Abstract
TAS–106 [l–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine] is a new anticancer ribo‐nucleoside with promising antitumor activity. We have previously presented evidence suggesting that the TAS–106 sensitivity of cells is correlated with intracellular accumulation of the triphosphate of TAS–106, which may be affected both by cellular membrane transport mechanisms and uridine‐cytidine kinase (UCK) activity. Since the presence of a UCK family consisting of two members, UCK1 and UCK2, has recently been reported in human cells, we investigated the relation between expression of UCK1 and UCK2 at both the mRNA and protein levels and UCK activity (TAS–106 phosphorylation activity) in a panel of 10 human cancer cell lines. Measurement of UCK activity in these cell lines revealed that it was well correlated with the cells' sensitivity to TAS–106. In addition, the mRNA or protein expression level of UCK2 was closely correlated with UCK activity in these cell lines, but neither the level of expression of UCK1 mRNA nor that of protein was correlated with enzyme activity. We therefore compared the protein expression level of UCK2 in several human tumor tissues and the corresponding normal tissues. Expression of UCK2 protein was barely detectable in 4 of the 5 human tumor tissues, but tended to be high in the pancreatic tumor tissue. It could not be detected at all in any of the normal tissues. Thus, expression of UCK2 appeared to be correlated with cellular sensitivity to TAS–106, and it may contribute to the tumor‐selective cytotoxicity of TAS–106.
Keywords: TAS–106, Anticancer ribo‐nucleoside, Uridine‐cytidine kinase 1, Uridine‐cytidine kinase 2
Full Text
The Full Text of this article is available as a PDF (611.1 KB).
REFERENCES
- 1. ) Hattori , H. , Tanaka , M. , Fukushima , M. , Sasaki , T. and Matsuda , A.Nucleosides and nucleotides. 158. 1–(3–C‐Ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine, 1–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)uracil, and their nucleobase analogues as new potential multifunctional antitumor nucleosides with a broad spectrum of activity . J. Med. Chem. , 39 , 5005 – 5011 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Tabata , S. , Tanaka , M. , Matsuda , A. , Fukushima , M. and Sasaki , T.Antitumor effect of a novel multifunctional antitumor nucleoside, 3′‐ethynylcytidine, on human cancers . Oncol. Rep. , 3 , 1029 – 1034 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Shimamoto , Y. , Fujioka , A. , Kazuno , H. , Murakami , Y. , Ohshimo , H. , Kato , T. , Matsuda , A. , Sasaki , T. and Fukushima , M.Antitumor activity and pharmacokinetics of TAS–106, 1–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine . Jpn. J. Cancer Res. , 92 , 343 – 351 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. ) Shimamoto , Y. , Kazuno , H. , Murakami , Y. , Azuma , A. , Koizumi , K. , Matsuda , A. , Sasaki , T. and Fukushima , M.Cellular and biochemical mechanisms of the resistance of human cancer cells to a new anticancer ribo‐nucleoside, TAS–106 . Jpn. J. Cancer Res. , 92 , 445 – 452 ( 2002. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. ) Tabata , S. , Tanaka , M. , Endo , Y. , Obata , T. , Matsuda , A. and Sasaki , T.Anti‐tumor mechanisms of 3‘‐ethynyluridine and 3’‐ethynylcytidine as RNA synthesis inhibitors: development and characterization of 3′‐ethynyluridine‐resistant cells . Cancer Lett. , 116 , 225 – 231 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Azuma , A. , Emura , T. , Huang , P. and Plunkett , W.Intracellular metabolism and actions of a novel antitumor nucleoside, 1–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine (ECyd, TAS–106) . Proc. Am. Assoc. Cancer Res. , 40 , 298 ( 1999. ). [Google Scholar]
- 7. ) Takatori , S. , Kanda , H. , Takenaka , K. , Wataya , Y. , Matsuda , A. , Fukushima , M. , Shimamoto , Y. , Tanaka , M. and Sasaki , T.Antitumor mechanisms and metabolism of the novel antitumor nucleoside analogues, 1–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine and 1–(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)uracil . Cancer Chemother. Pharmacol. , 44 , 97 – 104 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Matsuda , A. , Fukushima , M. , Wataya , Y. and Sasaki , T.A new antitumor nucleoside, l‐(3–C‐ethynyl‐β‐d‐ribo‐pentofuranosyl)cytosine (ECyd), is a potent inhibitor of RNA synthesis . Nucl. Nucl. , 18 , 811 – 814 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Cass , C. E. , Young , J. D. , Baldwin , S. A. , Cabrita , M. A. , Graham , K. A. , Griffiths , M. , Jennings , L. L. , Mackey , J. R. , Ng , A. M. L. , Ritzel , M. W. L. , Vickers , M. F. and Yao , S. Y. M.Nucleoside transporters of mammalian cells . Pharm. Biotechnol. , 12 , 313 – 352 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Fang , X. , Parkinson , F. E. , Mowles , D. A. , Young , J. D. and Cass , C. E.Functional characterization of a recombinant sodium‐dependent nucleoside transporter with selectivity for pyrimidine nucleosides (cNTlrat) by transient expression in cultured mammalian cells . Biochem. J. , 317 , 457 – 465 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. ) Mackey , J. R. , Mani , R. S. , Seiner , M. , Mowles , D. E. , Young , J. D. , Belt , J. A. , Crawford , C. R. and Cass , C. E.Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines . Cancer Res. , 58 , 4349 – 4357 ( 1998. ). [PubMed] [Google Scholar]
- 12. ) Mackey , J. R. , Yao , S. Y. M. , Smith , K. M. , Karpinski , E. , Baldwin , S. A. , Cass , C. E. and Young , J. D.Gemcitabine transport in Xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters . J. Natl. Cancer Inst. , 91 , 1876 – 1881 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Graham , K. A. , Leithoff , J. , Coe , I. R. , Mowles , D. , Mackey , J. R. , Young , J. D. and Cass , C. E.Differential transport of cytosine‐containing nucleosides by recombinant human concentrative nucleoside transporter protein hCNT1 . Nucl. Nucl. Nucleic Acids , 19 , 415 – 434 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Tsuji , A. , Tamai , I. , Saheki , A. , Nakanishi , T. , Fukushima , M. , Matsuda , A. and Sasaki , T.Facillitative transport of antitumor nucleosides, 3‘‐ethynylcytidine (ECyd, TAS–106) and 3’‐ethynyluridine (EUrd) . Proc. Am. Assoc. Cancer Res. , 40 , 298 ( 1999. ). [Google Scholar]
- 15. ) Maehara , Y. , Nakamura , H. , Nakane , Y. , Kawai , K. , Okamoto , M. , Nagayama , S. , Shirasaka , T. and Fujii , S.Activities of various enzymes of pyrimidine nucleotide and DNA synthesis in normal and neoplastic human tissues . Gann , 73 , 289 – 298 ( 1982. ). [PubMed] [Google Scholar]
- 16. ) Ahmed , N. K. , Haggitt , R. C. and Welch , A. D.Enzymes of salvage and de novo pathways of synthesis of pyrimidine nucleotides in human colorectal adenocarcinomas . Biochem. Pharmacol. , 31 , 2485 – 2488 ( 1982. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Ahmed , N. K.Enzymes of the de novo and salvage pathways for pyrimidine biosynthesis in normal colon, colon carcinoma, and xenografts . Cancer , 54 , 1370 – 1373 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Maehara , Y. , Kusumoto , T. , Sakaguchi , Y. , Kusumoto , H. , Kido , Y. , Anai , H. and Sugimachi , K.Pyrimidine nucleotide synthesis is more extensive in poorly differentiated than in well‐differentiated human gastric carcinoma . Cancer , 63 , 96 – 101 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Maehara , Y. , Moriguchi , S. , Emi , Y. , Watanabe , A. , Kohnoe , S. , Tsujitani , S. and Sugimachi , K.Comparison of pyrimidine nucleotide synthetic enzymes involved in 5–fluorouracil metabolism between human adenocarcinomas and squamous cell carcinomas . Cancer , 66 , 156 – 161 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Luccioni , C. , Beaumatin , J. , Bardot , V. and Lefrançois , D.Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts . Int. J. Cancer , 58 , 517 – 522 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Koizumi , K. , Shimamoto , Y. , Azuma , A. , Wataya , Y. , Matsuda , A. , Sasaki , T. and Fukushima , M.Cloning and expression of uridine/cytidine kinase cDNA from human fibrosarcoma cells . Int. J. Mol. Med. , 8 , 273 – 278 ( 2001. ). [PubMed] [Google Scholar]
- 22. ) Van Rompay , A. R. , Norda , A. , Linden , K. , Johansson , M. and Karlsson , A.Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine‐cytidine kinases . Mol. Pharmacol. , 59 , 1181 – 1186 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Matsuda , A. , Hattori , H. , Tanaka , M. and Sasaki , T.1–(3–C‐Ethynyl‐β‐d‐ribo‐pentofuranosyl)uracil as a broad spectrum antitumor nucleoside . Biomed. Chem. Lett. , 6 , 1887 – 1892 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Carmichael , J. , De Graff , W. G. , Gazdar , A. F. , Minna , J. D. and Mitchell , J. B.Evaluation of a tetrazolium‐based semi‐automated colorimetric assay: assessment of chemosensitivity testing . Cancer Res. , 47 , 936 – 942 ( 1987. ). [PubMed] [Google Scholar]
- 25. ) Bradford , M. M.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein‐dye binding . Anal. Biochem. , 72 , 248 – 254 ( 1976. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Ikenaka , K. , Fukushima , M. , Nakamura , H. , Okamoto , M. , Shirasaka , T. and Fujii , S.Metabolism of pyrimidine nucleotides in various tissues and tumor cells from rodents . Gann , 72 , 590 – 597 ( 1981. ). [PubMed] [Google Scholar]