Abstract
We have established variants of DLD‐1 human colon carcinoma and HT‐1080 human fibrosarcoma cells resistant to the new anticancer ribo‐nucleosides, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)‐cytosine (ECyd, TAS‐106) and 1‐(3‐C‐ethynyl‐p‐D‐ribo‐pentofuranosyl)uracil (EUrd). Both variants were shown to have decreased (3‐ to 24‐fold decrease) uridine‐cytidine kinase (UCK) activity, and exhibited cross‐resistance to EUrd and TAS‐106. Based on the IC50 values determined by chemosensitivity testing, a 41‐ to 1102‐fold resistance to TAS‐106 was observed in the resistant cells. TAS‐106 concentration‐dependently inhibited RNA synthesis, while its effect on DNA synthesis was negligible. The degree of resistance (14‐ to 3628‐fold resistance) calculated from the inhibition of RNA synthesis tended to be close to the degree of chemoresistance of tested cells to TAS‐106. The experiments on the intracellular metabolism of TAS‐106 in the parental cells revealed a rapid phosphorylation to its nucleotides, particularly the triphosphate (ECTP), its major active metabolite. The amount of TAS‐106 transported into the resistant cells was markedly reduced and the intracellular level of ECTP was decreased from 1/19 to below the limit of detection; however, the unmetabolized TAS‐106 as a percentage of the total metabolite level was high as compared with the parental cells. The ratio of the intracellular level of ECTP between parental and resistant cells tended to approximate to the degree of resistance calculated from the inhibitory effect on RNA synthesis. These results indicate that the TAS‐106 sensitivity of cells is correlated with the intracellular accumulation of ECTP, which may be affected by both the cellular membrane transport mechanism and UCK activity.
Keywords: TAS‐106, Anticancer ribo‐nucleoside, Resistance, Cellular membrane transport, Uridine‐cytidine kinase
Full Text
The Full Text of this article is available as a PDF (124.1 KB).
REFERENCES
- 1.Hattori , H. , Tanaka , M. , Fukushima , M. , Sasaki , T. and Matsuda , A.Nucleosides and nucleotides. 158. l‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil, and their nucleobase analogues as new potential multifunctional antitumor nucleo‐sides with a broad spectrum of activity . J. Med. Chem. , 39 , 5005 – 5011 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 2.Tabata , S. , Tanaka , M. , Matsuda , A. , Fukushima , M. and Sasaki , T.Antitumor effect of a novel multifunctional anti‐tumor nucleoside, 3′‐ethynylcytidine, on human cancers . Oncol. Rep. , 3 , 1029 – 1034 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 3.Shimamoto , Y. , Fujioka , A. , Kazuno , H. , Murakami , Y. , Ohshimo , H. , Kato , T. , Matsuda , A. , Sasaki , T. and Fukushima , M.Antitumor activity and pharmacokinetics of TAS‐106, l‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine . Jpn. J. Cancer Res. , 92 , 343 – 351 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Tabata , S. , Tanaka , M. , Endo , Y. , Obata , T. , Matsuda , A. and Sasaki , T.Anti‐tumor mechanisms of 3′‐ethynyluridine and 3′‐ethynylcytidine as RNA synthesis inhibitors: development and characterization of 3′‐ethynyluridine‐resistant cells . Cancer Lett. , 116 , 225 – 231 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 5.Azuma , A. , Emura , T. , Huang , P. and Plunkett , W.Intra‐cellular metabolism and actions of a novel antitumor nucleoside, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd, TAS‐106) . Proc. Am. Assoc. Cancer Res. , 40 , 298 ( 1999. ). [Google Scholar]
- 6.Takatori , S. , Kanda , H. , Takenaka , K. , Wataya , Y. , Matsuda , A. , Fukushima , M. , Shimamoto , Y. , Tanaka , M. and Sasaki , T.Antitumor mechanisms and metabolism of the novel antitumor nucleoside analogues, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine and l‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil . Cancer Chemother. Pharmacol. , 44 , 97 – 104 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 7.Matsuda , A. , Fukushima , M. , Wataya , Y. and Sasaki , T.A new antitumor nucleoside, l‐(3‐C‐ethynyl‐β‐D‐ribo‐pento‐furanosyl)cytosine (ECyd), is a potent inhibitor of RNA synthesis . Nucleosides Nucleotides , 18 , 811 – 814 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 8.Matsuda , A. , Hattori , H. , Tanaka , M. and Sasaki , T.Nucleosides and nucleotides. 152. l‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil as a broad spectrum antitumor nucleoside . BioMed. Chem. Lett. , 6 , 1887 – 1892 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 9.Tsuji , A. , Tamai , I. , Saheki , A. , Nakanishi , T. , Fukushima , M. , Matsuda , A. and Sasaki , T.Facilitative transport of antitumor nucleosides, 3′‐ethynylcytidine (ECyd, TAS‐106) and 3′‐ethynyluridine (EUrd) . Proc. Am. Assoc. Cancer Res. , 40 , 298 ( 1999. ). [Google Scholar]
- 10.Carmichael , J. , DeGraff , W. G. , Gazdar , A. F. , Minna , J. D. and Mitchell , J. B.Evaluation of a tetrazolium‐based semi‐automated colorimetric assay: assessment of chemosensitivity testing . Cancer Res. , 47 , 936 – 942 ( 1987. ). [PubMed] [Google Scholar]
- 11.Plunkett , W. , Chubb , S. , Alexander , L. and Montgomery , J. A.Comparison of the toxicity and metabolism of 9‐β‐D‐arabinofuranosyl‐2‐fluoroadenine and 9‐β‐D‐arabinofurano‐syladenine in human lymphoblastoid cells . Cancer Res. , 40 , 2349 – 2355 ( 1980. ). [PubMed] [Google Scholar]
- 12.Ikenaka , K. , Fukushima , M. , Nakamura , H. , Okamoto , M. , Shirasaka , T. and Fujii , S.Metabolism of pyrimidine nucleosides in various tissues and tumor cells from rodents . Gann , 72 , 590 – 597 ( 1981. ). [PubMed] [Google Scholar]
- 13.Bradford , M. M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding . Anal. Biochem. , 72 , 248 – 254 ( 1976. ). [DOI] [PubMed] [Google Scholar]
- 14.Heinemann , V. , Hertel , L. W. , Grindey , G. B. and Plunkett , W.Comparison of the cellular pharmacokinetics and toxicity of 2′,2′‐difluorodeoxycytidine and 1‐β‐D‐arabinofurano‐sylcytosine . Cancer Res. , 48 , 4024 – 4031 ( 1988. ). [PubMed] [Google Scholar]
- 15.Hertel , L. W. , Boder , G. B. , Kroin , J. S. , Rinzel , S. M. , Poore , G. A. , Todd , G. C. and Grindey , G. B.Evaluation of the antitumor activity of gemcitabine (2′,2′‐difluoro‐2′‐deoxycytidine) . Cancer Res. , 50 , 4417 – 4422 ( 1990. ). [PubMed] [Google Scholar]
- 16.Ruiz van Haperen , V. W. T. , Veerman , G. , Eriksson , S. , Boven , E. , Stegmann , A. P. A. , Hermsen , M. , Vermorken , J. B. , Pinedo , H. M. and Peters , G. J.Development and molecular characterization of a 2′,2′‐difluorodeoxycytidine‐resistant variant of the human ovarian carcinoma cell line A2780 . Cancer Res. , 54 , 4138 – 4143 ( 1994. ). [PubMed] [Google Scholar]
- 17.Fukushima , M. , Murakami , Y. , Suzuki , N. and Aiba , K.The analysis of the innate pathways of 5‐fluorouracil phosphorylation in human gastrointestinal cancer cell lines in vitro and in vivo Oncol. Rep. , 4 , 1189 – 1194 ( 1997. ). [DOI] [PubMed] [Google Scholar]