Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Aug;93(8):911–916. doi: 10.1111/j.1349-7006.2002.tb01337.x

Sequential Involvement of Two Distinct CD4+ Regulatory T Cells during the Course of Transplantable Tumor Growth and Protection from 3–Methylcholanthrene‐induced Tumorigenesis by CD25–depletion

Isao Tawara 1, Yutaka Take 1, Akiko Uenaka 1, Yuji Noguchi 1, Eiichi Nakayama
PMCID: PMC5927116  PMID: 12716469

Abstract

The involvement of two phenotypically different regulatory T cells in different stages of tumor growth was investigated. Treatment of BALB/c mice with anti‐CD25 monoclonal antibody (mAb) (PC61), but not anti‐CD4 mAb (GK1.5) before RL male 1 or Meth A inoculation caused tumor rejection. On the other hand, treatment of BALB/c mice with anti‐CD4 mAb (GK1.5) but not anti‐CD25 mAb (PC61) on day 6 after inoculation of the same tumors caused rejection. The findings suggest that CD4+CD25+ T cells downregulated the rejection response in the early stage of tumor growth. On the other hand, putative CD4+CD25 T cells downregulated the tumor rejection response in the late stage. Both CD4+CD25+ and putative CD4+CD25‐T cells appeared to inhibit the efficient generation of cytotoxic T lymphocytes (CTL). The present study also demonstrated that the treatment of BALB/c mice with anti‐CD25 mAb (PC61) at 4 or 6 weeks after 3–methylcholanthrene (3–MC) inoculation retarded tumor occurrence and prolonged survival.

Keywords: Tumor growth, Regulatory T cells, CTL, Chemical carcinogenesis

Full Text

The Full Text of this article is available as a PDF (128.1 KB).

REFERENCES

  • 1. ) Sakaguchi , S.Regulatory T cells: key controllers of immunologic self‐tolerance . Cell , 101 , 455 – 458 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Sakaguchi , S. , Sakaguchi , N. , Asano , M. , Itoh , M. and Toda , M.Immunologic self‐tolerance maintained by activated T cells expressing IL–2 receptor α‐chains (CD25). Breakdown of a single mechanism of self‐tolerance causes various autoimmune disease . J. Immunol. , 155 , 1151 – 1164 ( 1995. ). [PubMed] [Google Scholar]
  • 3. ) Asano , M. , Toda , M. , Sakaguchi , N. and Sakaguchi , S.Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation . J. Exp. Med. , 184 , 387 – 396 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. ) Suri‐Payer , E. , Amer , A. Z. , Thornton , A. M. and Shevach , E. M.CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells . J. Immunol. , 160 , 1212 – 1218 ( 1998. ). [PubMed] [Google Scholar]
  • 5. ) Thornton , A. M. and Shevach , E. M.CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production . J. Exp. Med. , 188 , 287 – 296 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Takahashi , T. , Kuniyasu , Y. , Toda , M. , Sakaguchi , N. , Itoh , M. , Iwata , M. , Shimizu , J. and Sakaguchi , S.Immunologic self‐tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state . Int. Immunol. , 12 , 1969 – 1980 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Kuniyasu , Y. , Takahashi , T. , Itoh , M. , Shimizu , J. , Toda , G. and Sakaguchi , S.Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation . Int. Immunol. , 12 , 1145 – 1155 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Taguchi , O. and Takahashi , T.Administration of anti‐inter‐leukin–2 receptor α antibody in vivo induces localized autoimmune disease . Eur. J. Immunol. , 26 , 1608 – 1612 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Salomon , B. , Lenschow , D. J. , Rhee , L. , Ashourian , N. , Singh , B. , Sharpe , A. and Bluestone , J. A.B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes . Immunity , 12 , 431 – 440 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Shevach , E. M.Certified professionals: CD4+CD25+ suppressor T cells . J. Exp. Med. , 193 , F41 – F45 ( 2001. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. ) Matsuo , M. , Wada , H. , Honda , S. , Tawara , I. , Uenaka , A. , Kanematsu , T. and Nakayama , E.Expression of multiple unique rejection antigens on murine leukemia BALB/c RL male 1 and the role of dominant Akt antigen for tumor escape . J. Immunol. , 162 , 6420 – 6425 ( 1999. ). [PubMed] [Google Scholar]
  • 12. ) Onizuka , S. , Tawara , I. , Shimizu , J. , Sakaguchi , S. , Fujita , T. and Nakayama , E.Tumor rejection by in vivo administration of anti‐CD25 (interleukin–2 receptor α) monoclonal antibody . Cancer Res. , 59 , 3128 – 3133 ( 1999. ). [PubMed] [Google Scholar]
  • 13. ) Nakayama , E. , Shiku , H. , Takahashi , T. , Oettgen , H. F. and Old , L. J.Definition of a unique cell surface antigen of mouse leukemia RL male 1 by cell‐mediated cytotoxicity . Proc. Natl. Acad. Sci. USA , 76 , 3486 – 3490 ( 1979. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. ) De Leo , A. B. , Shiku , H. , Takahashi , T. , John , M. and Old , L. J.Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus‐related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma . J. Exp. Med. , 146 , 720 – 734 ( 1977. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. ) Wolfel , T. , van Pel , A. , de Plean , E. , Lurquin , C. , Maryanski , J. L. and Boon , T.Immunogenic (tum) variants obtained by mutagenesis of mouse mastocytoma P815. VIII. Detection of stable transfectants expressing a tumantigen with a cytolytic T cell stimulation assay . Immunogenetics , 26 , 178 – 187 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Lowenthal , J. W. , Corthesy , P. , Tougne , C. , Lees , R. , MacDonald , H. R. and Nabholz , M.High and low affinity IL–2 receptors: analysis by IL–2 dissociation rate and reactivity with monoclonal anti‐receptor antibody PC61 . J. Immunol. , 135 , 3988 – 3994 ( 1985. ). [PubMed] [Google Scholar]
  • 17. ) Dialynas , D. P. , Quan , Z. S. , Wall , K. A. , Pierres , A. , Quintans , J. , Loken , M. R. , Pierres , M. and Fitch , F. W.Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu–3/T4 molecule . J. Immunol. , 131 , 2445 – 2451 ( 1983. ). [PubMed] [Google Scholar]
  • 18. ) Uenaka , A. , Ono , T. , Akisawa , T. , Wada , H. , Yasuda , T. and Nakayama , E.Identification of a unique antigen peptide pRL1 on BALB/c RL♂ 1 leukemia recognized by cytotoxic T‐lymphocytes and its relation to the Akt oncogene . J. Exp. Med. , 180 , 1599 – 1607 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. ) Wada , H. , Matsuo , M. , Uenaka , A. , Shimbara , N. , Shimizu , K. and Nakayama , E.Rejection antigen peptides on BALB/c RL ♂ 1 leukemia recognized by cytotoxic T lymphocytes: derivation from the normally untranslated 5′‐region of the c‐akt proto‐oncogene activated by LTR . Cancer Res. , 55 , 4780 – 4783 ( 1995. ). [PubMed] [Google Scholar]
  • 20. ) North , R. J. and Bursuker , I.Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly‐l+2suppressor T cells down‐regulate the generation of Ly12+ effector T cells . J. Exp. Med. , 159 , 1295 – 1311 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. ) Thornton , A. M. and Shevach , E. M.Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific . J. Immunol. , 164 , 183 – 190 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Stephens , L. A. and Mason , D.CD25 is a marker for CD4+thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25subpopulations . J. Immunol. , 165 , 3105 – 3110 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Shankaran , V. , Ikeda , H. , Bruce , A. T. , White , J. M. , Swanson , P. E. , Old , L. J. and Schreiber , R. D.IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity . Nature , 410 , 1107 – 1111 ( 2001. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES