Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Mar 6;74(Pt 4):465–468. doi: 10.1107/S2056989018003286

Crystal structure of (20S)-21-[4-(2-hy­droxy­propan-2-yl)-1H-1,2,3-triazol-4-yl]-20-(4-methyl­pent­yl)-5-pregnen-3β-ol with an unknown solvate

Hugo Santalla a,*, Saray Argibay b
PMCID: PMC5946969  PMID: 29765747

In the title analogue of cholesterol, a new chain including an inter­mediate triazole and a tertiary hydroxyl group in the terminal position has been added at position 20, inducing a change in its stereochemistry.

Keywords: crystal structure, cholesterol, gemini, analogue, hydrogen bonding

Abstract

In the title cholesterol analogue, [systematic name: (3S,8S,9S,10R,13S,14S,17R)-17-{(S)-1-[4-(2-hy­droxy­propan-2-yl)-1H-1,2,3-triazol-1-yl]-6-methyl­heptan-2-yl}-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra­deca­hydro-1H-cyclo­penta­[a]phenanthren-3-ol] C32H53N3O2, a new chain, including an inter­mediate triazole and a tertiary hydroxyl group in the terminal position, has been added at position 20 inducing a change in its stereochemistry. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming layers lying parallel to (-201) and enclosing R 4 4(36) ring motifs. The isopropyl group is disordered about two positions with a refined occupancy ratio of 0.763 (5):0.237 (5). A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek (2015). Acta Cryst. C71, 9–18). The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

Chemical context  

The nuclear receptors (NRs) are a large family of ligand-regulated transcriptional factors and include the receptors for steroid hormones, thyroid hormones, lipophilic vitamins and cholesterol metabolites (Mangelsdorf & Evans, 1995; Burris et al., 2013). Approximately half of NRs are classified as orphan NRs because they do not have well-characterized ligands (Hummasti & Tontonoz, 2008). Orphan NRs are an active area of research partly due to their potential for clinical agent development for various diseases (Mohan & Heyman, 2003). Recent studies have demonstrated that retinoic acid receptor-related orphan receptors (RORs) have been implicated in several physiological and pathological processes.graphic file with name e-74-00465-scheme1.jpg

Using the methodology developed in our research group for the synthesis of gemini-type vitamin D analogues (Fall et al., 2011; Pazos et al., 2016; Santalla et al., 2017) (modified with a double side chain), we can access new cholesterol analogues that can be of great inter­est in inter­actions with RORs. In this study, we present the structure of a new analogue of cholesterol (2), with eight stereocentres and a double side chain based on the aliphatic chain of cholesterol on the one hand and on the incorporation of a triazole ring on the other, since many aza­steroids have proven to be biologically active. For example, some of them act as 5α-reductase inhibitors, anti­fungal agents and γ-amino­butyric acid (GABA) receptor modulators (Tian et al., 1995; Burbiel & Bracher, 2003; Covey et al., 2000).

Structural commentary  

In the title cholesterol gemini-type analogue 2, illustrated in Fig. 1, the four aliphatic rings are structurally identical to those in the cholesterol hormone, i-cholesteryl methyl ether (Bernal et al., 1940; Wang et al., 2014). In the title compound, atom C20 has a different stereochemistry than in the cholesterol mol­ecule, as a result of stereospecific reactions of the synthetic pathway. Furthermore, a new chain, including an inter­mediate triazole and a tertiary hydroxyl group in the terminal position, has been added at atom C21. Although some steroid analogues with a triazole ring have been synthesized (Seck et al., 2015), there are no references to any crystallographic analyses of gemini cholesterols with a triazole group at position C21 (Cambridge Structural Database, version 5.39, last update February 2018; Groom et al., 2016). The terminal OH group (C2′/C3′/O3′) is inclined to the triazole ring (N1′–N3′/C1′/C2′) mean plane by 7.2 (2) °.

Figure 1.

Figure 1

The mol­ecular structure of compound 2, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. In this and other figures the minor disorder component atoms (C24B–C27B) of the aliphatic chain at C20 have been omitted for clarity.

Supra­molecular features  

The mol­ecular association in the title compound 2, is based on hydrogen bonding involving the hydroxyl and triazole groups (Table 1). These inter­molecular links are present in the form of two chains. The first, a C(18) chain (Fig. 2), is formed by the O3—H3⋯O3’i hydrogen bond with O3—H3 acting as the donor and atom O3′ acting as the acceptor. The second is a C(5) chain, in which the triazole group participates, and is formed by hydrogen bond O3′—H3′⋯N3’ii (Fig. 3); the alcohol group O3′—H3′ acts as the donor towards the acceptor atom N3′. The combination of these inter­actions results in the formation of layers lying parallel to the (Inline graphic01) plane, as shown in Fig. 4, and encloses Inline graphic(36) ring motifs, details of which are illustrated in Fig. 5.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O3′i 0.84 2.00 2.811 (3) 162
O3′—H3′⋯N3′ii 0.84 1.97 2.810 (2) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the O—H⋯O hydrogen bonded C(18) chain propagating along the [102] direction (blue dashed lines; see Table 1).

Figure 3.

Figure 3

A view of the O—H⋯N hydrogen bonded C(5) chain propagating along the [010] direction (blue dashed lines; see Table 1).

Figure 4.

Figure 4

A view approximately normal to the (Inline graphic01) plane of the crystal packing of compound 2. Hydrogen bonds (see Table 1) are shown as dashed lines, and only H atoms H3 and H3′ have been included.

Figure 5.

Figure 5

A partial view of the crystal packing of compound 2, showing details of the O—H⋯O and O—H⋯N hydrogen bonds forming an Inline graphic(36) ring motif (blue dashed lines; see Table 1).

Synthesis and crystallization  

Compound 2: details of the synthesis are illustrated in Fig. 6. To a solution of triazole 1 (12 mg, 0.022 mmol;) in tBuOH (2 ml) and water (1 ml) was added p-TsOH (5 mg) and the mixture was heated to 353 K for 3 h. The reaction mixture was diluted with water and then extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were dried with Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography (50% EtOAc/hexa­ne) to afford the title diol (11 mg, 99%). Compound 2 was recrystallized as colourless prisms by slow evaporation of a solvent mixture of di­chloro­methane/diethyl ether (1:1) at room temperature [yield 99%; m.p. 778 K; R f: 0.10 (30% EtOAc/hexa­ne)].

Figure 6.

Figure 6

The synthesis of the title compound 2.

Spectroscopic data for 2: MS–ESI [m/z (%)]: 534.40 (10) [M + + Na], 512.42 (100) [M + + H], 494.41 (31) [M + − OMe]. 1H NMR (CDCl3, δ): 7.36 (1H, s, H-1′), 5.35 (1H, s, H-6), 4.32 (1H, m, H-21), 4.23 (1H, m, H-21), 3.52 (1H, m, H-3), 2.26 (3H, m), 1.94 (5H, m), 1.83 (5H, m), 1.48 (7H, m), 1.27 (4H, m), 1.23 (6H, d, J = 9.2 Hz, CH3-4′/5′), 1.06 (3H, m), 1.00 (3H, s, CH3-18), 0.84 (6H, d, J = 6.6 Hz, CH3-26/27), 0.73 (6H, s, CH3-19) ppm. 13C NMR (CDCl3, δ): 140.74 (C-5), 128.78 (C-2′), 121.51 (CH-6), 112.41 (C-1′), 77.20 (C-3′), 71.73 (CH-3), 56.38 (CH-14), 52.30 (CH2-21), 50.25 (CH), 49.99 (CH), 42.73 (C-13), 42.23 (CH2), 41.66 (CH), 39.20 (CH2), 39.16 (CH2), 37.23 (CH2), 36.48 (C-10), 31.93 (CH), 31.80 (CH2), 31.61 (CH2), 30.50 (CH3-4′/5′), 30.47 (CH3-4′/5′), 29.30 (CH2), 27.85 (CH2), 27.82 (CH), 24.26 (CH2), 22.69 (CH3-26/27), 22.52 (CH3-26/27), 22.38 (CH2), 21.07 (CH2), 19.37 (CH3-18), 12.08 (CH3-19) p.p.m.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The O—H and C-bound hydrogen atoms were positioned geometrically (O–H = 0.84 Å, C—H = 0.95–1.00 Å) and refined using a riding model with U iso(H) = 1.5U eq(O-hydroxyl, C-meth­yl) and 1.2U eq(C) for other H atoms. The isopropyl group is disordered about two positions with a refined occupancy ratio of 0.763 (5):0.237 (5) for atoms C24–C27/C24B–C27B.

Table 2. Experimental details.

Crystal data
Chemical formula C32H53N3O
M r 511.77
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 20.1130 (15), 10.3898 (7), 15.5934 (12)
β (°) 97.452 (2)
V3) 3231.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 85013, 8040, 7629
R int 0.029
(sin θ/λ)max−1) 0.670
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.122, 1.02
No. of reflections 8040
No. of parameters 363
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.31
Absolute structure Flack x determined using 3430 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.1 (3)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), SHELXL2016/6 (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015): volume ca 269 Å3 for 96 electrons count per unit cell. There is possibly one mol­ecule of diethyl ether per mol­ecule of the title compound 2. The formula mass and unit-cell characteristics were not taken into account during refinement.

Supplementary Material

Crystal structure: contains datablock(s) 2, Global. DOI: 10.1107/S2056989018003286/ex2005sup1.cif

e-74-00465-sup1.cif (2.5MB, cif)

CCDC reference: 1825767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work of the MS and X-ray divisions of the research support service of the University of Vigo (CACTI) is gratefully acknowledged.

supplementary crystallographic information

Crystal data

C32H53N3O F(000) = 1128
Mr = 511.77 Dx = 1.052 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 20.1130 (15) Å Cell parameters from 9096 reflections
b = 10.3898 (7) Å θ = 2.5–28.4°
c = 15.5934 (12) Å µ = 0.07 mm1
β = 97.452 (2)° T = 100 K
V = 3231.0 (4) Å3 Prism, colourless
Z = 4 0.35 × 0.30 × 0.24 mm

Data collection

Bruker D8 Venture Photon 100 CMOS diffractometer 7629 reflections with I > 2σ(I)
φ and ω scans Rint = 0.029
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 28.4°, θmin = 2.5°
Tmin = 0.688, Tmax = 0.746 h = −26→26
85013 measured reflections k = −13→13
8040 independent reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0729P)2 + 1.6246P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.008
8040 reflections Δρmax = 0.46 e Å3
363 parameters Δρmin = −0.31 e Å3
5 restraints Absolute structure: Flack x determined using 3430 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.1 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O3 0.35759 (11) 0.2665 (4) 0.82807 (13) 0.0775 (9)
H3 0.329808 0.292008 0.860194 0.116*
O3' −0.21535 (8) −0.17225 (15) −0.03536 (11) 0.0324 (3)
H3' −0.246827 −0.224255 −0.031655 0.049*
N1' −0.07599 (8) 0.09363 (17) 0.07066 (10) 0.0246 (3)
N2' −0.11583 (9) 0.19700 (17) 0.06509 (12) 0.0296 (4)
N3' −0.17644 (9) 0.15741 (18) 0.03258 (12) 0.0291 (4)
C1 0.21530 (12) 0.1479 (3) 0.66464 (13) 0.0399 (5)
H1A 0.168814 0.121675 0.670664 0.048*
H1B 0.238521 0.072198 0.643980 0.048*
C1' −0.11028 (11) −0.0135 (2) 0.04215 (12) 0.0257 (4)
H1' −0.093554 −0.098775 0.039622 0.031*
C2 0.25074 (14) 0.1869 (4) 0.75364 (15) 0.0538 (8)
H2A 0.226878 0.260248 0.776283 0.065*
H2B 0.250049 0.114006 0.794424 0.065*
C2' −0.17475 (10) 0.02869 (19) 0.01766 (12) 0.0254 (4)
C3 0.32250 (13) 0.2246 (3) 0.74675 (15) 0.0472 (7)
H3A 0.346192 0.147179 0.727638 0.057*
C3' −0.23710 (11) −0.0443 (2) −0.01857 (14) 0.0305 (4)
C4 0.32511 (12) 0.3296 (3) 0.67895 (15) 0.0388 (5)
H4A 0.307741 0.410699 0.700939 0.047*
H4B 0.372452 0.344304 0.670450 0.047*
C4' −0.28702 (14) −0.0460 (3) 0.0473 (2) 0.0491 (7)
H4'A −0.328751 −0.087103 0.021575 0.074*
H4'B −0.296399 0.042503 0.063909 0.074*
H4'C −0.267970 −0.094362 0.098575 0.074*
C5 0.28505 (10) 0.2978 (2) 0.59230 (13) 0.0290 (4)
C5' −0.26936 (15) 0.0171 (3) −0.1032 (2) 0.0484 (7)
H5'A −0.236719 0.019264 −0.144712 0.073*
H5'B −0.283572 0.104994 −0.091894 0.073*
H5'C −0.308430 −0.033800 −0.127195 0.073*
C6 0.31207 (10) 0.3053 (2) 0.51844 (14) 0.0313 (4)
H6 0.358126 0.327892 0.522258 0.038*
C7 0.27513 (10) 0.2807 (2) 0.43003 (13) 0.0300 (4)
H7A 0.289590 0.196862 0.408602 0.036*
H7B 0.286977 0.348379 0.389965 0.036*
C8 0.19900 (9) 0.27924 (19) 0.42977 (12) 0.0231 (4)
H8 0.182769 0.369334 0.435870 0.028*
C9 0.18246 (9) 0.1983 (2) 0.50722 (11) 0.0223 (3)
H9 0.204785 0.113112 0.502406 0.027*
C10 0.21297 (10) 0.2561 (2) 0.59538 (13) 0.0275 (4)
C11 0.10698 (10) 0.1703 (2) 0.50292 (12) 0.0293 (4)
H11A 0.100051 0.107618 0.548748 0.035*
H11B 0.083522 0.250810 0.514914 0.035*
C12 0.07549 (9) 0.1166 (2) 0.41518 (12) 0.0257 (4)
H12A 0.026664 0.105256 0.415649 0.031*
H12B 0.095091 0.031154 0.405776 0.031*
C13 0.08749 (9) 0.20702 (19) 0.34066 (11) 0.0222 (3)
C14 0.16431 (9) 0.2218 (2) 0.34556 (11) 0.0237 (4)
H14 0.182393 0.132477 0.342725 0.028*
C15 0.17510 (11) 0.2859 (2) 0.26021 (13) 0.0320 (4)
H15A 0.219280 0.262394 0.243283 0.038*
H15B 0.172312 0.380801 0.264597 0.038*
C16 0.11729 (10) 0.2325 (2) 0.19454 (13) 0.0300 (4)
H16A 0.135361 0.177939 0.150946 0.036*
H16B 0.091499 0.304031 0.164280 0.036*
C17 0.07153 (8) 0.1516 (2) 0.24737 (11) 0.0212 (3)
H17 0.088297 0.060868 0.248789 0.025*
C18 0.05172 (11) 0.3366 (2) 0.34758 (15) 0.0333 (5)
H18A 0.056778 0.389264 0.296676 0.050*
H18B 0.071597 0.381738 0.399894 0.050*
H18C 0.003982 0.321512 0.350577 0.050*
C19 0.17159 (14) 0.3708 (3) 0.62128 (19) 0.0494 (7)
H19A 0.164581 0.432269 0.573271 0.074*
H19B 0.195719 0.413239 0.672214 0.074*
H19C 0.128087 0.340122 0.634875 0.074*
C20 −0.00253 (9) 0.1494 (2) 0.20600 (11) 0.0231 (3)
H20 −0.019403 0.239995 0.205211 0.028*
C21 −0.00603 (9) 0.1048 (2) 0.11160 (12) 0.0265 (4)
H21A 0.018056 0.167241 0.078850 0.032*
H21B 0.016486 0.020320 0.109684 0.032*
C22 −0.04890 (9) 0.0678 (2) 0.25508 (12) 0.0255 (4)
H22A −0.048827 0.105022 0.313526 0.031*
H22B −0.095151 0.074933 0.224772 0.031*
C23 −0.03115 (10) −0.0746 (2) 0.26492 (14) 0.0304 (4)
H23A 0.016646 −0.084771 0.288671 0.036*
H23B −0.038774 −0.118011 0.207982 0.036*
C24 −0.0767 (2) −0.1347 (4) 0.3276 (2) 0.0389 (7) 0.763 (5)
H24A −0.066712 −0.092988 0.384918 0.047* 0.763 (5)
H24B −0.124162 −0.116555 0.305481 0.047* 0.763 (5)
C25 −0.06732 (19) −0.2815 (4) 0.3385 (3) 0.0428 (8) 0.763 (5)
H25 −0.093048 −0.306183 0.386759 0.051* 0.763 (5)
C26 0.0043 (3) −0.3176 (4) 0.3687 (5) 0.0768 (17) 0.763 (5)
H26A 0.023690 −0.255904 0.412492 0.115* 0.763 (5)
H26B 0.030030 −0.316282 0.319486 0.115* 0.763 (5)
H26C 0.005819 −0.404206 0.393806 0.115* 0.763 (5)
C27 −0.0969 (3) −0.3579 (8) 0.2627 (4) 0.0667 (14) 0.763 (5)
H27A −0.069611 −0.347475 0.215460 0.100* 0.763 (5)
H27B −0.142641 −0.327817 0.243705 0.100* 0.763 (5)
H27C −0.098069 −0.449028 0.278740 0.100* 0.763 (5)
C24B −0.0510 (7) −0.1677 (11) 0.3327 (8) 0.0389 (7) 0.237 (5)
H24B −0.028169 −0.138464 0.389453 0.047* 0.237 (5)
H24A −0.099715 −0.156564 0.334308 0.047* 0.237 (5)
C25B −0.0384 (7) −0.3100 (11) 0.3271 (8) 0.0428 (8) 0.237 (5)
H25 0.008894 −0.317481 0.314094 0.051* 0.237 (5)
C26B −0.0377 (6) −0.3632 (17) 0.4122 (10) 0.073 (5) 0.237 (5)
H26A −0.079316 −0.340174 0.434835 0.109* 0.237 (5)
H26B 0.000683 −0.328578 0.450387 0.109* 0.237 (5)
H26C −0.033923 −0.457077 0.409337 0.109* 0.237 (5)
C27B −0.0815 (13) −0.359 (3) 0.2463 (14) 0.0667 (14) 0.237 (5)
H27A −0.098369 −0.285928 0.210137 0.100* 0.237 (5)
H27B −0.119378 −0.408162 0.262993 0.100* 0.237 (5)
H27C −0.054504 −0.414775 0.213602 0.100* 0.237 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0457 (11) 0.155 (3) 0.0296 (9) −0.0415 (15) −0.0044 (8) −0.0143 (13)
O3' 0.0347 (8) 0.0252 (7) 0.0361 (8) −0.0052 (6) 0.0007 (6) −0.0033 (6)
N1' 0.0255 (8) 0.0276 (8) 0.0197 (7) 0.0004 (7) −0.0010 (6) 0.0009 (6)
N2' 0.0305 (9) 0.0242 (8) 0.0308 (8) 0.0007 (7) −0.0081 (7) 0.0003 (7)
N3' 0.0286 (8) 0.0239 (8) 0.0315 (8) 0.0002 (7) −0.0087 (7) 0.0007 (7)
C1 0.0368 (11) 0.0615 (15) 0.0200 (9) −0.0227 (11) −0.0010 (8) 0.0035 (10)
C1' 0.0320 (10) 0.0240 (9) 0.0206 (8) 0.0007 (7) 0.0009 (7) −0.0010 (7)
C2 0.0421 (13) 0.097 (2) 0.0215 (10) −0.0329 (14) −0.0009 (9) 0.0020 (12)
C2' 0.0296 (10) 0.0249 (9) 0.0205 (8) −0.0011 (7) −0.0017 (7) 0.0010 (7)
C3 0.0368 (12) 0.079 (2) 0.0243 (10) −0.0214 (13) −0.0031 (9) −0.0042 (11)
C3' 0.0305 (10) 0.0242 (10) 0.0351 (10) −0.0036 (8) −0.0025 (8) −0.0032 (8)
C4 0.0298 (10) 0.0524 (14) 0.0333 (11) −0.0169 (10) 0.0006 (8) −0.0112 (10)
C4' 0.0425 (14) 0.0390 (13) 0.0687 (18) −0.0098 (11) 0.0181 (13) −0.0177 (13)
C5 0.0233 (9) 0.0337 (11) 0.0293 (9) −0.0103 (8) 0.0010 (7) −0.0031 (8)
C5' 0.0464 (14) 0.0374 (13) 0.0533 (15) −0.0052 (10) −0.0250 (12) 0.0007 (11)
C6 0.0219 (9) 0.0403 (12) 0.0314 (10) −0.0115 (8) 0.0020 (7) −0.0001 (8)
C7 0.0220 (9) 0.0415 (11) 0.0267 (9) −0.0094 (8) 0.0042 (7) 0.0023 (8)
C8 0.0203 (8) 0.0254 (9) 0.0237 (8) −0.0046 (7) 0.0032 (6) 0.0016 (7)
C9 0.0196 (8) 0.0296 (9) 0.0179 (7) −0.0062 (7) 0.0032 (6) −0.0027 (7)
C10 0.0235 (9) 0.0367 (11) 0.0223 (8) −0.0075 (8) 0.0032 (7) −0.0060 (8)
C11 0.0211 (8) 0.0483 (13) 0.0190 (8) −0.0097 (8) 0.0048 (6) −0.0028 (8)
C12 0.0198 (8) 0.0396 (11) 0.0178 (8) −0.0082 (7) 0.0029 (6) 0.0010 (7)
C13 0.0190 (8) 0.0292 (9) 0.0184 (7) −0.0006 (7) 0.0026 (6) 0.0003 (7)
C14 0.0195 (8) 0.0331 (10) 0.0190 (8) −0.0041 (7) 0.0041 (6) 0.0017 (7)
C15 0.0278 (9) 0.0457 (12) 0.0229 (9) −0.0083 (9) 0.0040 (7) 0.0066 (8)
C16 0.0257 (9) 0.0430 (12) 0.0215 (8) −0.0027 (8) 0.0042 (7) 0.0063 (8)
C17 0.0181 (8) 0.0287 (9) 0.0171 (7) 0.0013 (7) 0.0032 (6) 0.0018 (7)
C18 0.0301 (10) 0.0339 (11) 0.0349 (10) 0.0067 (9) 0.0007 (8) −0.0065 (9)
C19 0.0378 (13) 0.0621 (17) 0.0473 (14) 0.0038 (12) 0.0023 (11) −0.0304 (13)
C20 0.0196 (8) 0.0314 (9) 0.0179 (7) 0.0026 (7) 0.0008 (6) 0.0004 (7)
C21 0.0218 (8) 0.0377 (10) 0.0196 (8) −0.0001 (8) 0.0015 (6) −0.0010 (8)
C22 0.0169 (8) 0.0391 (11) 0.0205 (8) 0.0018 (7) 0.0026 (6) −0.0010 (7)
C23 0.0230 (9) 0.0369 (11) 0.0312 (10) −0.0016 (8) 0.0031 (7) 0.0063 (8)
C24 0.037 (2) 0.0354 (18) 0.0487 (16) 0.0075 (13) 0.0199 (15) 0.0068 (13)
C25 0.0342 (19) 0.0376 (17) 0.0599 (19) −0.0024 (14) 0.0192 (15) 0.0051 (14)
C26 0.057 (3) 0.043 (2) 0.129 (5) 0.0094 (19) 0.006 (3) 0.025 (3)
C27 0.080 (4) 0.072 (2) 0.053 (3) −0.037 (3) 0.029 (2) −0.010 (2)
C24B 0.037 (2) 0.0354 (18) 0.0487 (16) 0.0075 (13) 0.0199 (15) 0.0068 (13)
C25B 0.0342 (19) 0.0376 (17) 0.0599 (19) −0.0024 (14) 0.0192 (15) 0.0051 (14)
C26B 0.027 (5) 0.086 (11) 0.103 (12) 0.012 (6) −0.003 (6) −0.044 (10)
C27B 0.080 (4) 0.072 (2) 0.053 (3) −0.037 (3) 0.029 (2) −0.010 (2)

Geometric parameters (Å, º)

O3—C3 1.437 (3) C13—C17 1.559 (2)
O3—H3 0.8400 C14—C15 1.529 (3)
O3'—C3' 1.434 (3) C14—H14 1.0000
O3'—H3' 0.8400 C15—C16 1.549 (3)
N1'—N2' 1.336 (2) C15—H15A 0.9900
N1'—C1' 1.354 (3) C15—H15B 0.9900
N1'—C21 1.472 (2) C16—C17 1.559 (3)
N2'—N3' 1.324 (2) C16—H16A 0.9900
N3'—C2' 1.359 (3) C16—H16B 0.9900
C1—C2 1.530 (3) C17—C20 1.545 (2)
C1—C10 1.555 (3) C17—H17 1.0000
C1—H1A 0.9900 C18—H18A 0.9800
C1—H1B 0.9900 C18—H18B 0.9800
C1'—C2' 1.375 (3) C18—H18C 0.9800
C1'—H1' 0.9500 C19—H19A 0.9800
C2—C3 1.513 (3) C19—H19B 0.9800
C2—H2A 0.9900 C19—H19C 0.9800
C2—H2B 0.9900 C20—C21 1.536 (3)
C2'—C3' 1.511 (3) C20—C22 1.536 (3)
C3—C4 1.525 (4) C20—H20 1.0000
C3—H3A 1.0000 C21—H21A 0.9900
C3'—C4' 1.526 (4) C21—H21B 0.9900
C3'—C5' 1.532 (3) C22—C23 1.525 (3)
C4—C5 1.517 (3) C22—H22A 0.9900
C4—H4A 0.9900 C22—H22B 0.9900
C4—H4B 0.9900 C23—C24B 1.524 (11)
C4'—H4'A 0.9800 C23—C24 1.554 (4)
C4'—H4'B 0.9800 C23—H23A 0.9901
C4'—H4'C 0.9800 C23—H23B 0.9899
C5—C6 1.338 (3) C24—C25 1.544 (5)
C5—C10 1.520 (3) C24—H24A 0.9900
C5'—H5'A 0.9800 C24—H24B 0.9900
C5'—H5'B 0.9800 C25—C27 1.484 (7)
C5'—H5'C 0.9800 C25—C26 1.504 (6)
C6—C7 1.501 (3) C25—H25 1.0000
C6—H6 0.9500 C26—H26A 0.9800
C7—C8 1.531 (3) C26—H26B 0.9800
C7—H7A 0.9900 C26—H26C 0.9800
C7—H7B 0.9900 C27—H27A 0.9800
C8—C14 1.526 (3) C27—H27B 0.9800
C8—C9 1.543 (3) C27—H27C 0.9800
C8—H8 1.0000 C24B—C25B 1.504 (15)
C9—C11 1.539 (3) C24B—H24B 0.9900
C9—C10 1.552 (2) C24B—H24A 0.9900
C9—H9 1.0000 C25B—C26B 1.436 (19)
C10—C19 1.538 (3) C25B—C27B 1.52 (2)
C11—C12 1.536 (3) C25B—H25 1.0000
C11—H11A 0.9900 C26B—H26A 0.9800
C11—H11B 0.9900 C26B—H26B 0.9800
C12—C13 1.537 (3) C26B—H26C 0.9800
C12—H12A 0.9900 C27B—H27A 0.9800
C12—H12B 0.9900 C27B—H27B 0.9800
C13—C18 1.537 (3) C27B—H27C 0.9800
C13—C14 1.545 (2)
C3—O3—H3 109.5 C15—C14—H14 105.8
C3'—O3'—H3' 109.5 C13—C14—H14 105.8
N2'—N1'—C1' 111.34 (16) C14—C15—C16 103.90 (16)
N2'—N1'—C21 119.75 (17) C14—C15—H15A 111.0
C1'—N1'—C21 128.66 (18) C16—C15—H15A 111.0
N3'—N2'—N1' 106.85 (16) C14—C15—H15B 111.0
N2'—N3'—C2' 109.22 (17) C16—C15—H15B 111.0
C2—C1—C10 114.0 (2) H15A—C15—H15B 109.0
C2—C1—H1A 108.7 C15—C16—C17 106.74 (15)
C10—C1—H1A 108.7 C15—C16—H16A 110.4
C2—C1—H1B 108.7 C17—C16—H16A 110.4
C10—C1—H1B 108.7 C15—C16—H16B 110.4
H1A—C1—H1B 107.6 C17—C16—H16B 110.4
N1'—C1'—C2' 104.51 (18) H16A—C16—H16B 108.6
N1'—C1'—H1' 127.7 C20—C17—C16 112.98 (15)
C2'—C1'—H1' 127.7 C20—C17—C13 117.75 (14)
C3—C2—C1 109.9 (2) C16—C17—C13 103.26 (15)
C3—C2—H2A 109.7 C20—C17—H17 107.4
C1—C2—H2A 109.7 C16—C17—H17 107.4
C3—C2—H2B 109.7 C13—C17—H17 107.4
C1—C2—H2B 109.7 C13—C18—H18A 109.5
H2A—C2—H2B 108.2 C13—C18—H18B 109.5
N3'—C2'—C1' 108.07 (18) H18A—C18—H18B 109.5
N3'—C2'—C3' 121.33 (19) C13—C18—H18C 109.5
C1'—C2'—C3' 130.60 (19) H18A—C18—H18C 109.5
O3—C3—C2 112.3 (2) H18B—C18—H18C 109.5
O3—C3—C4 109.8 (2) C10—C19—H19A 109.5
C2—C3—C4 110.7 (2) C10—C19—H19B 109.5
O3—C3—H3A 108.0 H19A—C19—H19B 109.5
C2—C3—H3A 108.0 C10—C19—H19C 109.5
C4—C3—H3A 108.0 H19A—C19—H19C 109.5
O3'—C3'—C2' 105.98 (17) H19B—C19—H19C 109.5
O3'—C3'—C4' 110.79 (19) C21—C20—C22 110.83 (17)
C2'—C3'—C4' 109.92 (19) C21—C20—C17 109.05 (14)
O3'—C3'—C5' 109.48 (19) C22—C20—C17 114.50 (15)
C2'—C3'—C5' 110.59 (19) C21—C20—H20 107.4
C4'—C3'—C5' 110.0 (2) C22—C20—H20 107.4
C5—C4—C3 113.54 (19) C17—C20—H20 107.4
C5—C4—H4A 108.9 N1'—C21—C20 111.20 (15)
C3—C4—H4A 108.9 N1'—C21—H21A 109.4
C5—C4—H4B 108.9 C20—C21—H21A 109.4
C3—C4—H4B 108.9 N1'—C21—H21B 109.4
H4A—C4—H4B 107.7 C20—C21—H21B 109.4
C3'—C4'—H4'A 109.5 H21A—C21—H21B 108.0
C3'—C4'—H4'B 109.5 C23—C22—C20 115.88 (16)
H4'A—C4'—H4'B 109.5 C23—C22—H22A 108.3
C3'—C4'—H4'C 109.5 C20—C22—H22A 108.3
H4'A—C4'—H4'C 109.5 C23—C22—H22B 108.3
H4'B—C4'—H4'C 109.5 C20—C22—H22B 108.3
C6—C5—C4 121.72 (18) H22A—C22—H22B 107.4
C6—C5—C10 122.64 (18) C24B—C23—C22 127.3 (5)
C4—C5—C10 115.64 (18) C22—C23—C24 107.7 (2)
C3'—C5'—H5'A 109.5 C24B—C23—H23A 90.1
C3'—C5'—H5'B 109.5 C22—C23—H23A 110.2
H5'A—C5'—H5'B 109.5 C24—C23—H23A 110.2
C3'—C5'—H5'C 109.5 C24B—C23—H23B 108.0
H5'A—C5'—H5'C 109.5 C22—C23—H23B 110.2
H5'B—C5'—H5'C 109.5 C24—C23—H23B 110.2
C5—C6—C7 124.95 (18) H23A—C23—H23B 108.5
C5—C6—H6 117.5 C25—C24—C23 113.1 (3)
C7—C6—H6 117.5 C25—C24—H24A 109.0
C6—C7—C8 112.33 (17) C23—C24—H24A 109.0
C6—C7—H7A 109.1 C25—C24—H24B 109.0
C8—C7—H7A 109.1 C23—C24—H24B 109.0
C6—C7—H7B 109.1 H24A—C24—H24B 107.8
C8—C7—H7B 109.1 C27—C25—C26 112.6 (5)
H7A—C7—H7B 107.9 C27—C25—C24 114.2 (5)
C14—C8—C7 110.59 (16) C26—C25—C24 112.3 (3)
C14—C8—C9 109.85 (15) C27—C25—H25 105.6
C7—C8—C9 108.69 (16) C26—C25—H25 105.6
C14—C8—H8 109.2 C24—C25—H25 105.6
C7—C8—H8 109.2 C25—C26—H26A 109.5
C9—C8—H8 109.2 C25—C26—H26B 109.5
C11—C9—C8 112.38 (15) H26A—C26—H26B 109.5
C11—C9—C10 112.73 (15) C25—C26—H26C 109.5
C8—C9—C10 112.47 (15) H26A—C26—H26C 109.5
C11—C9—H9 106.2 H26B—C26—H26C 109.5
C8—C9—H9 106.2 C25—C27—H27A 109.5
C10—C9—H9 106.2 C25—C27—H27B 109.5
C5—C10—C19 109.78 (19) H27A—C27—H27B 109.5
C5—C10—C9 110.59 (15) C25—C27—H27C 109.5
C19—C10—C9 111.55 (18) H27A—C27—H27C 109.5
C5—C10—C1 106.57 (17) H27B—C27—H27C 109.5
C19—C10—C1 110.3 (2) C25B—C24B—C23 121.4 (9)
C9—C10—C1 107.97 (17) C25B—C24B—H24B 107.0
C12—C11—C9 113.46 (15) C23—C24B—H24B 107.0
C12—C11—H11A 108.9 C25B—C24B—H24A 107.0
C9—C11—H11A 108.9 C23—C24B—H24A 107.0
C12—C11—H11B 108.9 H24B—C24B—H24A 106.7
C9—C11—H11B 108.9 C26B—C25B—C24B 107.8 (12)
H11A—C11—H11B 107.7 C26B—C25B—C27B 124.9 (14)
C11—C12—C13 111.36 (16) C24B—C25B—C27B 107.2 (17)
C11—C12—H12A 109.4 C26B—C25B—H25 105.1
C13—C12—H12A 109.4 C24B—C25B—H25 105.1
C11—C12—H12B 109.4 C27B—C25B—H25 105.1
C13—C12—H12B 109.4 C25B—C26B—H26A 109.5
H12A—C12—H12B 108.0 C25B—C26B—H26B 109.5
C18—C13—C12 111.19 (16) H26A—C26B—H26B 109.5
C18—C13—C14 112.56 (17) C25B—C26B—H26C 109.5
C12—C13—C14 106.11 (14) H26A—C26B—H26C 109.5
C18—C13—C17 110.35 (16) H26B—C26B—H26C 109.5
C12—C13—C17 116.48 (16) C25B—C27B—H27A 109.5
C14—C13—C17 99.58 (14) C25B—C27B—H27B 109.5
C8—C14—C15 118.56 (17) H27A—C27B—H27B 109.5
C8—C14—C13 115.10 (15) C25B—C27B—H27C 109.5
C15—C14—C13 104.73 (15) H27A—C27B—H27C 109.5
C8—C14—H14 105.8 H27B—C27B—H27C 109.5
C1'—N1'—N2'—N3' −0.2 (2) C8—C9—C11—C12 50.0 (2)
C21—N1'—N2'—N3' −174.88 (16) C10—C9—C11—C12 178.37 (18)
N1'—N2'—N3'—C2' 0.0 (2) C9—C11—C12—C13 −55.9 (2)
N2'—N1'—C1'—C2' 0.2 (2) C11—C12—C13—C18 −64.8 (2)
C21—N1'—C1'—C2' 174.35 (17) C11—C12—C13—C14 57.9 (2)
C10—C1—C2—C3 −59.8 (4) C11—C12—C13—C17 167.62 (16)
N2'—N3'—C2'—C1' 0.1 (2) C7—C8—C14—C15 −58.9 (2)
N2'—N3'—C2'—C3' 179.24 (18) C9—C8—C14—C15 −178.86 (17)
N1'—C1'—C2'—N3' −0.2 (2) C7—C8—C14—C13 176.05 (17)
N1'—C1'—C2'—C3' −179.2 (2) C9—C8—C14—C13 56.1 (2)
C1—C2—C3—O3 177.9 (3) C18—C13—C14—C8 61.5 (2)
C1—C2—C3—C4 54.9 (4) C12—C13—C14—C8 −60.4 (2)
N3'—C2'—C3'—O3' 173.26 (18) C17—C13—C14—C8 178.33 (16)
C1'—C2'—C3'—O3' −7.8 (3) C18—C13—C14—C15 −70.5 (2)
N3'—C2'—C3'—C4' −67.0 (3) C12—C13—C14—C15 167.64 (17)
C1'—C2'—C3'—C4' 111.9 (3) C17—C13—C14—C15 46.35 (19)
N3'—C2'—C3'—C5' 54.7 (3) C8—C14—C15—C16 −162.71 (18)
C1'—C2'—C3'—C5' −126.4 (3) C13—C14—C15—C16 −32.7 (2)
O3—C3—C4—C5 −175.9 (2) C14—C15—C16—C17 5.9 (2)
C2—C3—C4—C5 −51.3 (3) C15—C16—C17—C20 150.76 (18)
C3—C4—C5—C6 −128.2 (3) C15—C16—C17—C13 22.5 (2)
C3—C4—C5—C10 51.2 (3) C18—C13—C17—C20 −48.0 (2)
C4—C5—C6—C7 −177.4 (2) C12—C13—C17—C20 80.0 (2)
C10—C5—C6—C7 3.2 (4) C14—C13—C17—C20 −166.57 (17)
C5—C6—C7—C8 14.6 (3) C18—C13—C17—C16 77.23 (19)
C6—C7—C8—C14 −165.92 (18) C12—C13—C17—C16 −154.78 (16)
C6—C7—C8—C9 −45.3 (2) C14—C13—C17—C16 −41.30 (18)
C14—C8—C9—C11 −48.2 (2) C16—C17—C20—C21 53.8 (2)
C7—C8—C9—C11 −169.37 (17) C13—C17—C20—C21 174.09 (17)
C14—C8—C9—C10 −176.74 (16) C16—C17—C20—C22 178.58 (17)
C7—C8—C9—C10 62.1 (2) C13—C17—C20—C22 −61.1 (2)
C6—C5—C10—C19 −111.7 (3) N2'—N1'—C21—C20 59.8 (2)
C4—C5—C10—C19 68.8 (3) C1'—N1'—C21—C20 −113.9 (2)
C6—C5—C10—C9 11.8 (3) C22—C20—C21—N1' 49.7 (2)
C4—C5—C10—C9 −167.7 (2) C17—C20—C21—N1' 176.60 (17)
C6—C5—C10—C1 128.9 (2) C21—C20—C22—C23 63.9 (2)
C4—C5—C10—C1 −50.6 (3) C17—C20—C22—C23 −60.0 (2)
C11—C9—C10—C5 −172.73 (18) C20—C22—C23—C24B 157.7 (7)
C8—C9—C10—C5 −44.4 (2) C20—C22—C23—C24 171.5 (2)
C11—C9—C10—C19 −50.3 (3) C22—C23—C24—C25 176.0 (3)
C8—C9—C10—C19 78.0 (2) C23—C24—C25—C27 −73.4 (4)
C11—C9—C10—C1 71.0 (2) C23—C24—C25—C26 56.4 (5)
C8—C9—C10—C1 −160.65 (18) C22—C23—C24B—C25B 171.1 (8)
C2—C1—C10—C5 55.4 (3) C23—C24B—C25B—C26B 158.2 (11)
C2—C1—C10—C19 −63.7 (3) C23—C24B—C25B—C27B −65.1 (15)
C2—C1—C10—C9 174.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O3′i 0.84 2.00 2.811 (3) 162
O3′—H3′···N3′ii 0.84 1.97 2.810 (2) 175

Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) −x−1/2, y−1/2, −z.

References

  1. Bernal, J. D., Crowfoot, D. & Fankuchen, I. (1940). Philos. Trans. Roy. Soc. A: Math. Phys. Engineering Sci. 239, 135–182.
  2. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burbiel, J. & Bracher, F. (2003). Steroids, 68, 587–594. [DOI] [PubMed]
  4. Burris, T. P., Solt, L. A., Wang, Y., Crumbley, C., Banerjee, S., Griffett, K., Lundasen, T., Hughes, T. & Kojetin, D. J. (2013). Pharmacol. Rev. 65, 710–778. [DOI] [PMC free article] [PubMed]
  5. Covey, D. F., Han, M., Kumar, A. S., de la Cruz, M. A. M., Meadows, E. S., Hu, Y., Tonnies, A., Nathan, D., Coleman, M., Benz, A., Evers, A. S., Zorumski, C. F. & Mennerick, S. (2000). J. Med. Chem. 43, 3201–3204. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Fall, Y., Gómez, G., Pérez, M., Gándara, Z., Pérez, X., Pazos, G. & Kurz, G. (2011). PCT Int. Appl. WO2011121152A120111006.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hummasti, S. & Tontonoz, P. (2008). Mol. Endocrinol. 22, 1743–1753. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Mangelsdorf, D. J. & Evans, R. M. (1995). Cell, 83, 841–850. [DOI] [PubMed]
  12. Mohan, R. & Heyman, R. A. (2003). Curr. Top. Med. Chem. 3, 1637–1647. [DOI] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Pazos, G., Pérez, M., Gándara, Z., Gómez, G. & Fall, Y. (2016). RSC Adv. 6, 61073–61076.
  15. Santalla, H., Martínez, A., Garrido, F., Gómez, G. & Fall, Y. (2017). Org. Chem. Front. 4, 1999–2001.
  16. Seck, I., Fall, A., Lago, C., Sène, M., Gaye, M., Seck, M., Gómez, G. & Fall, Y. (2015). Synthesis, 47, 2826–2830.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  21. Tian, G., Mook, R., Moss, M. L. & Frye, S. V. (1995). Biochemistry, 34, 13453–13459. [DOI] [PubMed]
  22. Wang, J.-R., Zhou, C., Yu, X. & Mei, X. (2014). Chem. Commun. 50, 855–858. [DOI] [PubMed]
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 2, Global. DOI: 10.1107/S2056989018003286/ex2005sup1.cif

e-74-00465-sup1.cif (2.5MB, cif)

CCDC reference: 1825767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES