Abstract
Small cell lung cancer (SCLC) cell lines specifically express ganglioside GD2, and anti‐GD2 monoclonal antibodies (mAbs) caused suppression of cell growth and induced apoptosis of SCLC cells with single use. Here, enhancement of the cytotoxic effects of various anti‐cancer drugs with an anti‐GD2 mAb was demonstrated. The cytotoxicity of all six drugs examined was markedly enhanced, i.e. 2.4–7.8–fold increase of cell sensitivity in terms of IC50. In particular, the combination of cisplatin (CDDP) with an anti‐GD2 mAb resulted in prominent enhancement of cytotoxicity even in low‐moderate GD2–expressing lines. The anti‐GD2 mAb induced weak activation of c‐Jun terminal kinase (JNK) in SCLC cells, and all anti‐cancer drugs also induced its activation to various degrees. When CDDP and an anti‐GD2 mAb were used together, significantly stronger JNK activation was observed corresponding to the cytotoxic effects, suggesting that synergistic phosphorylation of JNK with two reagents induced prominent apoptosis. The essential role of JNK in the induction of SCLC apoptosis with CDDP and anti‐GD2 mAb was confirmed by experiments with a JNK inhibitor, curcumin. These results suggest that anti‐GD2 mAbs would be very efficient in combination with anti‐cancer drugs, both to achieve SCLC‐specific cytotoxicity and to enhance its magnitude.
Keywords: Apoptosis, Small cell lung cancer, Chemotherapy, JNK, GD2
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
REFERENCES
- 1. ) Wiegandt , H.Gangliosides . In “ Glycolipids ,” ed. Wiegandt H. , pp. 199 – 260 ( 1985. ). Elsevier Science Publishers, B. V. , Amsterdam . [Google Scholar]
- 2. ) Suzuki , K.The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation . J. Neurochem. , 12 , 629 – 638 ( 1965. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Portoukalian , J. , Zwingelstein , G. and Dore , J. F.Lipid composition of human malignant melanoma tumors at various levels of malignant growth . Eur. J. Biochem. , 94 , 19 – 23 ( 1979. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Carubia , J. M. , Yu , R. K. , Macala , L. J. , Kirkwood , J. M. and Varga , J. M.Gangliosides of normal and neoplastic human melanocytes . Biochem. Biophys. Res. Commun. , 120 , 500 – 504 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Cheung , N. K. , Sarrinen , U. M. , Neely , J. E. , Landmeier , B. , Donovan , D. and Coccia , P. F.Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells . Cancer Res. , 45 , 2642 – 2649 ( 1985. ). [PubMed] [Google Scholar]
- 6. ) Fredman , P. , von Hoist , H. , Collins , V. P. , Ammar , A. , Dellheden , B. , Wahren , B. , Granholm , L. and Svennerholm , L.Potential ganglioside antigens associated with human gliomas . Neural. Res. , 8 , 123 – 126 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Chang , H. R. , Cordon‐Cardo , C. , Houghton , A. N. , Cheung , N. K. and Brennan , M. F.Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas . Cancer (Phila.) , 70 , 633 – 638 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Yuyama , Y. , Dohi , T. , Morita , H. , Furukawa , K. and Oshima , M.Enhanced expression of GM2/GD2 synthase mRNA in human gastrointestinal cancer . Cancer , 75 , 1273 – 1280 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Dohi , T. , Hanai , N. , Yamaguchi , K. and Oshima , M.Localization of UDP‐GalNAc:NeuAc α 2,3Gal‐R β1,4(GalNAc to Gal)N‐acetylgalactosaminyltransferase in human stomach. Enzymatic synthesis of a fundic gland‐specific ganglioside and GM2 . J. Biol. Chem. , 266 , 24038 – 24043 ( 1991. ). [PubMed] [Google Scholar]
- 10. ) Merritt , W. D. , Sztein , M. B. and Reaman , G. H.Detection of GD3 ganglioside in childhood acute lymphoblastic leukemia with monoclonal antibody to GD3: restriction to immunophenotypically defined T‐cell disease . J. Cell. Biochem. , 37 , 11 – 19 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Furukawa , K. , Akagi , T. , Nagata , Y. , Yamada , Y. , Shimotohno , K. , Cheung , N. K. , Shiku , H. and Furukawa , K.GD2 ganglioside on human T‐lymphotropic virus type I‐infected T cells: possible activation of β–1,4–N‐acetylgalactosaminyltransferase gene by p40tax . Proc. Natl. Acad. Sci. USA , 90 , 1972 – 1976 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Okada , M. , Furukawa , K. , Yamashiro , S. , Yamada , Y. , Haraguchi , M. , Horibe , K. , Kato , K. , Tsuji , Y. and Furukawa , K.High expression of ganglioside α–2,8–sialyl‐transferase (GD3 synthase) gene in adult T‐cell leukemia cells unrelated to the gene expression of human T‐lymphotropic virus type I . Cancer Res. , 56 , 2844 – 2848 ( 1996. ). [PubMed] [Google Scholar]
- 13. ) Cheresh , D. A. , Rosenberg , J. , Mujoo , K. , Hirschowitz , L. and Reisfeld , R. A.Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody‐mediated cytolysis . Cancer Res. , 46 , 5112 – 5118 ( 1986. ). [PubMed] [Google Scholar]
- 14. ) Dnistrian , A. M. and Schwartz , M. K.Lipid‐bound sialic acid as a tumor marker . Ann. Clin. Lab. Sci. , 13 , 137 – 142 ( 1983. ). [PubMed] [Google Scholar]
- 15. ) Sung , C. C. , Pearl , D. K. , Coons , S. W. , Scheithauer , B. W. , Johnson , P. C. and Yates , A. J.Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors . Cancer , 74 , 3010 – 3022 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Nakamori , S. , Furukawa , H. , Hiratsuka , M. , Iwanaga , T. , Imaoka , S. , Ishikawa , O. , Kabuto , T. , Sasaki , Y. , Kameyama , M. , Ishiguro , S. and Irimura , T.Expression of carbohydrate antigen sialyl Le(a): a new functional prognostic factor in gastric cancer . J. Clin. Oncol. , 15 , 816 – 825 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Sung , C. C. , Pearl , D. K. , Coons , S. W. , Scheithauer , B. W. , Johnson , P. C. , Zheng , M. and Yates , A. J.Correlation of ganglioside patterns of primary brain tumors with survival . Cancer , 75 , 851 – 859 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Lode , H. N. , Handgretinger , R. , Schuermann , U. , Seitz , G. , Klingebiel , T. , Niethammer , D. and Beck , J.Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT‐PCR and anti‐ganglioside GD2 immunocytochemistry . Eur. J. Cancer , 33 , 2024 – 2030 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Houghton , A. N. , Mintzer , D. , Cordon‐Cardo , C. , Welt , S. , Fliegel , B. , Vadhan , S. , Carswell , E. , Melamed , M. R. , Oettgen , H. F. and Old , L. J.Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma . Proc. Natl. Acad. Sci. USA , 82 , 1242 – 1246 ( 1985. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. ) Irie , R. F. and Morton , D. L.Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2 . Proc. Natl. Acad. Sci. USA , 83 , 8694 – 8698 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. ) Cheung , N. K. , Cheung , I. Y. , Canete , A. , Yeh , S. J. , Kushner , B. , Bonilla , M. A. , Heller , G. and Larson , S. M.Antibody response to murine anti‐GD2 monoclonal antibodies: correlation with patient survival . Cancer Res. , 54 , 2228 – 2233 ( 1994. ). [PubMed] [Google Scholar]
- 22. ) Cheung , N. K. , Kushner , B. H. , Yeh , S. D. and Larson , S. M.3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study . Int. J. Oncol. , 12 , 1299 – 1306 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Pegram , M. and Slamon , D.Biological rationale for HER2/neu (c‐erbB2) as a target for monoclonal antibody therapy . Semin. Oncol. , 27 , 13 – 19 ( 2000. ). [PubMed] [Google Scholar]
- 24. ) Treon , S. P. and Anderson , K. C.The use of rituximab in the treatment of malignant and nonmalignant plasma cell disorders . Semin. Oncol. , 27 , 79 – 85 ( 2000. ). [PubMed] [Google Scholar]
- 25. ) Dickman , S.Antibodies stage a comeback in cancer treatment . Science , 280 , 1196 – 1197 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Cheresh , D. A. , Pierschbacher , M. D. , Herzig , M. A. and Mujoo , K.Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins . J. Cell Biol. , 102 , 688 – 696 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. ) Nakano , J. , Yasui , H. , Lloyd , K. O. and Muto , M.Biologic roles of gangliosides G (M3) and G (D3) in the attachment of human melanoma cells to extracellular matrix proteins . J. Investig. Dermatol. Symp. Proc. , 4 , 173 – 176 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Dippold , W. G. , Knuth , A. and Meyer Zum , B. K. H.Inhibition of human melanoma cell growth in vitro by monoclonal anti‐GD3–ganglioside antibody . Cancer Res. , 44 , 806 – 810 ( 1984. ). [PubMed] [Google Scholar]
- 29. ) Nakano , J. , Raj , B. K. , Asagami , C. and Lloyd , K. O.Human melanoma cell lines deficient in GD3 ganglioside expression exhibit altered growth and tumorigenic characteristics . J. Invest. Dermatol. , 107 , 543 – 548 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Thurin , J. , Thurin , M. , Herlyn , M. , Elder , D. E. , Steplewski , Z. , Clark , W. H. , Jr. and Koprowski , H.GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression . FEBS Lett. , 208 , 17 – 22 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Yoshida , S. , Fukumoto , S. , Kawaguchi , H. , Sato , S. , Ueda , R. and Furukawa , K.Ganglioside G (D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis . Cancer Res. , 61 , 4244 – 4252 ( 2001. ). [PubMed] [Google Scholar]
- 32. ) Svennerholm , L.Chromatographic separation of human brain gangliosides . J. Neurochem. , 10 , 613 – 623 ( 1963. ). [DOI] [PubMed] [Google Scholar]
- 33. ) Haraguchi , M. , Yamashiro , S. , Yamamoto , A. , Furukawa , K. , Takamiya , K. , Lloyd , K. O. , Shiku , H. and Furukawa , K.Isolation of GD3 synthase gene by expression cloning of GM3 α–2,8–sialyl‐transferase cDNA using anti‐GD2 monoclonal antibody . Proc. Natl. Acad. Sci. USA , 91 , 10455 – 10459 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. ) Miyazaki , H. , Fukumoto , S. , Okada , M. , Hasegawa , T. and Furukawa , K.Expression cloning of rat cDNA encoding UDP‐galactose:GD2 β1,3–galactosyltransferase that determines the expression of GD1b/GM1/GA1 . J. Biol. Chem. , 272 , 24794 – 24799 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 35. ) Lowry , O. H. , Rosebrough , N. J. , Farr , A. L. and Randall , R. J.Protein measurement with the Folin phenol reagent . J. Biol. Chem. , 193 , 265 – 275 ( 1951. ). [PubMed] [Google Scholar]
- 36. ) Hudson , P. J.Recombinant antibody constructs in cancer therapy . Curr. Opin. Immunol. , 11 , 548 – 557 ( 1999. ). [DOI] [PubMed] [Google Scholar]
- 37. ) Watanabe , T. , Naito , M. , Kokubu , N. and Tsuruo , T.Regression of established tumors expressing P‐glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK–16 antibodies . J. Natl. Cancer Inst. , 89 , 512 – 518 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 38. ) Mizutani , Y. , Bonavida , B. , Koishihara , Y. , Akamatsu , K. , Ohsugi , Y. and Yoshida , O.Sensitization of human renal cell carcinoma cells to cis‐diamminedichloroplatinum (II) by anti‐interleukin 6 monoclonal antibody or anti‐interleukin 6 receptor monoclonal antibody . Cancer Res. , 55 , 590 – 596 ( 1995. ). [PubMed] [Google Scholar]
- 39. ) Mendelsohn , J.Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy . Clin. Cancer Res. , 3 , 2703 – 2707 ( 1997. ). [PubMed] [Google Scholar]
- 40. ) Ciardiello , F. , Bianco , R. , Damiano , V. , De Lorenzo , S. , Pepe , S. , De Placido , S. , Fan , Z. , Mendelsohn , J. , Bianco , A. R. and Tortora , G.Antitumor activity of sequential treatment with topotecan and anti‐epidermal growth factor receptor monoclonal antibody C225 . Clin. Cancer Res. , 5 , 909 – 916 ( 1999. ). [PubMed] [Google Scholar]
- 41. ) Margolin , K. , Gordon , M. S. , Holmgren , E. , Gaudreault , J. , Novotny , W. , Fyfe , G. , Adelman , D. , Stalter , S. and Breed , J.Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long‐term safety data . J. Clin. Oncol. , 19 , 851 – 856 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 42. ) Pegram , M. D. and Slamon , D. J.Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptorenhanced chemosensitivity . Semin. Oncol. , 26 , 89 – 95 ( 1999. ). [PubMed] [Google Scholar]
- 43. ) Burris , H. A. , 3rd.Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer . Semin. Oncol. , 28 , 38 – 44 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 44. ) Crown , J. P.The platinum agents: a role in breast cancer treatment ? Semin. Oncol. , 28 , 28 – 37 ( 2001. ). [DOI] [PubMed] [Google Scholar]
- 45. ) Agus , D. B. , Bunn , P. A. , Jr. , Franklin , W. , Garcia , M. and Ozols , R. F.HER–2/neu as a therapeutic target in nonsmall cell lung cancer, prostate cancer, and ovarian cancer . Semin. Oncol. , 27 , 53 – 63 ( 2000. ). [PubMed] [Google Scholar]
- 46. ) Mizutani , Y. , Okada , Y. , Yoshida , O. , Fukumoto , M. and Bonavida , B.Doxorubicin sensitizes human bladder carcinoma cells to Fas‐mediated cytotoxicity . Cancer , 79 , 1180 – 1189 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 47. ) Pace , E. , Melis , M. , Siena , L. , Bucchieri , F. , Vignola , A. M. , Profita , M. , Gjomarkaj , M. and Bonsignore , G.Effects of gemcitabine on cell proliferation and apoptosis in non‐small‐cell lung cancer (NSCLC) cell lines . Cancer Chemother. Phamacol. , 46 , 467 – 476 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 48. ) Makin , G. and Hickman , J. A.Apotosis and cancer chemotherapy . Cell Tissue Res. , 301 , 143 – 152 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 49. ) Debatin , K.Activation of apoptosis pathways by anticancer treatment . Toxicol. Lett. , 112 – 113 , 41 – 48 ( 2000. ). [DOI] [PubMed] [Google Scholar]
- 50. ) Lowe , S. W.Cancer therapy and p53 . Curr. Opin. Oncol. , 7 , 547 – 553 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 51. ) Fan , S. , el‐Deiry , W. S. , Bae , I. , Freeman , J. , Jondle , D. , Bhatia , K. , Fornace , A. J. , Jr. , Magrath , I. , Kohn , K. W. and O'Connor , P. M.p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents . Cancer Res. , 54 , 5824 – 5830 ( 1994. ). [PubMed] [Google Scholar]
- 52. ) Kanamori , Y. , Kigawa , J. , Minagawa , Y. , Irie , T. , Oishi , T. , Shimada , M. , Takahashi , M. , Nakamura , T. , Sato , K. and Terakawa , N.A newly developed adenovirus‐mediated transfer of a wild‐type p53 gene increases sensitivity to cis‐diamminedichloroplatinum (II) in p53–deleted ovarian cancer cells . Eur. J. Cancer , 34 , 1802 – 1806 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 53. ) Kyriakis , J. M. , Banerjee , P. , Nikolakaki , E. , Dai , T. , Rubie , E. A. , Ahmad , M. F. , Avruch , J. and Woodgett , J. R.The stress‐activated protein kinase subfamily of c‐Jun kinases . Nature , 369 , 156 – 160 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 54. ) Liu , Y. , Gorospe , M. , Yang , C. and Holbrook , N. J.Role of mitogen‐activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c‐Jun N‐terminal kinase activity and AP–1–dependent gene activation . J. Biol. Chem. , 270 , 8377 – 8380 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 55. ) van Dam , H. , Wilhelm , D. , Herr , I. , Steffen , A. , Herrlich , P. and Angel , P.ATF–2 is preferentially activated by stress‐activated protein kinases to mediate c‐jun induction in response to genotoxic agents . EMBOJ. , 14 , 1798 – 1811 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. ) Seimiya , H. , Mashima , T. , Toho , M. and Tsuruo , T.c‐Jun NH2–terminal kinase‐mediated activation of interleukin–1beta converting enzyme/CED–3–like protease during anti‐cancer drug‐induced apoptosis . J. Biol. Chem. , 272 , 4631 – 4636 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 57. ) Houghton , A. N. and Scheinberg , D. A.Monoclonal antibody therapies—a ‘constant’ threat to cancer . Nat. Med. , 6 , 373 – 374 ( 2000. ). [DOI] [PubMed] [Google Scholar]