Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Nov;93(11):1195–1200. doi: 10.1111/j.1349-7006.2002.tb01223.x

Reduced Expression and Promoter Methylation p16 Gene in Epstein‐Barr Virus‐associated Gastric Carcinoma

Toshiya Osawa 1,2, Ja‐Mun Chong 1, Makoto Sudo 1,2, Kazuya Sakuma 1,3, Hiroshi Uozaki 1, Junji Shibahara 1, Hideo Nagai 3, Nobuaki Funata 4, Masashi Fukayama 1,
PMCID: PMC5926896  PMID: 12460459

Abstract

Epstein‐Barr virus (EBV)‐associated gastric carcinoma (EBVaGC) is a unique type of gastric carcinoma (GC), which is considered to develop in a different pathway from EBV‐negative GC. To evaluate a possible role of p16, an inhibitor of G1/S transition of the cell cycle, in the carcinogenesis of EBVaGC, pl6‐immunohistochemistry and methylation‐specific PCR analysis (MSP) were applied to surgically resected gastric carcinomas. When the percentage of p16‐positive cells in more than 1000 carcinoma cells was expressed as p16 labeling index (p16‐LI), it ranged from 2.5 to 88.1 (mean 42.9±24.4) in 70 gastric carcinomas. EBVaGC showed significantly lower values (n=15, 26.1±22.1) than EBV‐negative GC (n=55, 47.5±23.2) (P=0.0036). Fresh frozen tissues of 55 gastric carcinomas (16 EBVaGC and 39 EBV‐negative GC) were further subjected to MSP, to evaluate abnormal methylation of the promoter region of the p16 gene. The frequency of methylation was significantly higher in EBVaGC (14/16) than in EBV‐negative GC (9/39) (<0.0001). The methylation‐positive carcinomas showed significantly lower p16‐LI (35.9±21.6) than the unmethylated ones (55.2±22.7) (P=0.0014). Thus, a marked decrease of p16 expression, caused by the aberrant methylation of the p16 gene promoter, is closely associated with the development of EBVaGC.

Keywords: Epstein‐Barr virus, Gastric carcinoma, p16, Methylation

Full Text

The Full Text of this article is available as a PDF (407.1 KB).

REFERENCES

  • 1. ) Fukayama , M. , Chong , J.‐M. and Uozaki , H.Pathology and molecular pathology of Epstein‐Barr virus‐associated gastric carcinoma . In “ Epstein‐Barr Virus and Human Cancer ,” ed. Takada K. , Current Topics in Microbiology and Immunology No. 258, pp. 91 – 102 ( 2001. ). Springer; , Berlin . [DOI] [PubMed] [Google Scholar]
  • 2. ) Fukayama , M. , Chong , J.‐M. and Kaizaki , Y.Epstein‐Barr virus and gastric carcinoma . Gastric Cancer , 1 , 104 – 114 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Fukayama , M. , Hayashi , Y. , Iwasaki , Y. , Chong , J.‐M. , Ooba , T. , Takizawa , T. , Koike , M. , Mizutani , S. , Miyaki , M. and Hirai , K.Epstein‐Barr virus‐associated gastric carcinoma and Epstein‐Barr virus infection of the stomach . Lab. Invest. , 71 , 73 – 81 ( 1994. ). [PubMed] [Google Scholar]
  • 4. ) Kaizaki , Y. , Sakurai , S. , Chong , J.‐M. and Fukayama , M.Atrophic gastritis, Epstein‐Barr virus infection, and Epstein‐Barr virus‐associated gastric carcinoma . Gastric Cancer , 2 , 101 – 108 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Chong , J.‐M. , Fukayama , M. , Hayashi , Y. , Funata , N. , Takizawa , T. , Koike , M. , Muraoka , M. , Kikuchi‐Yanoshita , R. , Miyaki , M. and Mizuno , S.Expression of CD44 variants in gastric carcinoma with or without Epstein‐Barr virus . Int. J. Cancer , 74 , 450 – 454 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Chong , J.‐M. , Sakuma , K. , Sudo , M. , Osawa , T. , Ohara , E. , Uozaki , H. , Shibahara , J. , Kuroiwa , K. , Tominaga , S. , Hippo , Y. , Aburatani , H. , Funata , N. and Fukayama , M.Interleukin 1 β expression in human gastric carcinoma with Epstein‐Barr virus infection . J. Virol. , 76 , 6825 – 6831 ( 2002. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. ) Imai , S. , Koizumi , S. , Sugiura , M. , Tokunaga , M. , Uemura , Y. , Yamamoto , N. , Tanaka , S. , Sato , E. and Osato , T.Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein‐Barr virus latent infection protein . Proc. Natl. Acad. Sci. USA , 91 , 9131 – 9135 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. ) Chong , J.‐M. , Fukayama , M. , Hayashi , Y. , Takizawa , T. , Koike , M. , Konishi , M. , Kikuchi‐Yanoshita , R. and Miyaki , M.Microsatellite instability in the progression of gastric carcinoma . Cancer Res. , 54 , 4595 – 4597 ( 1994. ). [PubMed] [Google Scholar]
  • 9. ) Schneider , B. G. , Gulley , M. L. , Eagan , P. , Bravo , J. C. , Mera , R. and Geradts , J.Loss of p16/CDKN2A tumor suppressor protein in gastric adenocarcinoma is associated with Epstein‐Barr virus and anatomic location in the body of the stomach . Hum. Pathol , 31 , 45 – 50 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Toyota , M. , Ahuja , N. , Suzuki , H. , Itoh , F. , Ohe‐Toyota , M. , Imai , K. , Baylin , S. B. and Issa , J. P.Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype . Cancer Res. , 59 , 5438 – 5442 ( 1999. ). [PubMed] [Google Scholar]
  • 11. ) Shim , Y. H. , Kang , G. H. and Ro , J. Y.Correlation of p16 hypermethylation with the p16 protein loss in sporadic gastric carcinomas . Lab. Invest. , 80 , 689 – 695 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Song , H. S. , Jong , H. S. , Choi , H. H. , Kang , S. H. , Ryu , M. H. , Kim , N. K. , Kim , W. H. and Bang , Y. J.Methylation of specific CpG sites in the promoter region could significantly down‐regulate p16(INK4a) expression in gastric adenocarcinoma . Int. J. Cancer , 87 , 236 – 240 ( 2000. ). [PubMed] [Google Scholar]
  • 13. ) Jang , T. J. , Kim , D. I. , Shin , Y. M. , Chang , H. K. and Yang , C. H.P16INA4A promoter hypermethylation of non‐tumorous tissue adjacent to gastric cancer is correlated with glandular atrophy and chronic inflammation . Int. J. Cancer , 93 , 629 – 634 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Tsujie , M. , Yamamoto , H. , Tomita , N. , Sugita , Y. , Ohue , M. , Sakita , L , Tamaki , Y. , Sekimoto , M. , Doki , Y. , Inoue , M. , Matsuura , N. , Monden , T. , Shiozaki , H. and Monden , M.Expression of tumor suppressor gene p16(INK4) products in primary gastric cancer . Oncology , 58 , 126 – 136 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Kang , G. H. , Lee , S. , Kim , W. H. , Lee , H. W. , Kim , J. C. , Rhyu , M.‐G. and Ro , J. Y.Epstein‐Barr virus‐positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype‐positive gastric carcinoma . Am. J. Pathol. , 160 , 787 – 794 ( 2002. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. ) Japanese Gastric Cancer Association . Japanese classification of gastric carcinoma—2nd English edition . Gastric Cancer , 1 , 10 – 24 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Lauren , R.The two histological main types of gastric carcinoma: diffuse and so‐called intestinal‐type carcinoma . Acta Pathol. Microbiol. Scand. , 64 , 31 – 49 ( 1965. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Hermans , J. G. , Graff , J. R. , Myöhänen , S. , Nelkin , B. D. and Baylin , S. B.Methylation‐specific PCR: a novel PCR assay for methylation status of CpG islands . Proc. Natl. Acad. Sci. USA , 93 , 9821 – 9826 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. ) Kamb , A.Cell‐cycle regulators and cancer . Trends Genet. , 11 , 136 – 140 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Bender , C. M. , Pao , M. M. and Jones , P. A.Inhibition of DNA methylation by 5‐aza‐2′‐deoxycytidine suppresses the growth of human tumor cell lines . Cancer Res. , 58 , 95 – 101 ( 1998. ). [PubMed] [Google Scholar]
  • 21. ) Merlo , A. , Herman , J. G. , Mao , L. , Lee , D. J. , Gabrielson , E. , Burger , P. C. , Baylin , S. B. and Sidransky , D.5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTSl in human cancers . Nat. Med. , 1 , 686 – 692 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Baylin , S. B. , Herman , J. G. , Graff , J. R. , Vertino , P. M. and Issa , J. P.Alterations in DNA methylation: a fundamental aspect of neoplasia . Adv. Cancer Res. , 72 , 141 – 196 ( 1998. ). [PubMed] [Google Scholar]
  • 23. ) Yoder , J. A. , Walsh , C. and Bestor , T. H.Cytosine methylation and the ecology of intragenomic parasites . Trends Genet. , 13 , 335 – 340 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Allday , M. J. , Kundu , D. , Finerty , S. and Griffin , B. E.CpG methylation of viral DNA in EBV‐associated tumours . Int. J. Cancer , 45 , 1125 – 1130 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Robertson , K. D. and Ambinder , R. F.Mapping promoter regions that are hypersensitive to methylation‐mediated inhibition of transcription: application of the methylation cassette assay to the Epstein‐Barr virus major latency promoter . J. Virol. , 71 , 6445 – 6454 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Salamon , D. , Takacs , M. , Rjvari , D. , Uhlig , J. , Wolf , H. , Minarovits , J. and Niller , H. H.Protein‐DNA binding and CpG methylation at nucleotide resolution of latency‐associated promoters Qp, Cp, and LMP1p of Epstein‐Barr virus . J. Virol. , 75 , 2584 – 2596 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. ) Bednarik , D. P. , Cook , J. A. and Pitha , P. M.Inactivation of HIV LTR by DNA CpG methylation . EMBO J. , 1 , 1157 – 1164 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. ) Saggioro , D. , Panozzo , M. and Chieco‐Bianchi , L.Human T‐lymphotropic virus 1 transcriptional regulation by methylation . Cancer Res. , 50 , 4968 – 4973 ( 1990. ). [PubMed] [Google Scholar]
  • 29. ) Saggioro , D. , Forino , M. and Chieco‐Bianchi , L.Transcriptional block of HTLV‐1 LTR by sequence‐specific methylation . Virology , 182 , 68 – 75 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Gratama , J. W. and Ernberg , I.Molecular epidemiology of Epstein‐Barr virus infection . Adv. Cancer Res. , 67 , 197 – 255 ( 1995. ). [PubMed] [Google Scholar]
  • 31. ) Mikovits , J. A. , Young , H. A. , Vertino , P. , Issa , J.‐P. J. , Pitha , P. M. , Turcoski‐Corrales , S. , Taub , D. D. , Petrow , C. L. , Baylin , S. B. and Ruscetti , F. W.Infection with human immunodeficiency virus type 1 upregulates DNA methyl‐transferase, resulting in de novo methylation of the gamma interferon (IFN‐γ) promoter and subsequent downregulation of IFN‐γ production . Mol. Cell. Biol. , 18 , 5166 – 5177 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES