Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Dec;93(12):1317–1326. doi: 10.1111/j.1349-7006.2002.tb01240.x

Differential Mechanisms of Constitutive Akt/PKB Activation and Its Influence on Gene Expression in Pancreatic Cancer Cells

Joe Matsumoto 1,2,, Masako Kaneda 1,2,, Mitsuhiro Tada 1,, Jun‐ichi Hamada 1, Shunichi Okushiba 2, Satoshi Kondo 2, Hiroyuki Katoh 2, Tetsuya Moriuchi 1
PMCID: PMC5926936  PMID: 12495471

Abstract

Activated Akt/protein kinase B transmits oncogenic signals leading to inhibition of apoptosis, cellular proliferation, and tolerance to hypoxia. Presently, mutational inactivation of PTEN and activation of Ras are considered to be the major causes of Akt activation. Here we report differential mechanisms of constitutive Akt activation in 4 human pancreatic cancer cell lines (KMP‐3, KMP‐4, PCI‐66, and PCI‐68). These 4 cell lines displayed phosphorylation and functional activation of Akt both in the presence and absence of serum, while three control cell lines (PCI‐79, KMP‐8, and PSN‐1) did so only in the presence of serum in culture. All the 7 cell lines harbored K‐Ras activated by mutations at codon 12 resulting in MAP kinase kinase (MEK1/2) phosphorylation, and all except one (KMP‐8) had p53 mutations, indicating that these mutations are not sufficient for constitutive Akt activation. KMP‐3 and KMP‐4 had lost PTEN function owing to loss of expression or a mutation, but PCI‐66 and PCI‐68 retained wild‐type PTEN. Phosphorylation of Akt was inhibited by the phosphatidylinositol‐3‐kinase (PI3K) inhibitor LY294002 and the tyrosine kinase inhibitor genistein in KMP‐3 and KMP‐4 cells, indicating that upstream signals are required for Akt activation in these two cell lines. In contrast, neither LY294002 nor genistein inhibited Akt activation in PCI‐66 and PCI‐68 cells, indicating the involvement of another unknown mechanism of Akt activation independent of PI3K‐mediated signaling to Akt. Irrespective of the differential mechanisms, the 4 cell lines showed similar mRNA expression patterns of 49 genes assessed by cDNA array as compared to the 3 cell lines without Akt activation, suggesting that the mechanisms have the same consequences on the downstream signaling of the constitutive Akt activation.

Keywords: Pancreatic cancer, Akt/protein kinase B, Constitutive activation, K‐ras, PTEN

Full Text

The Full Text of this article is available as a PDF (425.9 KB).

REFERENCES

  • 1. ) Datta , S. R. , Dudek , H. , Tao , X. , Masters , S. , Fu , H. , Gotoh , Y. and Greenberg , M. E.Akt phosphorylation of BAD couples survival signals to the cell‐intrinsic death machinery . Cell , 91 , 231 – 241 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Romashkova , J. A. and Makarov , S. S.NF‐kappaB is a target of AKT in anti‐apoptotic PDGF signalling . Nature , 401 , 86 – 90 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Brunei , A. , Bonni , A. , Zigmond , M. J. , Lin , M. Z. , Juo , P. , Hu , L. S. , Anderson , M. J. , Arden , K. C. , Blenis , J. and Greenberg , M. E.Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor . Cell , 96 , 857 – 868 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Cardone , M. H. , Roy , N. , Stennicke , H. R. , Salvesen , G. S. , Franke , T. F. , Stanbridge , E. , Frisch , S. and Reed , J. C.Regulation of cell death protease caspase‐9 by phosphorylation . Science , 282 , 1318 – 1321 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Cheng , J. Q. , Altomare , D. A. , Klein , M. A. , Lee , W. C. , Kruh , G. D. , Lissy , N. A. and Testa , J. R.Transforming activity and mitosis‐related expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis . Oncogene , 14 , 2793 – 2801 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Medema , R. H. , Kops , G. J. , Bos , J. L. and Burgering , B. M.AFX‐like Forkhead transcription factors mediate cell‐cycle regulation by Ras and PKB through p27kipl . Nature , 404 , 782 – 787 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Zhong , H. , Chiles , K. , Feldser , D. , Laughner , E. , Hanrahan , C. , Georgescu , M. M. , Simons , J. W. and Semenza , G. L.Modulation of hypoxia‐inducible factor lalpha expression by the epidermal growth factor/phosphatidylinositol 3‐kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics . Cancer Res. , 60 , 1541 – 1545 ( 2000. ). [PubMed] [Google Scholar]
  • 8. ) Stambolic , V. , Suzuki , A. , Delapompa , J. L. , Brothers , G. M. , Mirtsos , C. , Sasaki , T. , Ruland , J. , Penninger , J. M. , Siderovski , D. P. and Mak , T. W.Negative regulation of PKB/Akt‐dependent cell survival by the tumor suppressor PTEN . Cell , 95 , 29 – 39 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Otsu , M. , Hiles , L , Gout , L , Fry , M. J. , Ruiz‐Larrea , F. , Panayotou , G. , Thompson , A. , Dhand , R. , Hsuan , J. , Totty , N. , Courtneidge , S. and Waterfield , M.Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle‐T/pp60c‐src complexes, and PI3‐kinase . Cell , 65 , 91 – 104 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Rodriguez‐Viciana , P. , Warne , P. H. , Dhand , R. , Vanhaesebroeck , B. , Gout , I. , Fry , M. J. , Waterfield , M. D. and Downward , J.Phosphatidylinositol‐3‐OH kinase as a direct target of Ras . Nature , 370 , 527 – 532 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Myers , M. P. , Pass , I. , Batty , I. H. , Van der Kaay , J. , Stolarov , J. P. , Hemmings , B. A. , Wigler , M. H. , Downes , C. P. and Tonks , N. K.The lipid phosphatase activity of PTEN is critical for its tumor suppressor function . Proc. Natl. Acad. Sci. USA , 95 , 13513 – 13518 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. ) Haas‐Kogan , D. , Shalev , N. , Wong , M. , Mills , G. , Yount , G. and Stokoe , D.Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC . Curr. Biol. , 8 , 1195 – 1198 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Zhang , C. L. , Tada , M. , Kobayashi , H. , Nozaki , M. , Moriuchi , T. and Abe , H.Detection of PTEN nonsense mutation and psiPTEN expression in central nervous system high‐grade astrocytic tumors by a yeast‐based stop codon assay . Oncogene , 19 , 4346 – 4353 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Tashiro , H. , Blazes , M. S. , Wu , R. , Cho , K. R. , Bose , S. , Wang , S. I. , Li , J. , Parsons , R. and Ellenson , L. H.Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies . Cancer Res. , 57 , 3935 – 3940 ( 1997. ). [PubMed] [Google Scholar]
  • 15. ) Tsao , H. , Zhang , X. , Fowlkes , K. and Haluska , F. G.Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines . Cancer Res. , 60 , 1800 – 1804 ( 2000. ). [PubMed] [Google Scholar]
  • 16. ) Dahia , P. L. , Marsh , D. J. , Zheng , Z. , Zedenius , J. , Komminoth , P. , Frisk , T. , Wallin , G. , Parsons , R. , Longy , M. , Larsson , C. and Eng , C.Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors . Cancer Res. , 57 , 4710 – 4713 ( 1997. ). [PubMed] [Google Scholar]
  • 17. ) Ruggeri , B. A. , Huang , L. , Wood , M. , Cheng , J. Q. and Testa , J. R.Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas . Mol. Carcinog. , 21 , 81 – 86 ( 1998. ). [PubMed] [Google Scholar]
  • 18. ) Hu , Q. , Klippel , A. , Muslin , A. J. , Fantl , W. J. and Williams , L. T.Ras‐dependent induction of cellular responses by constitutively active phosphatidylinositol‐3 kinase . Science , 268 , 100 – 102 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Marte , B. M. , Rodriguez‐Viciana , P. , Wennstrom , S. , Warne , P. H. and Downward , J.R‐Ras can activate the phosphoinositide 3‐kinase but not the MAP kinase arm of the Ras effector pathways . Curr. Biol. , 7 , 63 – 70 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Tolias , K. F. , Cantley , L. C. and Carpenter , C. L.Rho family GTPases bind to phosphoinositide kinases . J. Biol. Chem. , 270 , 17656 – 17659 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Lee , S. W. , Fang , L. , Igarashi , M. , Ouchi , T. , Lu , K. P. and Aaronson , S. A.Sustained activation of Ras/Raf/mitogen‐activated protein kinase cascade by the tumor suppressor p53 . Proc. Natl. Acad. Sci. USA , 97 , 8302 – 8305 ( 2000. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. ) Fang , L. , Li , G. , Liu , G. , Lee , S. W. and Aaronson , S. A.p53 induction of heparin‐binding EGF‐like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades . EMBO J. , 20 , 1931 – 1939 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. ) Flaman , J.‐M. , Frebourg , T. , Moreau , V. , Charbonnier , F. , Martin , C. , Chappuis , P. , Sappino , A.‐P. , Limacher , J.‐M. , Brons , L. , Benhattar , J. , Tada , M. , Van Meir , E. G. , Estreicher , A. and Iggo , R. D.A simple p53 functional assay for screening cell lines, blood, and tumors . Proc. Natl. Acad. Sci. USA , 92 , 3963 – 3967 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. ) Kashiwazaki , H. , Tonoki , H. , Tada , M. , Chiba , L , Shindoh , M. , Totsuka , Y. , Iggo , R. and Moriuchi , T.High frequency of p53 mutations in human oral epithelial dysplasia and primary squamous cell carcinoma detected by yeast functional assay . Oncogene , 15 , 2667 – 2674 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Cheng , J. Q. , Ruggeri , B. , Klein , W. M. , Sonoda , G. , Altomare , D. A. , Watson , D. K. and Testa , J. R.Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA . Proc. Natl. Acad. Sci. USA , 93 , 3636 – 3641 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Gire , V. , Marshall , C. and Wynford‐Thomas , D.PI‐3‐kinase is an essential anti‐apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS . Oncogene , 19 , 2269 – 2276 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Moodie , S. A. and Wolfman , A.The 3Rs of life: Ras, Raf and growth regulation . Trends Genet , 10 , 44 – 48 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Vlahos , C. J. , Matter , W. F. , Hui , K. Y. and Brown , R. F.A specific inhibitor of phosphatidylinositol 3‐kinase, 2‐(4‐morpholinyl)‐8‐phenyl‐4H‐l‐benzopyran‐4‐one (LY294002) . J. Biol. Chem. , 269 , 5241 – 5248 ( 1994. ). [PubMed] [Google Scholar]
  • 29. ) Lemoine , N. R. , Hughes , C. M. , Barton , C. M. , Poulsom , R. , Jeffery , R. E. , Kloppel , G. , Hall , P. A. and Gullick , W. J.The epidermal growth factor receptor in human pancreatic cancer . J. Pathol. , 166 , 7 – 12 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Barton , C. M. , Hall , P. A. , Hughes , C. M. , Gullick , W. J. and Lemoine , N. R.Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer . J. Pathol. , 163 , 111 – 116 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Akiyama , T. , Ishida , J. , Nakagawa , S. , Ogawara , H. , Watanabe , S. , Itoh , N. , Shibuya , M. and Fukami , Y.Genistein, a specific inhibitor of tyrosine‐specific protein kinases . J. Biol. Chem. , 262 , 5592 – 5595 ( 1987. ). [PubMed] [Google Scholar]
  • 32. ) Alessi , D. R. , Andjelkovic , M. , Caudwell , B. , Cron , P. , Morrice , N. , Cohen , P. and Hemmings , B. A.Mechanism of activation of protein kinase B by insulin and IGF‐1 . EMBO J. , 15 , 6541 – 6551 ( 1996. ). [PMC free article] [PubMed] [Google Scholar]
  • 33. ) Bellacosa , A. , Chan , T. O. , Ahmed , N. N. , Datta , K. , Malstrom , S. , Stokoe , D. , McCormick , F. , Feng , J. and Tsichlis , P.Akt activation by growth factors is a multiple‐step process: the role of the PH domain . Oncogene , 17 , 313 – 325 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Yip‐Schneider , M. T. , Lin , A. and Marshall , M. S.Pancreatic tumor cells with mutant K‐ras suppress ERK activity by MEK‐dependent induction of MAP kinase phosphatase‐2 . Biochem. Biophys. Res. Commun. , 280 , 992 – 997 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Holland , E. C. , Celestino , J. , Dai , C. , Schaefer , L. , Sawaya , R. E. and Fuller , G. N.Combined activation of ras and akt in neural progenitors induces glioblastoma formation in mice . Nat. Genet. , 25 , 55 – 57 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) Tolkacheva , T. and Chan , A. M.Inhibition of H‐Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene . Oncogene , 19 , 680 – 689 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 37. ) Yan , J. , Roy , S. , Apolloni , A. , Lane , A. and Hancock , J. F.Ras isoforms vary in their ability to activate Raf‐1 and phosphoinositide 3‐kinase . J. Biol. Chem. , 273 , 24052 – 24056 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 38. ) Bos , J. L.ras oncogenes in human cancer: a review . Cancer Res. , 49 , 4682 – 4689 ( 1989. ). [PubMed] [Google Scholar]
  • 39. ) Przybojewska , B. , Jagiello , A. and Jalmuzna , P.H‐RAS, K‐RAS, and N‐RAS gene activation in human bladder cancers . Cancer Genet. Cytogenet. , 121 , 73 – 77 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 40. ) Nguyen , K. T. , Wang , W. J. , Chan , J. L. and Wang , L. H.Differential requirements of the MAP kinase and PIS kinase signaling pathways in Src‐ versus insulin and IGF‐1 receptors‐induced growth and transformation of rat intestinal epithelial cells . Oncogene , 19 , 5385 – 5397 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 41. ) Penuel , E. and Martin , G. S.Transformation by v‐Src: Ras‐MAPK and PI3K‐mTOR mediate parallel pathways . Mol. Biol. Cell , 10 , 1693 – 1703 ( 1999. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. ) Zimmermann , S. and Moelling , K.Phosphorylation and regulation of Raf by Akt (protein kinase B) . Science , 286 , 1741 – 1744 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 43. ) Kauffmann‐Zeh , A. , Rodriguez‐Viciana , P. , Ulrich , E. , Gilbert , C. , Coffer , P. , Downward , J. and Evan , G.Suppression of c‐Myc‐induced apoptosis by Ras signaling through PI(3)K and PKB . Nature , 385 , 544 – 548 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 44. ) Wick , M. J. , Dong , L. Q. , Riojas , R. A. , Ramos , F. J. and Liu , F.Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3‐phosphoinositide‐dependent protein kinase‐1 . J. Biol. Chem. , 275 , 40400 – 40406 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 45. ) Shao , J. , Sheng , H. and DuBois , R. N.Peroxisome proliferator‐activated receptors modulate K‐Ras‐mediated transformation of intestinal epithelial cells . Cancer Res. , 62 , 3282 – 3288 ( 2002. ). [PubMed] [Google Scholar]
  • 46. ) Hock , B. , Bohme , B. , Karn , T. , Yamamoto , T. , Kaibuchi , K. , Holtrich , U. , Holland , S. , Pawson , T. , Rubsamen‐Waigmann , H. and Strebhardt , K.PDZ‐domain‐mediated interaction of the Eph‐related receptor tyrosine kinase EphB3 and the ras‐binding protein AF6 depends on the kinase activity of the receptor . Proc. Natl. Acad. Sci. USA , 95 , 9779 – 9784 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. ) Clark , G. J. , Kinch , M. S. , Rogers‐Graham , K. , Sebti , S. M. , Hamilton , A. D. and Der , C. J.The Ras‐related protein Rheb is farnesylated and antagonizes Ras signaling and transformation . J. Biol. Chem. , 272 , 10608 – 10615 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 48. ) Du , K. and Montminy , M.CREB is a regulatory target for the protein kinase Akt/PKB . J. Biol. Chem. , 273 , 32377 – 32379 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 49. ) Miknyoczki , S. J. , Lang , D. , Huang , L. , Klein‐Szanto , A. J. , Dionne , C. A. and Ruggeri , B. A.Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior . Int. J. Cancer , 81 , 417 – 427 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 50. ) Qian , X. , Esteban , L. , Vass , W. C. , Upadhyaya , C. , Papageorge , A. G. , Yienger , K. , Ward , J. M. , Lowy , D. R. and Santos , E.The Sos1 and Sos2 Ras‐specific exchange factors: differences in placental expression and signaling properties . EMBO J. , 19 , 642 – 654 ( 2000. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. ) de Kok , A. J. , Sips , H. , Chang , G. T. and Verheijen , J. H.Enhanced plasminogen activator production of Syrian hamster embryo cells transformed by chemicals or the c‐Ha‐ras oncogene: type of plasminogen activators involved and their contribution to the transformed phenotype . Carcinogenesis , 10 , 1155 – 1161 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 52. ) Diaz‐Meco , M. T. , Quinones , S. , Municio , M. M. , Sanz , L. , Bernal , D. , Cabrero , E. , Saus , J. and Moscat , J.Protein kinase C‐independent expression of stromelysin by platelet‐derived growth factor, ras oncogene, and phosphatidylcholine‐hydrolyzing phospholipase C . J. Biol. Chem. , 266 , 22597 – 22602 ( 1991. ). [PubMed] [Google Scholar]
  • 53. ) Gum , R. , Lengyel , E. , Juarez , J. , Chen , J. H. , Sato , H. , Seiki , M. and Boyd , D.Stimulation of 92‐kDa gelatinase B promoter activity by ras is mitogen‐activated protein kinase kinase 1‐independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP‐1 sequences . J. Biol. Chem. , 271 , 10672 – 10680 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 54. ) Hurta , R. A. and Wright , J. A.Alterations in the cyclic AMP signal transduction pathway regulating ribonucleotide reductase gene expression in malignant H‐ras transformed cell lines . J. Cell. Physiol. , 158 , 187 – 197 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 55. ) Futakawa , N. , Kimura , W. , Yamagata , S. , Zhao , B. , Ilsoo , H. , Inoue , T. , Sata , N. , Kawaguchi , Y. , Kubota , Y. and Muto , T.Significance of K‐ras mutation and CEA level in pancreatic juice in the diagnosis of pancreatic cancer . J. Hepatobiliary Pancreat. Surg. , 7 , 63 – 71 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 56. ) Sorio , C. , Baron , A. , Orlandini , S. , Zamboni , G. , Pederzoli , P. , Huebner , K. and Scarpa , A.The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers . Cancer Res. , 59 , 1308 – 1314 ( 1999. ). [PubMed] [Google Scholar]
  • 57. ) Mandriota , S. J. , Jussila , L. , Jeltsch , M. , Compagni , A. , Baetens , D. , Prevo , R. , Banerji , S. , Huarte , J. , Montesano , R. , Jackson , D. G. , Orci , L. , Alitalo , K. , Christofori , G. and Pepper , M. S.Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis . EMBO J. , 20 , 672 – 682 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. ) Shimoyama , S. , Gansauge , F. , Gansauge , S. , Widmaier , U. , Oohara , T. and Beger , H. G.Overexpression of intercellular adhesion molecule‐1 (ICAM‐1) in pancreatic adenocarcinoma in comparison with normal pancreas . Pancreas , 14 , 181 – 186 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 59. ) Kamohara , H. , Sakamoto , K. , Ishiko , T. , Mita , S. , Masuda , Y. , Abe , T. and Ogawa , M.Human carcinoma cell lines produce biologically active leukemia inhibitory factor (LIF) . Res. Commun. Mol. Pathol. Pharmacol. , 85 , 131 – 140 ( 1994. ). [PubMed] [Google Scholar]
  • 60. ) Ohba , Y. , Mochizuki , N. , Yamashita , S. , Chan , A. M. , Schrader , J. W. , Hattori , S. , Nagashima , K. and Matsuda , M.Regulatory proteins of R‐Ras, TC21/R‐Ras2, and M‐Ras/R‐Ras3 . J. Biol. Chem. , 275 , 20020 – 20026 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 61. ) Beguinot , L. , Werth , D. , Ito , S. , Richert , N. , Willingham , M. C. and Pastan , I.Functional studies on the EOF receptor with an antibody that recognizes the intracellular portion of the receptor . J. Biol. Chem. , 261 , 1801 – 1807 ( 1986. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES