim , S. H. , Piccolo , S. and Robertis , E. M.Frzb‐1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer . Cell , 88 , 747 – 756 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Peifer , M.β‐Catenin as oncogene: the smoking gun . Science , 275 , 1752 – 1753 ( 1997. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES