Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2001 Sep;92(9):959–967. doi: 10.1111/j.1349-7006.2001.tb01187.x

PI3‐kinase p85α Is a Target Molecule of Proline‐rich Antimicrobial Peptide to Suppress Proliferation of ras‐Transformed Cells

Koji Tanaka 1,, Yoshinori Fujimoto 1,, Masako Suzuki 1, Yasuaki Suzuki 1, Takaaki Ohtake 1, Hiroyuki Saito 1, Yutaka Kohgo 1
PMCID: PMC5926840  PMID: 11572764

Abstract

PR‐39, which is an endogenous antimicrobial peptide, can bind to Src homology 3 domains of the NADPH complex protein p47phox and the signaling adapter protein p!30Cas. Recently, we have reported that PR‐39 gene transduction altered invasive activity and actin structure of human hepatocellular carcinoma cells, suggesting that this peptide affects cellular signaling due to its prolinerich motif. In order to clarify the mechanism of the PR‐39 functions, we transfected the PR‐39 gene into mouse NIH3T3 cells which had already been transformed with human activated k‐ras gene. The PR‐39 gene transfectant showed a reorganization of actin structure and suppression of cell proliferation both in vitro and in vivo. Decreases of MAP (mitogen‐activated protein) kinase activity, cyclin Dl expression and JNK activity were observed in the PR‐39 gene transfectant. Co‐immunoprecipitation analysis revealed that PR‐39 binds to PI3‐kinase p85α, which is a regulatory subunit of PI3‐kinase and one of the effectors by which ras induces cytoskeletal changes and stimulates mitogenesis. The PI3‐kinase activity of the PR‐39 gene transfectant was decreased compared with that of the ras transformant. These results suggest that PR‐39 alters actin structure and cell proliferation rate by binding to PI3‐kinase p85α and suppressing the PI3‐kinase activity.

Keywords: PR, 39, Antimicrobial peptide, P13 kinase, ras, Actin

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

References

  • 1.Agerberth , B. , Lee , J.‐Y. , Bergman , T. , Carlruist , M. , Boman , H. G. , Mutt , V. and Jornvall , H . Amino acid sequence of PR‐39: isolation from pig intestine of a new member of the family of proline‐arginine‐rich antibacterial peptides . Eur. J. Biochem. , 202 , 849 – 854 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 2.Storici , P. and Zanetti , M.A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR‐39 . Biochem. Biophys. Res. Commun. , 196 , 1058 – 1065 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 3.Boman , H. G . Peptide antibiotics and their role in innate immunity . Annu. Rev. ImmunoL , 13 , 61 – 92 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 4.Gallo , R. L. , Ono , M. , Povsic , T. , Page , C. , Eriksson , E. , Klagsbrunl , M. and Bernfield , M.Syndecan, cell surface heparan sulfate proteoglycans, are induced by a proline‐rich antimicrobial peptide from wounds . Proc. Natl. Acad. Sci. USA , 91 , 11035 – 11039 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Li , J. , Post , M. , Vokk , R. , Gao , Y. , Li , M. , Metais , C. , Sato , K. , Tsai , J. , Aird , W. , Rosenberg , R. D. , Hanpton , T. G. , Ki , J. , Sellke , F. , Carmeriet , P. and Simons , M.PR‐39, a peptide regulator of angiogenesis . Nat. Med. , 1 , 49 – 55 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 6.Ohtake , T. , Fujimoto , Y. , Ikuta , K. , Saito , H. , Ohhira , M. , Ono , M. and Kohgo , Y . Proline‐rich antimicrobial peptide, PR‐39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells . Br. J. Cancer , 81 , 393 – 403 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Shi , J. , Ross , C. R. , Leto , T. L. and Blecha , F.PR‐39, a proline‐richantibacterialpeptidethatinhibitsphagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47phox . Proc. Natl. Acad. Sci. USA , 93 , 6014 – 6018 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chan , Y. R. and Gallo , R. L.PR‐39, a syndecan‐inducing antimicrobial peptide, binds and affects p!30Cas . J. Biol. Chem. , 273 , 28978 – 28985 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 9.Gao , Y. , Lecker , S. , Post , M. J. , Hietaranta , A. J. , Li , J. , Volk , R. , Li , M. , Sato , K. , Saluja , A. K. , Steer , M. L. , Goldberg , A. L. and Simons , M . Inhibition of ubiquitin‐proteasome pathway‐mediated 1KB a degradation by a naturally occurring antibacterial peptide . J. Clin. Invest. , 106 , 439 – 448 ( 2000. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Matsumoto , A. , Ono , M. , Fujimoto , Y. , Gallo , R. L. , Bernfield , M. and Kohgo , Y . Reduced expression of synde‐can‐1 in human hepatocellular carcinoma with high meta‐static potential . Int. J. Cancer , 74 , 482 – 491 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 11.Yu , H. , Chen , J. K. , Feng , S. , Dalgarno , D. C. , Brauer , A. W. and Schreiber , S. L.Structural basis for the binding of proline‐rich peptides to SH3 domains . Cell , 76 , 933 – 945 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 12.Gout , L , Dhand , R. , Hiles , I. D. , Fry , M. J. , Panayotou , G. , Das , P. , Truong , O. , Totty , N. F. , Hsuan , J. , Booker , G. W. , Campbell , I.D. and Waterfield , M.D.TheGTPase dynamin binds to and is activated by a subset of SH3 domains . Cell , 75 , 25 – 36 ( 1993. ). [PubMed] [Google Scholar]
  • 13.Malumber , M. and Pellicer , A . Ras pathways to cell cycle control and cell transformation . Front. Biosci. , 3 , 887 – 912 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 14.Ura , H. , Obara , T. , Shudo , R. , Itoh , A. , Tanno , S. , Fujii , T. , Nishino , N. and Kougo , Y . Selective cytotoxicity of farne‐sylamine to pancreaticcarcinoma cellsand ki‐ras‐transformed fibroblast . Mol. Carcinog. , 21 , 93 – 99 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 15.Storici , P. and Zanetti , M . A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR‐39 . Biochem. Biophys. Res. Commun. , 196 , 1058 – 1065 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 16.Chen , R.‐H. , Chang , M.‐C. , Su , Y.‐H. , Tsai , Y.‐T. and Kio , M.‐L.Interleukin‐6 inhibits transforming growth factor‐βinduced apoptosis through the phosphatidylinositol 3‐kinase/Akt and signal transducers and activators of transcription 3 pathways . J. Biol. Chem. , 274 , 23013 – 23019 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 17.Moodie , S.A. , Willumsen , B.M. , Weber , M.J. and Wolfman , A . Complexes of Ras.GTP with Raf‐1 mitogenactivated protein kinase kinase . Science , 260 , 1658 – 1661 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 18.Kyriakis , J.M. , App , H. , Zhang , X.F. , Banerjee , P. , Brautigan , D. L. , Rapp , U. R. and Avruch , J . Raf‐1 activates MAP kinase kinase . Nature , 358 , 417 – 421 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 19.Lavoie , J. N. , L'Allemain , G. , Brunei , A. , Miller , R. and Pouyssegur , J. Cycline Dlexpressin is regulated positively by the p42/p44 MAPK and negatively by the p38/HOG MAPKpathway . J. Biol. Chem. , 271 , 20608 – 20616 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 20.Winston , J. T. , Coats , S. R. , Wang , Y. Z. and Pledger , W. J . Regulation of the cell cycle machinery by oncogenic ras . Oncogene , 12 , 127 – 134 ( 1996. ). [PubMed] [Google Scholar]
  • 21.McCarthy , S. A. , Samuels , M. L. , Pritchard , C. A. , Abraham , J. A. and McMahon , M.Rapid induction of heparin‐binding epidermalgrowth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes . Genes receptor expression by Raf and Ras oncogenes . Genes . [DOI] [PubMed] [Google Scholar]
  • 22.Bos , J. L . ras oncogenes in human cancer . Cancer Res. , 49 , 4682 – 4689 ( 1989. ). [PubMed] [Google Scholar]
  • 23.Hu , Q. , Klippel , A. , Mulsin , A.J. , Fantl , W.J. and Williams , L. T . Ras‐dependent induction ofcellular responses by constitutivelyactive phosphatidylinositol‐3 kinase . Science , 268 , 100 – 102 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 24.Mcllory , J. , Chen , D. , Wjasow , C. , Michaeli , T. and Backert , J. M . Specific activation of p85‐p110phosphatidylinositol 3‐kinase stimulates DNA synthesis by ras‐ and p70 S6 kinase‐dependent pathways . Mol. Cell. Biol. , 17 , 248 – 255 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Minden , A. , Lin , A. , Claret , F. X. , Abo , A. and Karin , M . Selective activation of the JNK signaling cascade and c‐Jun transcription activity by the small GTPases Rac and Cdc42Hs . Cell , 81 , 1147 – 1157 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 26.Coso , O.A. , Chiariello , M. , Yu , J.C. , Teramoto , H. , Crespo , P. , Xu , N. , Miki , T. and Gutkind , J. S . The small GTP‐binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway . Cell , 81 , 1137 – 1146 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 27.Hall , A . Rho GTPases and actin cytoskeleton . Science , 279 , 509 – 514 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 28.Tolias , K. F. , Cantley , L. C. and Carpenter , C. L . Rho‐family GTPases bind to phosphoinositide kinases . J.Biol. Chem. , 270 , 17656 – 17659 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 29.Datta , S. R. , Dudek , H. , Tao , X. , Masters , S. , Fu , H. , Gotoh , Y. and Greenberg , M. E . Akt phosphorylation of BAD couples survival signals to the cell‐intrinsic death machinery . Cell , 91 , 231 – 241 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 30.Rommel , C. , Clarke , B. A. , Zimmermann , S. , Nunez , L. , Rossman , R. , Reid , K. , Moelling , K. , Yancopoulos , G. D. and Glass , D. J . Differentiation stage‐specific inhibition of the Raf‐EK‐ERK pathway by Akt . Science , 286 , 1738 – 1741 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 31.Hua , V. Y. , Wang , W. K. and Duesberg , P. H.Dominant transformation by mutated human ras genes in vitro requires more than 100 times higher expression than is observed in cancers . Proc. Natl.Acad. Sci. USA , 94 , 9614 – 9619 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Nagy , J. I. , Hossain , M. Z. , Lynn , B. D. , Curpen , G. E. , Yang , S. and Turley , E. A . Increased connexin‐43 and gap junctional communication correlate with altered phenotypic characteristics ofcells overexpressing thereceptor for hyaluronic acid‐mediated motility . Cell Growth Differ. , 7 , 745 – 751 ( 1996. ). [PubMed] [Google Scholar]
  • 33.Alexander , L . Targeting signal transduction for disease therapy . Curr. Opin. Cell Biol. , 8 , 239 – 244 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 34.Cussac , D. , Leprince , C. , Liu , W. , Cornill , F. , Tiraboschi , G. , Roques , B. P. and Garbay , C. ASos‐derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3domainsanddisplaysantiproliferativeactivity . FASEB J. , 13 , 31 – 39 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 35.Nishio , K. , Fukuoka , K. , Fukumoyo , H. , Sunami , T. , Iwamoto , Y. , Suzuku , T. , Usuda , J. and Saijo , N . Mitogenactivated protein kinase antisense oligonucleotide inhibits the growth of human lung cancer cells . Int. J. Oncol. , 14 , 461 – 469 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 36.Vlahos , C.J. , Matter , W.F. , Hui , K.Y. and Brown , R.F . Aspecificinhibitor of phosphatidylinositol 3‐kinase, 2‐(4‐morpholinyl)‐8‐phenyl‐4H‐l‐benzopyran‐4‐one (LY294002) . J. Biol. Chem. , 269 , 5241 – 5248 ( 1994. ). [PubMed] [Google Scholar]
  • 37.Hu , L. , Zaloudek , C. , Mills , G. B. , Gray , J. and Jaffe , R. B.In vitro and in vivo ovarian carcinoma growth inhibition by a phosphatidylinositol 3‐kinase inhibitor (LY294002) . Clin. Cancer Res. , 6 , 880 – 886 ( 2000. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES