Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Oct;93(10):1114–1122. doi: 10.1111/j.1349-7006.2002.tb01213.x

Differentially Regulated Genes as Putative Targets of Amplifications at 20q in Ovarian Cancers

Takafumi Watanabe 1,2, Issei Imoto 1, Tomoyuki Katahira 3, Akira Hirasawa 1, Isamu Ishiwata 4, Mitsuru Emi 5, Masaomi Takayama 6, Akira Sato 2, Johji Inazawa 1,
PMCID: PMC5926887  PMID: 12417041

Abstract

Frequent amplification of DNA at 20q or part of 20q has been demonstrated by comparative genomic hybridization in ovarian cancer (OC), but the genetic target(s) of these amplification events remain unknown. We examined copy‐number changes with respect to six candidate genes, E2F1 (20q11.2), TGIF2 (20q11.2), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and BTAK (20q13), and then measured transcription levels of each candidate in 18 OC cell lines. Three distinct cores of amplification were identified: 20q11.2, harboring E2F1 and TGIF2 (region I; 1 of 18 cell lines, 5.6%); 20q13.1, harboring PTPN1 (region II; 5 lines, 27.8%); and 20q13.2, harboring ZNF217 and BTAK (region III; 6 lines, 33.3%). Among the six genes examined, expression levels of PTPN1 and ZNF217 were significantly correlated with absolute copy‐number, and those of PTPN1 and TGIF2 were significantly correlated with copy‐number relative to the centromere of chromosome 20 (20cen). Among 19 primary OCs examined, moreover, we observed amplification of TGIF2, PTPN1 and ZNF217 in five (26.3%), ten (52.6%), and twelve (63.2%) tumors, respectively. Expression levels of PTPN1 and ZNF217 were significantly correlated with their copy‐numbers in those primary OCs. Our results suggest that 20q amplifications in OCs can be extensive and complex, probably due to synergistic or non‐synergistic amplification of separate regions of 20q, involving multiple, independently amplified targets.

Keywords: 20q, Amplification, Ovarian cancer

Full Text

The Full Text of this article is available as a PDF (605.3 KB).

REFERENCES

  • 1. ) Pejovic , T.Genetic changes in ovarian cancer . Ann. Med. , 27 , 73 – 78 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Iwabuchi , H. , Sakamoto , M. , Sakunaga , H. , Ma , Y. Y. , Carcangiu , M. L. , Pinkel , D. , Yang‐Feng , T. L. and Gray , J. W.Genetic analysis of benign, low‐grade, and high‐grade ovarian tumors . Cancer Res. , 55 , 6172 – 6180 ( 1995. ). [PubMed] [Google Scholar]
  • 3. ) Arnold , N. , Hagele , L. , Walz , L. , Schempp , W. , Pfisterer , J. , Bauknecht , T. and Kiechle , M.Overrepresentation of 3q and 8q material and loss of 18q material are recurrent findings in advanced human ovarian cancer . Genes Chromosom. Cancer , 16 , 46 – 54 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Sonoda , G. , Palazzo , J. , du Manoir , S. , Godwin , A. K. , Feder , M. , Yakushiji , M. and Testa , J. R.Comparative genomic hybridization detects frequent Overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas . Genes Chromosom. Cancer , 20 , 320 – 328 ( 1997. ). [PubMed] [Google Scholar]
  • 5. ) Watanabe , T. , Imoto , L , Kosugi , Y. , Ishiwata , L , Inoue , S. , Takayama , M. , Sato , A. and Inazawa , J.A novel amplification at 17q21–23 in ovarian cancer cell lines detected by comparative genomic hybridization . Gynecol. Oncol. , 81 , 172 – 177 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Kallioniemi , A. , Kallioniemi , O. P. , Piper , J. , Tanner , M. , Stokke , T. , Chen , L. , Smith , H. S. , Pinkel , D. , Gray , J. W. and Waldman , F. M.Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization . Proc. Natl. Acad. Set. USA , 91 , 2156 – 2160 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. ) Ried , T. , Knutzen , R. , Steinbeck , R. , Blegen , H. , Schrock , E. , Heselmeyer , K. , du Manoir , S. and Auer , G.Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors . Genes Chromosom. Cancer , 15 , 234 – 245 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Ghadimi , B. M. , Schrock , E. , Walker , R. L. , Wangsa , D. , Jauho , A. , Meltzer , P. S. and Ried , T.Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas . Am. J. Pathol. , 154 , 525 – 536 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Tanner , M. M. , Tirkkonen , M. , Kallioniemi , A. , Holli , K. , Collins , C. , Kowbel , D. , Gray , J. W. , Kallioniemi , O. P. and Isola , J.Amplification of chromosomal region 20q13 in invasive breast cancer: prognostic implications . Clin. Cancer Res. , 1 , 1455 – 1461 ( 1995. ). [PubMed] [Google Scholar]
  • 10. ) Korn , W. M. , Yasutake , T. , Kuo , W. L. , Warren , R. S. , Collins , C. , Tomita , M. , Gray , J. and Waldman , F. M.Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization . Genes Chromosom. Cancer , 25 , 82 – 90 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Tanner , M. M. , Grenman , S. , Koul , A. , Johannsson , O. , Meltzer , P. , Pejovic , T. , Borg , A. and Isola , J. J.Independent amplification and frequent co‐amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer . Cancer Res. , 56 , 3441 – 3445 ( 1996. ). [PubMed] [Google Scholar]
  • 12. ) Pinkel , D. , Segraves , R. , Sudar , D. , Clark , S. , Poole , L , Kowbel , D. , Collins , C. , Kuo , W. L. , Chen , C. , Zhai , Y. , Dairkee , S. H. , Ljung , B. M. , Gray , J. W. and Albertson , D. G.High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays . Nat. Genet. , 20 , 207 – 211 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Saito , M. , Helin , K. , Valentine , M. B. , Griffith , B. B. , Willman , C. L. , Harlow , E. and Look , A. T.Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia . Genomics , 25 , 130 – 138 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Guan , X. Y. , Xu , J. , Anzick , S. L. , Zhang , H. , Trent , J. M. and Meltzer , P. S.Hybrid selection of transcribed sequences from microdissected DNA: isolation of genes within amplified region at 20q11‐q13.2 in breast cancer . Cancer Res. , 56 , 3446 – 3450 ( 1996. ). [PubMed] [Google Scholar]
  • 15. ) Anzick , S. L. , Kononen , J. , Walker , R. L. , Azorsa , D. O. , Tanner , M. M. , Guan , X. Y. , Sauter , G. , Kallioniemi , O. P. , Trent , J. M. and Meltzer , P. S.AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer . Science , 277 , 965 – 968 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Sen , S. , Zhou , H. and White , R. A.A putative serine/ threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines . Oncogene , 14 , 2195 – 2200 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Collins , C. , Rommens , J. M. , Kowbel , D. , Godfrey , T. , Tanner , M. , Hwang , S. I. , Polikoff , D. , Nonet , G. , Cochran , J. , Myambo , K. , Jay , K. E. , Froula , J. , Cloutier , T. , Kuo , W. L. , Yaswen , P. , Dairkee , S. , Giovanola , J. , Hutchinson , G. B. , Isola , J. , Kallioniemi , O. P. , Palazzolo , M. , Martin , C. , Ericsson , C. , Pinkel , D. , Albertson , D. , Li , W. B. and Gray , J. W.Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma . Proc. Nad. Acad. Sci. USA , 95 , 8703 – 8708 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. ) Imoto , I. , Pimkhaokham , A. , Watanabe , T. , Saito‐Ohara , F. , Soeda , E. and Inazawa , J.Amplification and overexpression of TGIF2, a novel homeobox gene of the TALE superclass, in ovarian cancer cell lines . Biochem. Biophys. Res. Commun. , 276 , 264 – 270 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Tanner , M. M. , Grenman , S. , Koul , A. , Johannsson , O. , Meltzer , P. , Pejovic , T. , Borg , A. and Isola , J. J.Frequent amplification of chromosomal region 20q12‐q13 in ovarian cancer . Clin. Cancer Res. , 6 , 1833 – 1839 ( 2000. ). [PubMed] [Google Scholar]
  • 20. ) Collins , C. , Volik , S. , Kowbel , D. , Ginzinger , D. , Ylstra , B. , Cloutier , T. , Hawkins , T. , Predki , P. , Martin , C. , Wernick , M. , Kuo , W. L. , Alberts , A. and Gray , J. W.Comprehensive genome sequence analysis of a breast cancer amplicon . Genome Res. , 11 , 1034 – 1042 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. ) Imoto , I. , Pimkhaokham , A. , Fukuda , Y. , Yang , Z. Q. , Shimada , Y. , Nomura , N. , Hirai , H. , Imamura , M. and Inazawa , J.SNO is a probable target for gene amplification at 3q26 in squamous‐cell carcinomas of the esophagus . Biochem. Biophys. Res. Commun. , 286 , 559 – 565 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Imoto , I. , Yang , Z. Q. , Pimkhaokham , A. , Tsuda , H. , Shimada , Y. , Imamura , M. , Ohki , M. and Inazawa , J.Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas . Cancer Res. , 61 , 6629 – 6634 ( 2001. ). [PubMed] [Google Scholar]
  • 23. ) Inazawa , J. , Saito , H. , Ariyama , T. , Abe , T. and Nakamura , Y.High‐resolution cytogenetic mapping of 342 new cosmid markers including 43 RFLP markers on human chromosome 17 by fluorescence in situ hybridization . Genomics , 17 , 153 – 162 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Bassi , C. , Magnani , I. , Sacchi , N. , Saccone , S. , Ventura , A. , Rocchi , M. , Marozzi , A. , Ginelli , E. and Meneveri , R.Molecular structure and evolution of DNA sequences located at the alpha satellite boundary of chromosome 20 . Gene , 256 , 43 – 50 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Wittwer , C. T. , Herrmann , M. G. , Moss , A. A. and Rasmussen , R. P.Continuous fluorescence monitoring of rapid cycle DNA amplification . Biotechniques , 22 , 130 – 138 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Goff , L. K. , Neat , M. J. , Crawley , C. R. , Jones , L. , Jones , E. , Lister , T. A. and Gupta , R. K.The use of real‐time quantitative polymerase chain reaction and comparative genomic hybridization to identify amplification of the REL gene in follicular lymphoma . Br. J. Haematol. , 111 , 618 – 625 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Yasui , K. , Arii , S. , Zhao , C. , Imoto , I. , Ueda , M. , Nagai , H. , Emi , M. and Inazawa , J.TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas . Hepatology , 35 , 1476 – 1484 ( 2002. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Barlund , M. , Monni , O. , Kononen , J. , Cornelison , R. , Torhorst , J. , Sauter , G. , Kallioniemi , O. P. and Kallioniemi , A.Multiple genes at 17q23 undergo amplification and overexpression in breast cancer . Cancer Res. , 60 , 5340 – 5344 ( 2000. ). [PubMed] [Google Scholar]
  • 29. ) Wu , G. J. , Sinclair , C. S. , Paape , J. , Ingle , J. N. , Roche , P. C. , James , C. D. and Couch , F. J.17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes . Cancer Res. , 60 , 5371 – 5375 ( 2000. ). [PubMed] [Google Scholar]
  • 30. ) Monni , O. , Barlund , M. , Mousses , S. , Kononen , J. , Sauter , G. , Heiskanen , M. , Paavola , P. , Avela , K. , Chen , Y. , Bittner , M. L. and Kallioniemi , A.Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer . Proc. Natl. Acad. Sci. USA , 98 , 5711 – 5716 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. ) Wu , G. , Sinclair , C. , Hinson , S. , Ingle , J. N. , Roche , P. C. and Couch , F. J.Structural analysis of the 17q22–23 amplicon identifies several independent targets of amplification in breast cancer cell lines and tumors . Cancer Res. , 61 , 4951 – 4955 ( 2001. ). [PubMed] [Google Scholar]
  • 32. ) Racz , A. , Brass , N. , Heckel , D. , Pahl , S. , Remberger , K. and Meese , E.Expression analysis of genes at 3q26‐q27 involved in frequent amplification in squamous cell lung carcinoma . Eur. J. Cancer , 35 , 641 – 646 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Saltier , H. P. , Lensch , R. , Rohde , V. , Zimmer , E. , Mese , E. , Bonkhoff , H. , Retz , M. , Zwergel , T. , Bex , A. , Stoeckle , M. and Wullich , B.Novel amplification unit at chromosome 3q25‐q27 in human prostate cancer . Prostate , 45 , 207 – 215 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Redon , R. , Muller , D. , Caulee , K. , Wanherdrick , K. , Abecassis , J. and du Manoir , S.A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26‐qter gains . Cancer Res. , 61 , 4122 – 4129 ( 2001. ). [PubMed] [Google Scholar]
  • 35. ) Platzer , P. , Upender , M. B. , Wilson , K. , Willis , J. , Lutterbaugh , J. , Nosrati , A. , Willson , J. K. V. , Mack , D. , Ried , T. and Markowitz , S.Silence of chromosomal amplifications in colon cancer . Cancer Res. , 62 , 1134 – 1138 ( 2002. ). [PubMed] [Google Scholar]
  • 36. ) Fujii , T. , Dracheva , T. , Player , A. , Chacko , S. , Clifford , R. , Strausberg , R. L. , Buetow , K. , Azumi , N. , Travis , W. D. and Jen , J.A preliminary transcriptome map of non‐small cell lung cancer . Cancer Res. , 62 , 3340 – 3346 ( 2002. ). [PubMed] [Google Scholar]
  • 37. ) Sato , K. , Qian , J. , Slezak , J. M. , Lieber , M. M. , Bostwick , D. G. , Bergstralh , E. J. and Jenkins , R. B.Clinical significance of alterations of chromosome 8 in high‐grade, advanced, nonmetastatic prostate carcinoma . J. Natl. Cancer. Inst , 91 , 1574 – 1580 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 38. ) Hidaka , S. , Yasutake , T. , Takeshita , H. , Kondo , M. , Tsuji , T. , Nanashima , A. , Sawai , T. , Yamaguchi , H. , Nakagoe , T. , Ayabe , H. and Tagawa , Y.Differences in 20q13.2 copy number between colorectal cancers with and without liver metastasis . Clin. Cancer Res. , 6 , 2712 – 2717 ( 2000. ). [PubMed] [Google Scholar]
  • 39. ) Nonet , G. H. , Stampfer , M. R. , Chin , K. , Gray , J. W. , Collins , C. C. and Yaswen , P.The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells . Cancer Res. , 61 , 1250 – 1254 ( 2001. ). [PubMed] [Google Scholar]
  • 40. ) Melhuish , T. A. , Gallo , C. M. and Wotton , D.TGIF2 interacts with histone deacetylase 1 and represses transcription . J. Biol. Chem. , 276 , 32109 – 32114 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 41. ) Wiener , J. R. , Kerns , B. J. , Harvey , E. L. , Conaway , M. R. , Iglehart , J. D. , Berchuck , A. and Bast , R. C. , Jr.Overex‐pression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c‐erbB‐2 protein expression . J. Natl. Cancer Inst. , 86 , 372 – 378 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 42. ) Wiener , J. R. , Hurteau , J. A. , Kerns , B. J. , Whitaker , R. S. , Conaway , M. R. , Berchuck , A. and Bast , R. C. , Jr.Overex‐pression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas . Am. J. Obstet. Gynecol. , 170 , 1177 – 1183 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 43. ) Sakakura , C. , Hagiwara , A. , Yasuoka , R. , Fujita , Y. , Nakanishi , M. , Masuda , K. , Kimura , A. , Nakamura , Y. , Inazawa , J. , Abe , T. and Yamagishi , H.Amplification and over‐expression of the AIB1 nuclear receptor co‐activator gene in primary gastric cancers . Int. J. Cancer , 89 , 217 – 223 ( 2000. ). [PubMed] [Google Scholar]
  • 44. ) Zhou , H. , Kuang , J. , Zhong , L. , Kuo , W. L. , Gray , J. W. , Sahin , A. , Brinkley , B. R. and Sen , S.Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation . Nat. Genet. , 20 , 189 – 193 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 45. ) Sakakura , C. , Hagiwara , A. , Yasuoka , R. , Fujita , Y. , Nakanishi , M. , Masuda , K. , Shimomura , K. , Nakamura , Y. , Inazawa , J. , Abe , T. and Yamagishi , H.Tumour‐amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation . Br. J. Cancer , 84 , 824 – 831 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES