Abstract
Irinotecan often causes unpredictably severe, occasionally fatal, toxicity involving leukopenia or diarrhea. It is converted by carboxyesterase to an active metabolite, SN–38, which is further conjugated and detoxified to SN–38–glucuronide by UDP‐glucuronosyltransferase (UGT). We genotyped the UGT1A7 gene by direct sequencing analysis and polymerase chain reaction‐restriction fragment length polymorphism in 118 cancer patients and 108 healthy subjects. All the patients had received irinotecan‐containing chemotherapy and were evaluated to see whether the variant UGT1A7 genotype would increase the likelihood of severe toxicity of irinotecan consisting of grade 4 leukopenia and/or grade 3 or more diarrhea. Among the 26 patients with severe toxicity, the allele frequencies were 61.5% for UGT1A7*1, 15.4% for UGT1A7*2, and 23.1% for UGT1A7*3. On the other hand, the frequencies were 63.6% for UGT1A7*1, 15.8% for UGT1A7*2, and 20.7% for UGT1A7*3 among the 92 patients without severe toxicity. None of the 118 patients had UGT1A7*4. Neither univariate analysis (odds ratio, 1.13; 95% confidential interval, 0.46–2.75) nor multivariate logistic regression analysis (odds ratio, 0.74; 95% confidential interval, 0.26–2.07) found any significant association between carrying at least one of the variant alleles and the occurrence of severe toxicity. The distribution of UGT1A7 genotypes in 108 healthy subjects was not significantly different from that in the patients (P=0.99 and 0.86 for those with and without severe toxicity, respectively), but significantly less than that in Caucasians reported previously (P<0.001). The results suggested that determination of UGT1A7 genotypes would not be useful for predicting severe toxicity of irinotecan.
Keywords: UDP‐glucuronosyltransferase 1A7, Irinotecan, SN–38, Genetic polymorphisms
Full Text
The Full Text of this article is available as a PDF (60.9 KB).
REFERENCES
- 1. ) Rougier , P. , van Cutsem , E. , Bajetta , E. , Niederle , N. , Possinger , K. , Labianca , R. , Navarro , M. , Morant , R. , Bleiberg , H. , Wils , J. , Awad , L. , Herait , P. and Jacques , C.Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer . Lancet , 352 , 1407 – 1412 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Negoro , S. , Fukuoka , M. , Masuda , N. , Takada , M. , Kusunoki , Y. , Matsui , K. , Takifuji , N. , Kudoh , S. , Niitani , H. and Taguchi , T.Phase I study of weekly intravenous infusions of CPT–11, a new derivative of camptothecin, in the treatment of advanced non‐small‐cell lung cancer . J. Natl. Cancer Inst. , 83 , 1164 – 1168 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Kawato , Y. , Aonuma , M. , Hirota , Y. , Kuga , H. and Sato , K.Intracellular roles of SN–38, a metabolite of the camptothecin derivative CPT–11, in the antitumor effect of CPT–11 . Cancer Res. , 51 , 4187 – 4191 ( 1991. ). [PubMed] [Google Scholar]
- 4. ) Kaneda , N. and Yokokura , T.Nonlinear pharmacokinetics of CPT–11 in rats . Cancer Res. , 50 , 1721 – 1725 ( 1990. ). [PubMed] [Google Scholar]
- 5. ) Takasuna , K. , Hagiwara , T. , Hirohashi , M. , Kato , M. , Nomura , M. , Nagai , E. , Yokoi , T. and Kamataki , T.Involvement of β‐glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT–11) in rats . Cancer Res. , 56 , 3752 – 3757 ( 1996. ). [PubMed] [Google Scholar]
- 6. ) Gupta , E. , Lestingi , T. M. , Mick , R. , Ramirez , J. , Vokes , E. E. and Ratain , M. J.Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea . Cancer Res. , 54 , 3723 – 3725 ( 1994. ). [PubMed] [Google Scholar]
- 7. ) Iyer , L. , Janisch , L. , Das , S. , Ramirez , J. , Hurley‐Buterman , C. E. , DeMario , M. M. , Vokes , E. E. , Kindler , H. L. and Ratain , M. J.UGT1A1 promoter genotype correlates with pharmacokinetics of irinotecan (CPT–11) . Proc. Am. Soc. Clin. Oncol. , 19 , 690 ( 2000. ). [Google Scholar]
- 8. ) Ando , Y. , Saka , H. , Asai , G. , Sugiura , S. , Shimokata , K. and Kamataki , T.UGT1A1 genotypes and glucuronidation of SN–38, the active metabolite of irinotecan . Ann. Oncol. , 9 , 845 – 847 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Ando , Y. , Saka , H. , Ando , M. , Sawa , T. , Muro , K. , Ueoka , H. , Yokoyama , A. , Saitoh , S. , Shimokata , K. and Hasegawa , Y.Polymorphisms of UDP‐glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis . Cancer Res. , 60 , 6921 – 6926 ( 2000. ). [PubMed] [Google Scholar]
- 10. ) Ciotti , M. , Basu , N. , Brangi , M. and Owens , I. S.Glucuronidation of 7–ethyl–10–hydroxycamptothecin (SN–38) by the human UDP‐glucuronosyltransferases encoded at the UGT1 locus . Biochem. Biophys. Res. Commun. , 260 , 199 – 202 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Strassburg , C. P. , Oldhafer , K. , Manns , M. P. and Tukey , R. H.Differential expression of the UGT1A locus in human liver, biliary, and gastric tissue: identification of UGT1A7and UGT1A10 transcripts in extrahepatic tissue . Mol. Pharmacol. , 52 , 212 – 220 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Grams , B. , Harms , A. , Braun , S. , Strassburg , C. P. , Manns , M. P. and Obermayer‐Straub , P.Distribution and inducibility by 3–methylcholanthrene of family 1 UDP‐glucuronosyltransferases in the rat gastrointestinal tract . Arch. Biochem. Biophys. , 377 , 255 – 265 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Kuhn , J. G.Pharmacology of irinotecan . Oncology , 12 ( Suppl. 6 ), 39 – 42 ( 1998. ). [PubMed] [Google Scholar]
- 14. ) Gupta , E. , Mick , R. , Ramirez , J. , Wang , X. , Lesringi , T. M. , Vokes , E. E. and Ratain , M. J.Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients . J. Clin. Oncol. , 15 , 1502 – 1510 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Araki , E. , Ishikawa , M. , Iigo , M. , Koide , T. , Itabashi , M. and Hoshi , A.Relationship between development of diarrhea and the concentration of SN–38, an active metabolite of CPT–11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT–11 . Jpn. J. Cancer Res. , 84 , 697 – 702 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. ) Guillemette , C. , Ritter , J. K. , Auyeung , D. J. , Kessler , F. K. and Housman , D. E.Structural heterogeneity at the UDP‐glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7gene . Pharmacogenetics , 10 , 629 – 644 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Japan Society for Cancer Therapy . Criteria for the evaluation of the clinical effects of solid cancer chemotherapy . J. Jpn. Soc. Cancer Ther. , 28 , 101 – 130 ( 1993. ). [Google Scholar]
- 18. ) Woolley , A. T. , Guillemette , C. , Li Cheung , C. , Housman , D. E. and Lieber , C. M.Direct haplotyping of kilobase‐size DNA using carbon nanotube probes . Nat. Biotechnol. , 18 , 760 – 763 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 19. ) McLemore , T. L. , Adelberg , S. , Liu , M. C. , McMahon , N. A. , Yu , S. J. , Hubbard , W. C. , Czerwinski , M. , Wood , T. G. , Storeng , R. , Lubet , R. A. , Eggleston , J. C. , Boyd , M. R. and Hines , R. N.Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke‐induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas . J. Natl. Cancer Inst. , 82 , 1333 – 1339 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Crespi , C. L. , Penman , B. W. , Gelboin , H. V. and Gonzalez , F. J.A tobacco smoke‐derived nitrosamine, 4–(methylnitrosamino)–1–(3–pyridyl)–l–butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6 . Carcinogenesis , 12 , 1197 – 1201 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Nakachi , K. , Imai , K. , Hayashi , S. and Kawajiri , K.Polymorphisms of the CYP1A1 and glutathione S‐transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population . Cancer Res. , 53 , 2994 – 2999 ( 1993. ). [PubMed] [Google Scholar]
- 22. ) Dutton , G. J. “ Glucuronidation of Drugs and Other Compounds ” ( 1980. ). CRC Press; , Boca Raton , FL . [Google Scholar]
- 23. ) Hu , Z. and Wells , P. G.In vitro and in vivo biotransformation and covalent binding of benzo(a)pyrene in Gunn and RHA rats with a genetic deficiency in bilirubin uridine diphosphate‐glucuronosyltransferase . J. Pharmacol. Exp. Ther. , 263 , 334 – 342 ( 1992. ). [PubMed] [Google Scholar]
- 24. ) Vogel , A. , Kneip , S. , Barut , A. , Ehmer , U. , Tukey , R. H. , Manns , M. P. and Strassburg , C. P.Genetic link of hepatocellular carcinoma with polymorphisms of the UDP‐glucuronosyltransferase UGT1A7 gene . Gastroenterology , 121 , 1136 – 1144 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Zheng , Z. , Park , J. Y. , Guillemette , C. , Schantz , S. P. and Lazarus , P.Tobacco carcinogen‐detoxifying enzyme UGT1A7 and its association with orolaryngeal cancer risk . J. Natl. Cancer Inst. , 93 , 1411 – 1418 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Wei , X. , McLeod , H. L. , McMurrough , J. , Gonzalez , F. J. and Fernandez‐Salguero , P.Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5–fluorouracil toxicity . J. Clin. Invest. , 98 , 610 – 615 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. ) Relling , M. V. , Hancock , M. L. , Rivera , G. K. , Sandlung , J. T. , Ribeiro , R. C. , Krynetski , E. Y. , Pui , C. H. and Evans , W. E.Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S‐methyltransferase gene locus . J. Natl. Cancer Inst. , 91 , 2001 – 2008 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Ando , M. , Ando , Y. , Hasegawa , Y. , Sekido , Y. , Shimokata , K. and Horibe , K.Genetic polymorphisms of thiopurine S‐methyltransferase and 6–mercaptopurine toxicity in Japanese children with acute lymphoblastic leukaemia . Pharmacogenetics , 11 , 269 – 273 ( 2001. ). [DOI] [PubMed] [Google Scholar]