Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 2002 Sep;93(9):1012–1019. doi: 10.1111/j.1349-7006.2002.tb02478.x

Differential Suppression of Human Cervical Cancer Cell Growth by Adenovirus Delivery of p53 in vitro: Arrest Phase of Cell Cycle Is Dependent on Cell Line

Woong Shick Ahn 1, You Jin Han 2, Su Mi Bae 2, Tae‐Hyung Kim 2, Min Seok Rho 2, Joon Mo Lee 1, Sung Eun Namkoong 1, Yong Seok Park 3, Chong Kook Kim 4, Jeong‐Im Sin 2,
PMCID: PMC5927131  PMID: 12359055

Abstract

It has been reported that overexpression of wild‐type p53 protein induces suppression of tumor cell growth in vivo and in vitro. In this study, we further evaluated the differential effects of p53 delivered in an adenovirus vector on the cell growth, apoptosis and cell cycle progression in cervical cancer cell lines. We constructed a recombinant adenovirus expressing p53 and then delivered this into cervical carcinoma cell lines (CaSki, SiHa, and HeLa, HeLaS3) along with adenovirus expressing β‐galactosidase as a negative control. Adenovirus‐delivered p53 overexpression resulted in a more significant suppression of cell growth in HPV 18‐infected cells (HeLa and HeLaS3) and a lesser suppression in HPV 16‐infected cells (CaSki and SiHa). However, no suppression was observed in cells infected with a negative control virus. p53 overexpression also induced apoptosis and cell cycle arrest, as determined by annexin V and propidium iodide staining. In particular, the cell cycle was arrested in the G2/M phase in CaSki cells. In contrast, cell cycles were arrested in the G1 phase in HeLa cells, suggesting that the arrest phase is dependent upon the cervical cancer cell line. Taken together, these data support the idea that overexpressed p53 protein plays a differential role in suppressing cervical cancer cell growth through apoptosis and cell cycle arrest in either G1 or G2/M phase, depending on the cancer cell line.

Keywords: AdCMVp53, Cervical cancer, Apoptosis, Cell cycle arrest, Gene therapy

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

REFERENCES

  • 1. ) Lorincz , A. T. , Temple , G. F. , Kurman , R. J. , Jenson , A. B. and Lancaster , W. D.Oncogenic association of specific papillomavirus types with cervical neoplasia . J. Natl. Cancer Inst. , 79 , 671 – 677 ( 1987. ). [PubMed] [Google Scholar]
  • 2. ) zur Hausen , H.Papillomaviruses in anogenital cancer as a model to understanding the role of viruses in human cancers . Cancer Res. , 49 , 4677 – 4681 ( 1989. ). [PubMed] [Google Scholar]
  • 3. ) Cullen , A. P. , Reid , R. , Campion , M. and Lorincz , A. T.Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasia . J. Virol. , 65 , 606 – 612 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. ) Scheffner , M. , Werness , B. A. , Heibregtse , J. M. , Levine , A. J. and Howley , P. M.The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 . Cell , 63 , 1129 – 1136 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Werness , B. A. , Levine , A. J. and Howley , P. M.Association of HPV type 16 and 18 E6 protein with p53 . Science , 248 , 76 – 79 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Scheffner , M. , Munger , K. , Bryne , J. C. and Howley , P. M.The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines . Proc. Natl. Acad. Sci. USA , 88 , 5523 – 5527 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. ) Santin , A. D. , Hermonat , P. L. , Ravaggi , A. , Chiriva‐Internati , M. , Pecorelli , S. and Parham , G. P.Radiationenhanced expression of E6/E7 transforming oncogenes of human papillomavirus‐16 in human cervical carcinoma . Cancer , 83 , 2346 – 2352 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Levine , A. J.p53, the cellular gatekeeper for growth and division . Cell , 88 , 323 – 331 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Greenblatt , M. S. , Bennett , W. P. , Hollstein , M. and Harris , C. C.Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis . Cancer Res. , 54 , 4855 – 4878 ( 1994. ). [PubMed] [Google Scholar]
  • 10. ) Hamada , K. , Alemany , R. , Zhang , W. W. , Hittelman , W. N. , Lotan , R. , Roth , J. A. and Mitchell , M. F.Adenovirusmediated transfer of a wild‐type p53 gene and induction of apoptosis in cervical cancer . Cancer Res. , 56 , 3047 – 3054 ( 1996. ). [PubMed] [Google Scholar]
  • 11. ) Pim , D. and Banks , L.HPV‐18 E6.I protein modulates the E6‐directed degradation of p53 by binding to full‐length HPV‐18 E6 . Oncogene , 18 , 7403 – 7408 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Kessis , T. D. , Slebos , R. J. , Nelson , W. G. , Kastan , M. B. , Plunkett , B. S. , Han , S. M. , Lorincz , A. T. , Hedrick , L. and Cho , K. R.Human papillomavirus 16 E6 expression disrupts the p53‐mediated cellular response to DNA damage . Proc. Natl. Acad. Sci. USA , 90 , 3988 – 3992 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Zheng , J. , Deng , Y. P. , Lin , C. , Fu , M. , Xiao , P. G. and Wu , M.Arsenic trioxide induces apoptosis of HPV16 DNAimmortalized human cervical epithelial cells and selectively inhibits viral gene expression . Int. J. Cancer , 82 , 286 – 292 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Zwerschke , W. and Jansen‐Durr , P.Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins . Adv. Cancer Res. , 78 , 1 – 29 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Buckbinder , L. , Talbott , R. , Seizinger , B. R. and Kley , N.Gene regulation by temperature‐sensitive p53 mutants: identification of p53 response genes . Proc. Natl. Acad. Sci. USA , 91 , 10640 – 10644 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. ) Balint , E. , Bates , S. and Vousden , K. H.Mdm2 binds p73 alpha without targeting degradation . Oncogene , 18 , 3923 – 3929 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) El‐Deiry , W. S. , Harper , J. W. , O'Connor , P. M. , Velculescu , V. E. , Canman , C. E. , Jackman , J. , Pietenpol , J. A. , Burrell , M. , Hill , D. E. , Wang , Y. , Wiman , K. G. , Mercer , W. E. , Kastan , M. B. , Kohn , K. W. , Elledge , S. J. , Kinzler , K. W. and Vogelstein , B.WAF1/CIP1 is induced in p53‐mediated G1 arrest and apoptosis . Cancer Res. , 54 , 1169 – 1174 ( 1994. ). [PubMed] [Google Scholar]
  • 18. ) Kastan , M. B. , Canman , C. E. and Leonard , C. J.p53, cell cycle control and apoptosis: implications for cancer . Cancer Metastasis Rev. , 14 , 3 – 15 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Fujiwara , T. , Grimm , E. A. , Mukhopadhyay , T. , Cai , D. W. , Owen‐Schaub , L. B. and Roth , J. A.A retroviral wild‐type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis . Cancer Res. , 54 , 4129 – 4133 ( 1993. ). [PubMed] [Google Scholar]
  • 20. ) Casey , G. , Lo‐Hsueh , M. , Lopez , M. E. , Vodelstein , B. and Stanbridge , E. J.Growth suppression of human breast cancer cells by the introduction of a wild‐type p53 gene . Oncogene , 6 , 1791 – 1797 ( 1991. ). [PubMed] [Google Scholar]
  • 21. ) Diller , L. , Kassel , J. , Nelson , C. E. , Gryka , M. A. , Litwak , G. , Gebhardt , M. , Bressac , B. , Ozturk , M. , Baker , S. J. , Vogelstein , B. and Friend , S.H. p53 functions as a cell cycle control protein in osteosarcomas . Mol. Cell. Biol. , 10 , 5772 – 5781 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. ) Graham , F. L. and Prevec , L.Methods for construction of adenovirus vectors . Mol. Biotechnol. , 3 , 207 – 230 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Spitkovsky , D. , Aengeneyndt , F. , Braspenning , J. and von Knebel Doeberitz , M.p53‐independent growth regulation of cervical cancer cells by the papillomavirus E6 oncogene . Oncogene , 13 , 1027 – 1035 ( 1996. ). [PubMed] [Google Scholar]
  • 24. ) Howley , P. M. , Scheffner , M. , Huibregtse , J. and Munger , K.Oncoproteins encoded by the cancer‐associated human papillomavirus target the products of the retinoblastoma and p53 tumor suppressor genes . Cold Spring Harbor Symp. , 56 , 149 – 155 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Heck , D. V. , Yee , C. L. , Howley , P. M. and Munger , K.Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses . Proc. Natl. Acad. Sci. USA , 89 , 4442 – 4446 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Wolf , J. K. , Mills , G. B. , Bazzet , L. , Bast , R. C. , Jr. , Roth , J. A. and Gershenson , D. M.Adenovirus‐mediated p53 growth inhibition of ovarian cancer cells is independent of endogenous p53 status . Gynecol. Oncol. , 75 , 261 – 266 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Roth , J. A. , Swisher , S. G. and Meyn , R. E.p53 tumor suppressor gene therapy for cancer . Oncology , 10 , 148 – 154 ( 1999. ). [PubMed] [Google Scholar]
  • 28. ) Su , P. F. and Wu , F. Y.Differential suppression of the tumorigenicity of HeLa and SiHa cells by adeno‐associated virus . Br. J. Cancer , 73 , 1533 – 1537 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. ) Sionov , R. V. and Haupt , Y.The cellular response to p53: the decision between life and death . Oncogene , 18 , 6145 – 6157 ( 1999. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Shao , J. , Fujiwara , T. , Kadowaki , Y. , Fukazawa , T. , Waku , T. , Itoshima , T. , Yamatsuji , T. , Nishizaki , M. , Roth , J. A. and Tanaka , N.Overexpression of the wild‐type p53 gene inhibits NF‐kappaB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells . Oncogene , 19 , 726 – 736 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Nishizaki , M. , Meyn , R. E. , Levy , L. B. , Atkinson , E. N. , White , R. A. , Roth , J. A. and Ji , L.Synergistic inhibition of human lung cancer cell growth by adenovirus‐mediated wild type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin . Cancer Res. , 7 , 2887 – 2897 ( 2001. ). [PubMed] [Google Scholar]
  • 32. ) Kawabe , S. , Munshi , A. , Zumstein , L. A. , Wilson , D. R. , Roth , J. A. and Meyn , R. E.Adenovirus‐mediated wild type p53 gene expression radiosensitizes non‐small cell lung cancer cells but not normal lung fibroblasts . Int. J. Radiat. Biol. , 77 , 185 – 194 ( 2001. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Robles , A. I. , Bemmels , N. A. , Foraker , A. B. and Harris , C. C.APAF‐1 is a transcriptional target of p53 in DNA damage‐induced apoptosis . Cancer Res. , 61 , 6660 – 6664 ( 2001. ). [PubMed] [Google Scholar]
  • 34. ) St. John , L. S. , Sauter , E. R. , Herlyn , M. , Litwin , S. and Adler‐Storthz , K.Endogenous p53 gene status predicts the response of human squamous cell carcinoma to wild‐type p53 . Cancer Gene Ther. , 7 , 749 – 756 ( 2000. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Schwartz , D. and Rotter , V.p53‐dependent cell cycle control: response to genotoxic stress. Semin . Cancer Biol. , 8 , 325 – 336 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) El‐Deiry , W. S. , Tokino , T. , Velculescu , V. E. , Levy , D. B. , Parsons , R. , Trent , J. M. , Lin , D. , Mercer , W. E. , Kinzler , K. W. and Vogelstein , B.WAF1, a potent mediator of p53 tumor suppression . Cell , 75 , 817 – 825 ( 1993. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES