Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 17;74(Pt 5):575–579. doi: 10.1107/S2056989018001834

Crystal structure of a supra­molecular lithium complex of p-tert-butyl­calix[4]arene

Manabu Yamada a,*, Muniyappan Rajiv Gandhi b, Kazuhiko Akimoto c, Fumio Hamada d
PMCID: PMC5947466  PMID: 29850071

The crystal structure of a supra­molecular lithium complex of p-tert-butyl­calix[4]arene has been determined and analyzed. Different from the majority of calixarene–alkali metal complexes, which are formed by direct coordination of the metal cation to the calixarene hy­droxy groups, this complex is stabilized by an inter­play of weak inter­actions involving the methanol mol­ecules surrounding the metal, giving rise to a second-sphere coordination supra­molecular assembly.

Keywords: crystal structure, calix[4]arene, supra­molecular lithium complex, inclusion compound, hydrogen bonding, C—H⋯π inter­actions

Abstract

Crystals of a supra­molecular lithium complex with a calix[4]arene derivative, namely tetra­methano­llithium 5,11,17,23-tetra-tert-butyl-25,26,27-trihy­droxy-28-oxidocalix[4]arene methanol monosolvate, [Li(CH3OH)4](C44H55O4)·CH3OH or [Li(CH3OH)4]+·(calix[4]arene)]·CH3OH (where calix[4]arene represents a mono-anion species because of deprotonation of one H atom of the calixarene hy­droxy groups), were obtained from p-tert-butyl­calix[4]arene reacted with LiH in tetra­hydro­furan, followed by recrystallization from methanol. The asymmetric unit comprises one mono-anionic calixarene mol­ecule, one Li+ cation coordinated to four methanol mol­ecules, and one methanol mol­ecule included in the calixarene cavity. The calixarene mol­ecule maintains a cone conformation by intra­molecular hydrogen bonding between one phenoxide (–O) and three pendent calixarene hy­droxy groups (–OH). The coordinated methanol mol­ecules around the metal cation play a significant role in forming the supra­molecular assembly. The crystal structure of this assembly is stabilized by three sets of inter­molecular inter­actions: (i) hydrogen bonds involving the –OH and –O moieties of the calixarene mol­ecules, the –OH groups of the coordinated methanol mol­ecules, and the –OH group of the methanol mol­ecule included in the calixarene cavity; (ii) C—H⋯π inter­actions between the calixarene mol­ecules and/or the coordinated methanol mol­ecules; (iii) O—H⋯π inter­actions between the calixarene mol­ecule and the included methanol mol­ecule.

Chemical context  

Calixarenes are synthetic macrocyclic compounds that are composed of phenol rings, linked with methyl­ene groups at linking positions (Gutsche, 1998). They are versatile mol­ecules for the inclusion of organic and/or inorganic compounds into their flexible cavities and for the coordination of organic/metal ions in mol­ecular recognition phenomena and host–guest chemistry (Vicens & Böhmer, 1991). The coordination chemistry of alkali metal cations, involving conventional calixarenes (and their corresponding functionalized derivatives) as ligands, has been intensively investigated in the past years, as a possible method of selective extraction of this class of cations using calixarenes as extractant. At the same time, the X-ray analysis of alkali metal complexes with p-tert-butyl­calix[4]arene in the crystalline state has been reported (Bock et al., 1995; Davidson et al., 1997; Dürr et al., 2006; Gueneau et al., 2003; Guillemot et al., 2002; Hamada et al., 1993; Hanna et al., 2002, 2003; Harrowfield et al., 1991; Lee et al., 2009). In the majority of cases, the alkali metal complexes of p-tert-butyl­calix[4]arene in the solid state show direct coordination of the metal ions to the oxygen atoms belonging to the calixarene hy­droxy groups at the lower rim, with the resulting crystal structures stabilized by weak inter­actions with the lattice solvent mol­ecules.graphic file with name e-74-00575-scheme1.jpg

In the present paper, we report a different type of Li complex with p-tert-butyl­calix[4]arene, in which no direct coordination of the metal to the oxygen atoms of the calixarene hy­droxy groups takes place. The lithium cation is instead surrounded by four methanol solvent mol­ecules, which are in turn connected to the host mol­ecule via a series of hydrogen bonds, playing a significant role in the formation of the supra­molecular assembly.

Structural commentary  

Fig. 1 shows the mol­ecular structure of the complex [Li(CH3OH)4]+·(calix[4]arene)]·CH3OH, consisting of one mono-deprotonated calix[4]arene unit in a cone conformation, one methanol mol­ecule included in the cavity, and one Li cation coordinated to four methanol mol­ecules. The positive charge of the methanol–lithium complex naturally dictates that the calixarene is in a mono-anionic form. The conformation of the macrocycle is stabilized by intra­molecular hydrogen bonding involving one deprotonated –O and three –OH groups at the lower rim, as shown in Table 1. The geometrical parameters of the cone conformer are given in Table 2, which reports the angle between the mean plane passing through the oxygen atoms O1, O2, O3 and O4, and the four mean planes passing through the aromatic walls (plane A: C1–C6/O1; plane B: C7–C12/O2; plane C: C13–C18/O4; plane D: C19–C24/O3). From these values, it is possible to notice that the two neighboring aromatic rings (C1–C6 and C7–C12) are slightly outward with respect to the other two adjacent aromatic moieties. Selected bond distances and angles for the tetra­kis­(methanol)–lithium complex are reported in Table 3.

Figure 1.

Figure 1

ORTEP diagram of the Li complex of p-tert-butyl­calix[4]arene with displacement ellipsoids at the 20% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H74⋯O9 0.67 (3) 2.01 (8) 2.673 (3) 167 (3)
O2—H68⋯O1 0.83 (3) 1.66 (4) 2.490 (2) 172 (3)
O3—H69⋯O1 0.89 (3) 1.64 (3) 2.520 (2) 169 (3)
O4—H70⋯O2 0.90 (3) 1.77 (3) 2.650 (2) 166 (3)
O5—H71⋯O1i 0.88 (4) 1.87 (4) 2.714 (3) 160 (4)
O6—H72⋯O4ii 0.94 (5) 1.81 (5) 2.732 (3) 165 (4)
O7—H73⋯O3i 0.79 (6) 1.91 (6) 2.676 (3) 163 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Conformation of the four aromatic walls of the calix[4]arene host (°).

AD are the mean planes passing through the four phenyl moieties of the host. The values reported are the angles formed with the mean plane passing through atoms O1–O4.

Plane Angle
A 136.01 (6)
B 136.80 (6)
C 108.21 (6)
D 119.02 (6)

Table 3. Selected geometric parameters (Å, °).

Li1—O5 1.922 (6) Li1—O7 1.903 (6)
Li1—O6 1.917 (6) Li1—O8 1.922 (6)
       
O5—Li1—O6 107.2 (3) O6—Li1—O7 112.3 (3)
O5—Li1—O7 111.3 (3) O6—Li1—O8 109.9 (3)
O5—Li1—O8 111.0 (3) O7—Li1—O8 105.3 (3)

As shown in Fig. 2, one methanol mol­ecule is included in the cavity, displaying a short O—H⋯π inter­action involving the hy­droxy moiety and π-electrons of the calixarene aromatic ring C1–C6. The O9⋯Cg1 and the H75⋯Cg1 distances are 3.360 (6) and 2.538 (5) Å, respectively, while the angle O9—H79⋯Cg1 is of 166.34 (6)° (Cg1 is the centroid of the C1–C6 ring). On the other hand, there are no C—H⋯π inter­actions between the embedded methanol and the aromatic-π electrons of the calixarene, hence the included solvent is stabilized inside the calixarene cavity only by the O—H⋯π inter­action.

Figure 2.

Figure 2

Hydrogen bonds (blue dotted lines) involving the p-tert-butyl­calix[4]arene anion, the methanol mol­ecule included in the cavity, and the [Li(CH3OH)4]+ complex belonging to the asymmetric unit. The centroid of aromatic the ring, Cg1, is represented as a blue sphere. The H atoms of the calixarene host have been omitted for clarity.

Supra­molecular features  

The relevant feature of the title complex is that the lithium cation is not directly coordinated to the hy­droxy groups of the lower rim of the calix[4]arene host. On the contrary, the inter­action of the [Li(CH3OH)4]+ complex with the macrocycle in the asymmetric unit is mediated by the methanol mol­ecule embedded in the cavity, which acts as hydrogen-bond acceptor for a methanol mol­ecule (C48–O8) coordinated to the lithium cation (Fig. 2 and Table 1).

Moreover, the coordinated methanol mol­ecules of [Li(CH3OH)4]+ further contribute to the stabilization of the complex in the structure, inter­acting with two other adjacent calixarene mol­ecules through hydrogen bonds and C—H⋯π inter­actions, as illustrated in Fig. 3 and Table 1. In particular, three of the coordinated methanol mol­ecules (C45–O5, C47–O7 and C46–O6), act as hydrogen-bond donors towards the hy­droxy groups at the lower rim of the macrocycle, namely O1i, O3i and O4ii, respectively [symmetry codes: (i) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (ii) x + Inline graphic, −y + Inline graphic, z + Inline graphic]. In addition, the fourth coordinated methanol mol­ecule C48–O8 inter­acts with the aromatic-π electrons of a calixareneii via a C—H⋯π inter­action. The C48⋯C17ii and C48—H64⋯C17ii distances are 3.603 (4) and 2.628 Å, respectively, with a C48—H64⋯C17ii angle of 173.3 (8)°.

Figure 3.

Figure 3

Hydrogen bonding (blue and green dotted lines) involving the [Li(CH3OH)4]+ complex and two adjacent calix[4]arene mol­ecules in the crystal structure. [Symmetry codes: (i) Inline graphic − x, Inline graphic + y, Inline graphic − z; (ii) Inline graphic + x, Inline graphic − y, Inline graphic + z.]

Similarly, C—H⋯π inter­actions are also present between tert-butyl groups at the upper rim of the macrocycle and π-electrons of the aromatic walls of adjacent calix[4]arenes. In particular, Fig. 4 shows the spatial arrangement of four symmetry-related host mol­ecules [the C40⋯C4i and C40—H41⋯C4i distances are 3.498 (4) and 2.770 Å, respectively and the C40—H41⋯C4i angle is 131.6 (5)° while the C42⋯C10iii and C42—H46⋯C10iii distances are 3.770 (5) and 2.828 Å, and the C42—H46⋯C10iii angle is 161.7 (8)°; symmetry code: (iii) 1 + x, y, z].

Figure 4.

Figure 4

C—H⋯π inter­actions involving four adjacent calix[4]arene anions in the crystal structure. [Symmetry codes: (i) Inline graphic − x, Inline graphic + y, Inline graphic − z; (iii) 1 + x, y, z.]

Database survey  

A search in the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) based on a fragment comprising alkali metals and unsubstituted p-tert-butyl­calix[4]arenes, yielded the structures of several compounds.

In particular, inclusion complexes were found with: (i) lithium (ZESGIN, Bock et al., 1995; RILNOP and RILNUV, Davidson et al., 1997; YEMQIR, Dürr et al., 2006; RUWVIO and RUWVOU, Gueneau et al., 2003; NASWEJ, Hamada et al., 1993; QUBJIH, Lee et al., 2009; BASWEY, Hanna et al., 2003); (ii) sodium (MODYIN, Guillemot et al., 2002; NASSEF, Hamada et al., 1993); (iii) potassium (MODYOT, Guillemot et al., 2002; NASXUA, Hamada et al., 1993; RUWVUA, Gueneau et al., 2003; WUHVUQ and WUHWAX, Hanna et al., 2002); (iv) rubidium (BASTUL, Hanna et al., 2003); (v) cesium (JIVKEE, Harrowfield et al., 1991).

In all the cases reported, the alkali metals inter­act with the calix[4]arene mol­ecules through the hy­droxy groups at the lower rim. The only exception is the complex with cesium, JIVKEE, in which the bare cation is placed well inside the cavity, on the quaternary axis passing through the macrocycle. The metal is involved in a polyhapto coordination with the four phenolate rings of the calix[4]arene, on which the negative charge is delocalized (Harrowfield et al., 1991). This coordination mode is probably possible due to the dimensions of Cs+, which matches the cavity in size. In the case of lithium, the cationic radius is much smaller, hence a direct cavity–cation inter­action is less favoured, and the metal is either coordinating the hy­droxy oxygen atoms, or forming a second-sphere coordination supra­molecular complex, like in the title compound.

Synthesis and crystallization  

To a white suspension of p-tert-butyl­calix[4]arene (2.00 g, 3.08 mmol) in THF (50 mL) was added LiH (0.245 g, 30.8 mmol), and a yellow suspension was obtained. The suspended mixture was stirred at room temperature for 5 h under a nitro­gen atmosphere, after which time, the mixture became a yellow clear solution. After quenching the excess of LiH with methanol, the solvent was removed in vacuo. The resulting yellow solid material was dissolved in methanol (80 mL) and the remaining insoluble matter was filtered off. The clear solution thus obtained was allowed to stand for several weeks to get colorless, thin plate-shaped crystals of the mol­ecular adduct of the title compound. IR (ATR): ν 2952.40 (m), 1478.65 (s), 1360.61 (m) cm−1; 1H NMR (300 MHz, CDCl3, TMS): δ 7.04 (s, 8H, Ar–H), 4.25 (s, 4H, –CH2–), 3.46 (s, 4H, –CH2–), 3.46 (s, 15H, –CH–, five methanol mol­ecules), 1.21 (m, 36H, tert-but­yl).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were placed in calculated positions and refined using a riding model: C—H = 0.95–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. H atoms on O atoms were located in the difference-Fourier map and refined with U iso(H) = 1.5U eq(O).

Table 4. Experimental details.

Crystal data
Chemical formula [Li(CH3OH)4](C44H55O4)·CH3OH
M r 815.03
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 12.8434 (4), 20.0919 (6), 19.3168 (6)
β (°) 92.561 (2)
V3) 4979.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2006)
T min, T max 0.893, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 41849, 8251, 6715
R int 0.021
(sin θ/λ)max−1) 0.588
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.203, 1.06
No. of reflections 8251
No. of parameters 557
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.46, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Yadokari-XG (Kabuto et al., 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018001834/xi2008sup1.cif

e-74-00575-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001834/xi2008Isup2.hkl

e-74-00575-Isup2.hkl (452KB, hkl)

CCDC reference: 1563055

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Li(CH3OH)4](C44H55O4)·CH3OH F(000) = 1776
Mr = 815.03 Dx = 1.087 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 12.8434 (4) Å Cell parameters from 9823 reflections
b = 20.0919 (6) Å θ = 3.2–63.8°
c = 19.3168 (6) Å µ = 0.58 mm1
β = 92.561 (2)° T = 200 K
V = 4979.7 (3) Å3 Plane, colorless
Z = 4 0.20 × 0.20 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 8251 independent reflections
Radiation source: fine-focus sealed tube 6715 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1 Rint = 0.021
φ and ω scans θmax = 65.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker 2006) h = −14→14
Tmin = 0.893, Tmax = 0.945 k = −22→23
41849 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: mixed
wR(F2) = 0.203 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1063P)2 + 3.6084P] where P = (Fo2 + 2Fc2)/3
8251 reflections (Δ/σ)max < 0.001
557 parameters Δρmax = 1.46 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.76784 (19) 0.08132 (12) 0.95506 (12) 0.0392 (5)
C2 0.66560 (18) 0.09379 (12) 0.93080 (12) 0.0373 (5)
H1 0.621091 0.118191 0.959486 0.045*
C3 0.62623 (17) 0.07212 (11) 0.86666 (11) 0.0337 (5)
C4 0.69117 (17) 0.03573 (11) 0.82392 (11) 0.0326 (5)
C5 0.79496 (17) 0.02383 (11) 0.84604 (12) 0.0345 (5)
C6 0.83058 (18) 0.04662 (12) 0.91089 (12) 0.0380 (5)
H2 0.900898 0.038046 0.925538 0.046*
C7 0.45550 (17) 0.26708 (12) 0.78857 (12) 0.0385 (5)
C8 0.46863 (17) 0.26210 (13) 0.71766 (12) 0.0387 (5)
H3 0.457513 0.300562 0.689690 0.046*
C9 0.49727 (16) 0.20330 (12) 0.68618 (12) 0.0364 (5)
C10 0.51265 (16) 0.14659 (12) 0.72660 (12) 0.0349 (5)
C11 0.50132 (16) 0.14914 (12) 0.79826 (11) 0.0344 (5)
C12 0.47390 (17) 0.20927 (12) 0.82756 (12) 0.0369 (5)
H4 0.467306 0.211298 0.876300 0.044*
C13 0.78349 (19) 0.26506 (12) 0.57083 (12) 0.0395 (5)
C14 0.83391 (19) 0.20539 (12) 0.55992 (12) 0.0390 (6)
H5 0.905410 0.206537 0.549319 0.047*
C15 0.78502 (18) 0.14371 (12) 0.56372 (11) 0.0354 (5)
C16 0.67899 (18) 0.14313 (12) 0.57703 (11) 0.0354 (5)
C17 0.62574 (18) 0.20153 (12) 0.59032 (11) 0.0371 (5)
C18 0.67867 (19) 0.26118 (13) 0.58751 (12) 0.0410 (6)
H6 0.642613 0.301143 0.597261 0.049*
C19 1.05823 (18) 0.09337 (12) 0.70485 (13) 0.0418 (6)
C20 1.01017 (17) 0.05755 (12) 0.75598 (13) 0.0395 (5)
H7 1.043514 0.054747 0.800787 0.047*
C21 0.91492 (17) 0.02561 (11) 0.74393 (12) 0.0354 (5)
C22 0.86546 (17) 0.03069 (11) 0.67883 (12) 0.0337 (5)
C23 0.90887 (17) 0.06798 (12) 0.62654 (12) 0.0357 (5)
C24 1.00575 (18) 0.09739 (12) 0.64050 (13) 0.0401 (6)
H8 1.037292 0.121225 0.604494 0.048*
C25 0.51496 (17) 0.08751 (12) 0.84342 (12) 0.0372 (5)
H9 0.473547 0.093272 0.885011 0.045*
H10 0.486068 0.048761 0.817385 0.045*
C26 0.51156 (18) 0.20106 (13) 0.60839 (12) 0.0406 (6)
H11 0.477998 0.160327 0.589089 0.049*
H12 0.476077 0.239910 0.586407 0.049*
C27 0.84858 (18) 0.08067 (12) 0.55860 (12) 0.0378 (5)
H13 0.897651 0.085075 0.520772 0.045*
H14 0.801769 0.042596 0.547653 0.045*
C28 0.86781 (18) −0.01488 (12) 0.80093 (12) 0.0375 (5)
H15 0.925062 −0.033610 0.830930 0.045*
H16 0.828803 −0.052668 0.779515 0.045*
C29 0.8047 (2) 0.10237 (14) 1.02850 (13) 0.0491 (6)
C30 0.7435 (4) 0.0613 (2) 1.08047 (17) 0.0999 (15)
H17 0.668580 0.067370 1.070758 0.150*
H18 0.761205 0.014078 1.075957 0.150*
H19 0.761885 0.076280 1.127723 0.150*
C31 0.7776 (3) 0.17521 (19) 1.0412 (2) 0.0817 (11)
H20 0.702438 0.181772 1.033078 0.123*
H21 0.797621 0.187096 1.089159 0.123*
H22 0.815358 0.203520 1.009480 0.123*
C32 0.9206 (3) 0.0945 (2) 1.04151 (19) 0.0893 (13)
H23 0.940253 0.048049 1.033720 0.134*
H24 0.957366 0.123369 1.009797 0.134*
H25 0.939630 0.106944 1.089476 0.134*
C33 0.4217 (2) 0.33149 (13) 0.82393 (14) 0.0483 (6)
C34 0.3259 (3) 0.31832 (16) 0.86617 (17) 0.0646 (8)
H26 0.268945 0.301671 0.835477 0.097*
H27 0.343143 0.285070 0.901997 0.097*
H28 0.304356 0.359772 0.888088 0.097*
C35 0.3903 (3) 0.38581 (16) 0.77120 (18) 0.0744 (10)
H29 0.333490 0.369450 0.740210 0.112*
H30 0.367093 0.425437 0.795745 0.112*
H31 0.450375 0.397248 0.743962 0.112*
C36 0.5101 (3) 0.3574 (2) 0.8719 (2) 0.0909 (12)
H32 0.571635 0.365840 0.844952 0.136*
H33 0.488380 0.398774 0.893783 0.136*
H34 0.527167 0.324072 0.907692 0.136*
C37 0.8372 (2) 0.33242 (13) 0.56622 (14) 0.0502 (7)
C38 0.7819 (4) 0.3747 (2) 0.5104 (3) 0.1056 (16)
H35 0.816671 0.417941 0.507589 0.158*
H36 0.784179 0.351932 0.465588 0.158*
H37 0.709105 0.381352 0.522014 0.158*
C39 0.9517 (3) 0.32673 (16) 0.54956 (18) 0.0671 (9)
H38 0.982298 0.371323 0.547234 0.101*
H39 0.988990 0.300901 0.585886 0.101*
H40 0.957595 0.304301 0.504852 0.101*
C40 0.8356 (3) 0.36674 (17) 0.6372 (2) 0.0764 (10)
H41 0.869993 0.410165 0.634851 0.115*
H42 0.763233 0.372949 0.650028 0.115*
H43 0.872446 0.339017 0.672132 0.115*
C41 1.1651 (2) 0.12642 (17) 0.71726 (16) 0.0569 (7)
C42 1.2390 (3) 0.0983 (4) 0.6681 (3) 0.152 (3)
H44 1.245849 0.050269 0.675822 0.228*
H45 1.212602 0.106484 0.620456 0.228*
H46 1.307207 0.119585 0.675508 0.228*
C43 1.2088 (3) 0.1184 (3) 0.7914 (2) 0.0982 (14)
H47 1.159602 0.137049 0.823511 0.147*
H48 1.219424 0.070991 0.801543 0.147*
H49 1.275553 0.141857 0.796839 0.147*
C44 1.1537 (4) 0.2011 (2) 0.7058 (3) 0.1234 (19)
H50 1.104797 0.219191 0.738495 0.185*
H51 1.221716 0.222572 0.713330 0.185*
H52 1.127111 0.209471 0.658278 0.185*
C45 1.0638 (3) 0.4028 (2) 0.7522 (2) 0.0873 (12)
H53 1.055124 0.421695 0.705518 0.131*
H54 1.121242 0.425519 0.777618 0.131*
H55 1.079539 0.355241 0.748939 0.131*
C46 1.1121 (3) 0.48291 (18) 0.92075 (18) 0.0740 (9)
H56 1.158468 0.496325 0.959936 0.111*
H57 1.153669 0.471653 0.881086 0.111*
H58 1.064767 0.519665 0.908156 0.111*
C47 0.7645 (3) 0.3692 (2) 0.9612 (2) 0.0964 (13)
H59 0.693686 0.387179 0.962822 0.145*
H60 0.761040 0.320979 0.953826 0.145*
H61 0.802949 0.378616 1.005018 0.145*
C48 1.0529 (3) 0.2521 (2) 0.9146 (2) 0.0881 (12)
H62 1.036956 0.204507 0.910682 0.132*
H63 1.114548 0.262203 0.888369 0.132*
H64 1.066664 0.263650 0.963430 0.132*
C49 0.7898 (4) 0.2062 (3) 0.7671 (2) 0.1036 (15)
H65 0.742500 0.244404 0.763110 0.18 (3)*
H66 0.751149 0.165274 0.755859 0.28 (5)*
H67 0.846004 0.211673 0.734910 0.18 (3)*
Li1 0.9522 (4) 0.3821 (3) 0.8811 (3) 0.0634 (13)
O1 0.65262 (12) 0.01180 (8) 0.76275 (8) 0.0357 (4)
O2 0.53575 (13) 0.08851 (9) 0.69430 (8) 0.0407 (4)
H68 0.572 (3) 0.0638 (16) 0.7202 (17) 0.061*
O3 0.77306 (13) −0.00130 (9) 0.66416 (9) 0.0417 (4)
H69 0.736 (3) 0.0003 (15) 0.7021 (17) 0.063*
O4 0.62688 (13) 0.08283 (9) 0.57403 (9) 0.0423 (4)
H70 0.589 (3) 0.0795 (16) 0.6120 (18) 0.063*
O5 0.97040 (17) 0.41161 (11) 0.78777 (11) 0.0619 (6)
H71 0.933 (3) 0.440 (2) 0.762 (2) 0.093*
O6 1.05402 (19) 0.42743 (12) 0.93941 (12) 0.0702 (6)
H72 1.069 (3) 0.420 (2) 0.987 (3) 0.105*
O7 0.8138 (2) 0.39801 (16) 0.90840 (17) 0.0986 (10)
H73 0.783 (5) 0.430 (3) 0.894 (3) 0.148*
O8 0.9716 (3) 0.28755 (14) 0.8890 (2) 0.1247 (15)
H74 0.937 (6) 0.269 (4) 0.870 (4) 0.187*
O9 0.8315 (5) 0.2023 (2) 0.8336 (3) 0.196 (3)
H75 0.804567 0.170190 0.854065 0.295*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0394 (13) 0.0415 (13) 0.0365 (12) 0.0012 (10) −0.0019 (10) 0.0006 (10)
C2 0.0352 (12) 0.0438 (13) 0.0331 (12) 0.0029 (10) 0.0024 (10) 0.0002 (10)
C3 0.0304 (11) 0.0381 (12) 0.0330 (11) −0.0005 (9) 0.0043 (9) 0.0051 (9)
C4 0.0317 (12) 0.0350 (12) 0.0310 (11) −0.0035 (9) 0.0007 (9) 0.0032 (9)
C5 0.0328 (12) 0.0364 (12) 0.0346 (12) 0.0008 (9) 0.0029 (9) 0.0034 (9)
C6 0.0309 (12) 0.0435 (13) 0.0392 (13) −0.0001 (10) −0.0021 (10) 0.0043 (10)
C7 0.0274 (11) 0.0481 (14) 0.0400 (13) −0.0041 (10) 0.0021 (9) 0.0018 (10)
C8 0.0270 (11) 0.0491 (14) 0.0398 (13) 0.0001 (10) 0.0013 (9) 0.0074 (11)
C9 0.0224 (11) 0.0543 (14) 0.0325 (12) 0.0006 (10) −0.0007 (9) 0.0037 (10)
C10 0.0209 (10) 0.0475 (14) 0.0363 (12) −0.0020 (9) −0.0003 (9) −0.0004 (10)
C11 0.0198 (10) 0.0486 (14) 0.0348 (12) −0.0016 (9) 0.0011 (9) 0.0038 (10)
C12 0.0266 (11) 0.0516 (14) 0.0326 (12) −0.0015 (10) 0.0019 (9) 0.0025 (10)
C13 0.0439 (13) 0.0453 (14) 0.0296 (11) 0.0006 (11) 0.0045 (10) −0.0008 (10)
C14 0.0356 (12) 0.0508 (15) 0.0310 (12) −0.0005 (11) 0.0063 (9) −0.0014 (10)
C15 0.0376 (12) 0.0441 (13) 0.0245 (10) −0.0011 (10) 0.0031 (9) −0.0027 (9)
C16 0.0358 (12) 0.0468 (14) 0.0235 (10) −0.0020 (10) −0.0003 (9) −0.0011 (9)
C17 0.0351 (12) 0.0513 (14) 0.0249 (11) 0.0026 (10) 0.0000 (9) 0.0042 (10)
C18 0.0431 (14) 0.0479 (14) 0.0325 (12) 0.0077 (11) 0.0059 (10) 0.0022 (10)
C19 0.0285 (12) 0.0463 (14) 0.0510 (14) −0.0005 (10) 0.0053 (10) −0.0066 (11)
C20 0.0293 (12) 0.0465 (14) 0.0425 (13) 0.0035 (10) 0.0002 (10) −0.0060 (11)
C21 0.0304 (12) 0.0363 (12) 0.0397 (12) 0.0032 (9) 0.0042 (9) −0.0043 (10)
C22 0.0285 (11) 0.0342 (12) 0.0387 (12) −0.0005 (9) 0.0038 (9) −0.0062 (9)
C23 0.0313 (12) 0.0395 (13) 0.0370 (12) 0.0020 (10) 0.0074 (9) −0.0058 (10)
C24 0.0321 (12) 0.0433 (13) 0.0458 (14) −0.0014 (10) 0.0102 (10) −0.0015 (10)
C25 0.0289 (12) 0.0491 (14) 0.0341 (12) −0.0010 (10) 0.0059 (9) 0.0044 (10)
C26 0.0321 (12) 0.0570 (15) 0.0326 (12) 0.0068 (11) −0.0011 (9) 0.0064 (11)
C27 0.0365 (12) 0.0457 (13) 0.0319 (12) −0.0014 (10) 0.0083 (10) −0.0067 (10)
C28 0.0332 (12) 0.0403 (13) 0.0390 (12) 0.0046 (10) 0.0020 (10) 0.0017 (10)
C29 0.0502 (15) 0.0572 (16) 0.0391 (14) 0.0016 (13) −0.0063 (11) −0.0075 (12)
C30 0.142 (4) 0.117 (3) 0.0401 (17) −0.036 (3) −0.008 (2) −0.0003 (19)
C31 0.073 (2) 0.081 (2) 0.088 (2) 0.0166 (19) −0.0279 (19) −0.039 (2)
C32 0.066 (2) 0.129 (3) 0.069 (2) 0.030 (2) −0.0309 (18) −0.043 (2)
C33 0.0541 (16) 0.0450 (14) 0.0459 (14) −0.0036 (12) 0.0046 (12) −0.0010 (11)
C34 0.073 (2) 0.0594 (18) 0.0626 (18) 0.0134 (16) 0.0228 (16) 0.0010 (15)
C35 0.105 (3) 0.0514 (18) 0.069 (2) 0.0131 (18) 0.0228 (19) 0.0064 (15)
C36 0.085 (3) 0.084 (3) 0.102 (3) −0.010 (2) −0.015 (2) −0.036 (2)
C37 0.0540 (16) 0.0452 (15) 0.0522 (15) −0.0020 (12) 0.0103 (12) 0.0011 (12)
C38 0.103 (3) 0.078 (3) 0.134 (4) −0.023 (2) −0.020 (3) 0.058 (3)
C39 0.068 (2) 0.0579 (18) 0.078 (2) −0.0197 (15) 0.0283 (17) −0.0135 (16)
C40 0.083 (2) 0.0604 (19) 0.087 (2) −0.0145 (17) 0.0283 (19) −0.0277 (17)
C41 0.0343 (14) 0.073 (2) 0.0632 (18) −0.0130 (13) 0.0023 (12) −0.0065 (15)
C42 0.043 (2) 0.264 (7) 0.151 (5) −0.049 (3) 0.038 (3) −0.105 (5)
C43 0.054 (2) 0.143 (4) 0.096 (3) −0.033 (2) −0.0148 (19) −0.004 (3)
C44 0.106 (4) 0.096 (3) 0.164 (5) −0.055 (3) −0.042 (3) 0.019 (3)
C45 0.064 (2) 0.102 (3) 0.096 (3) 0.032 (2) 0.003 (2) 0.001 (2)
C46 0.085 (2) 0.074 (2) 0.062 (2) −0.0032 (19) −0.0116 (17) 0.0150 (17)
C47 0.083 (3) 0.114 (3) 0.091 (3) −0.004 (2) −0.010 (2) 0.039 (3)
C48 0.104 (3) 0.086 (3) 0.074 (2) 0.034 (2) 0.000 (2) 0.003 (2)
C49 0.115 (4) 0.113 (4) 0.080 (3) −0.023 (3) −0.024 (3) 0.025 (2)
Li1 0.057 (3) 0.058 (3) 0.073 (3) 0.007 (2) −0.015 (2) 0.014 (2)
O1 0.0329 (8) 0.0413 (9) 0.0329 (8) −0.0036 (7) 0.0006 (6) −0.0022 (6)
O2 0.0393 (9) 0.0495 (10) 0.0330 (9) 0.0039 (8) −0.0017 (7) 0.0001 (7)
O3 0.0363 (9) 0.0506 (10) 0.0387 (9) −0.0126 (7) 0.0052 (7) −0.0054 (7)
O4 0.0384 (9) 0.0508 (10) 0.0376 (9) −0.0085 (8) 0.0012 (7) −0.0047 (7)
O5 0.0633 (13) 0.0662 (13) 0.0553 (12) 0.0252 (10) −0.0069 (10) 0.0018 (10)
O6 0.0821 (16) 0.0774 (15) 0.0493 (12) −0.0152 (12) −0.0174 (11) 0.0159 (11)
O7 0.0702 (16) 0.105 (2) 0.122 (2) 0.0284 (15) 0.0196 (15) 0.0684 (19)
O8 0.109 (2) 0.0535 (15) 0.203 (4) 0.0076 (15) −0.082 (2) 0.0104 (19)
O9 0.273 (6) 0.114 (3) 0.191 (4) −0.084 (3) −0.111 (4) 0.046 (3)

Geometric parameters (Å, º)

C1—C6 1.387 (3) C33—C34 1.529 (4)
C1—C2 1.397 (3) C33—C35 1.535 (4)
C1—C29 1.535 (3) C34—H26 0.9800
C2—C3 1.387 (3) C34—H27 0.9800
C2—H1 0.9500 C34—H28 0.9800
C3—C4 1.405 (3) C35—H29 0.9800
C3—C25 1.511 (3) C35—H30 0.9800
C4—O1 1.349 (3) C35—H31 0.9800
C4—C5 1.402 (3) C36—H32 0.9800
C5—C6 1.392 (3) C36—H33 0.9800
C5—C28 1.521 (3) C36—H34 0.9800
C6—H2 0.9500 C37—C39 1.524 (4)
C7—C8 1.391 (3) C37—C38 1.524 (5)
C7—C12 1.399 (3) C37—C40 1.536 (4)
C7—C33 1.535 (4) C38—H35 0.9800
C8—C9 1.386 (3) C38—H36 0.9800
C8—H3 0.9500 C38—H37 0.9800
C9—C10 1.390 (3) C39—H38 0.9800
C9—C26 1.523 (3) C39—H39 0.9800
C10—O2 1.362 (3) C39—H40 0.9800
C10—C11 1.399 (3) C40—H41 0.9800
C11—C12 1.386 (3) C40—H42 0.9800
C11—C25 1.520 (3) C40—H43 0.9800
C12—H4 0.9500 C41—C42 1.484 (5)
C13—C14 1.383 (3) C41—C44 1.522 (6)
C13—C18 1.400 (3) C41—C43 1.523 (5)
C13—C37 1.524 (4) C42—H44 0.9800
C14—C15 1.393 (3) C42—H45 0.9800
C14—H5 0.9500 C42—H46 0.9800
C15—C16 1.397 (3) C43—H47 0.9800
C15—C27 1.512 (3) C43—H48 0.9800
C16—O4 1.384 (3) C43—H49 0.9800
C16—C17 1.388 (3) C44—H50 0.9800
C17—C18 1.380 (4) C44—H51 0.9800
C17—C26 1.522 (3) C44—H52 0.9800
C18—H6 0.9500 C45—O5 1.420 (4)
C19—C20 1.389 (4) C45—H53 0.9800
C19—C24 1.390 (4) C45—H54 0.9800
C19—C41 1.534 (4) C45—H55 0.9800
C20—C21 1.392 (3) C46—O6 1.397 (4)
C20—H7 0.9500 C46—H56 0.9800
C21—C22 1.387 (3) C46—H57 0.9800
C21—C28 1.516 (3) C46—H58 0.9800
C22—O3 1.368 (3) C47—O7 1.354 (5)
C22—C23 1.394 (3) C47—H59 0.9800
C23—C24 1.393 (3) C47—H60 0.9800
C23—C27 1.515 (3) C47—H61 0.9800
C24—H8 0.9500 C48—O8 1.340 (5)
C25—H9 0.9900 C48—H62 0.9800
C25—H10 0.9900 C48—H63 0.9800
C26—H11 0.9900 C48—H64 0.9800
C26—H12 0.9900 C49—O9 1.370 (6)
C27—H13 0.9900 C49—H65 0.9800
C27—H14 0.9900 C49—H66 0.9800
C28—H15 0.9900 C49—H67 0.9800
C28—H16 0.9900 Li1—O5 1.922 (6)
C29—C32 1.507 (4) Li1—O6 1.917 (6)
C29—C31 1.527 (4) Li1—O7 1.903 (6)
C29—C30 1.542 (5) Li1—O8 1.922 (6)
C30—H17 0.9800 Li1—H74 2.29 (8)
C30—H18 0.9800 O2—H68 0.83 (3)
C30—H19 0.9800 O3—H69 0.89 (3)
C31—H20 0.9800 O4—H70 0.90 (3)
C31—H21 0.9800 O5—H71 0.88 (4)
C31—H22 0.9800 O6—H72 0.94 (5)
C32—H23 0.9800 O7—H73 0.79 (6)
C32—H24 0.9800 O8—H74 0.68 (8)
C32—H25 0.9800 O9—H75 0.8400
C33—C36 1.524 (5)
C6—C1—C2 116.5 (2) C34—C33—C7 110.0 (2)
C6—C1—C29 122.9 (2) C35—C33—C7 112.0 (2)
C2—C1—C29 120.5 (2) C33—C34—H26 109.5
C3—C2—C1 122.9 (2) C33—C34—H27 109.5
C3—C2—H1 118.6 H26—C34—H27 109.5
C1—C2—H1 118.6 C33—C34—H28 109.5
C2—C3—C4 119.1 (2) H26—C34—H28 109.5
C2—C3—C25 120.2 (2) H27—C34—H28 109.5
C4—C3—C25 120.7 (2) C33—C35—H29 109.5
O1—C4—C5 120.9 (2) C33—C35—H30 109.5
O1—C4—C3 119.7 (2) H29—C35—H30 109.5
C5—C4—C3 119.4 (2) C33—C35—H31 109.5
C6—C5—C4 119.2 (2) H29—C35—H31 109.5
C6—C5—C28 119.9 (2) H30—C35—H31 109.5
C4—C5—C28 120.9 (2) C33—C36—H32 109.5
C1—C6—C5 122.8 (2) C33—C36—H33 109.5
C1—C6—H2 118.6 H32—C36—H33 109.5
C5—C6—H2 118.6 C33—C36—H34 109.5
C8—C7—C12 116.5 (2) H32—C36—H34 109.5
C8—C7—C33 123.2 (2) H33—C36—H34 109.5
C12—C7—C33 120.3 (2) C13—C37—C39 112.9 (2)
C9—C8—C7 122.6 (2) C13—C37—C38 109.8 (3)
C9—C8—H3 118.7 C39—C37—C38 108.5 (3)
C7—C8—H3 118.7 C13—C37—C40 108.8 (2)
C8—C9—C10 119.1 (2) C39—C37—C40 105.9 (3)
C8—C9—C26 120.3 (2) C38—C37—C40 110.9 (3)
C10—C9—C26 120.6 (2) C37—C38—H35 109.5
O2—C10—C9 118.2 (2) C37—C38—H36 109.5
O2—C10—C11 121.3 (2) H35—C38—H36 109.5
C9—C10—C11 120.5 (2) C37—C38—H37 109.5
C12—C11—C10 118.4 (2) H35—C38—H37 109.5
C12—C11—C25 120.0 (2) H36—C38—H37 109.5
C10—C11—C25 121.6 (2) C37—C39—H38 109.5
C11—C12—C7 122.9 (2) C37—C39—H39 109.5
C11—C12—H4 118.5 H38—C39—H39 109.5
C7—C12—H4 118.5 C37—C39—H40 109.5
C14—C13—C18 116.6 (2) H38—C39—H40 109.5
C14—C13—C37 123.0 (2) H39—C39—H40 109.5
C18—C13—C37 120.4 (2) C37—C40—H41 109.5
C13—C14—C15 123.2 (2) C37—C40—H42 109.5
C13—C14—H5 118.4 H41—C40—H42 109.5
C15—C14—H5 118.4 C37—C40—H43 109.5
C14—C15—C16 117.6 (2) H41—C40—H43 109.5
C14—C15—C27 119.7 (2) H42—C40—H43 109.5
C16—C15—C27 122.6 (2) C42—C41—C44 110.0 (4)
O4—C16—C17 120.4 (2) C42—C41—C43 110.0 (4)
O4—C16—C15 118.2 (2) C44—C41—C43 105.7 (3)
C17—C16—C15 121.3 (2) C42—C41—C19 109.2 (3)
C18—C17—C16 118.6 (2) C44—C41—C19 108.9 (3)
C18—C17—C26 119.7 (2) C43—C41—C19 113.0 (3)
C16—C17—C26 121.7 (2) C41—C42—H44 109.5
C17—C18—C13 122.5 (2) C41—C42—H45 109.5
C17—C18—H6 118.7 H44—C42—H45 109.5
C13—C18—H6 118.7 C41—C42—H46 109.5
C20—C19—C24 116.9 (2) H44—C42—H46 109.5
C20—C19—C41 122.4 (2) H45—C42—H46 109.5
C24—C19—C41 120.6 (2) C41—C43—H47 109.5
C19—C20—C21 122.4 (2) C41—C43—H48 109.5
C19—C20—H7 118.8 H47—C43—H48 109.5
C21—C20—H7 118.8 C41—C43—H49 109.5
C22—C21—C20 118.8 (2) H47—C43—H49 109.5
C22—C21—C28 121.1 (2) H48—C43—H49 109.5
C20—C21—C28 120.1 (2) C41—C44—H50 109.5
O3—C22—C21 120.7 (2) C41—C44—H51 109.5
O3—C22—C23 118.3 (2) H50—C44—H51 109.5
C21—C22—C23 121.0 (2) C41—C44—H52 109.5
C24—C23—C22 118.1 (2) H50—C44—H52 109.5
C24—C23—C27 120.9 (2) H51—C44—H52 109.5
C22—C23—C27 120.8 (2) O5—C45—H53 109.5
C19—C24—C23 122.8 (2) O5—C45—H54 109.5
C19—C24—H8 118.6 H53—C45—H54 109.5
C23—C24—H8 118.6 O5—C45—H55 109.5
C3—C25—C11 114.87 (18) H53—C45—H55 109.5
C3—C25—H9 108.6 H54—C45—H55 109.5
C11—C25—H9 108.6 O6—C46—H56 109.5
C3—C25—H10 108.6 O6—C46—H57 109.5
C11—C25—H10 108.6 H56—C46—H57 109.5
H9—C25—H10 107.5 O6—C46—H58 109.5
C17—C26—C9 112.70 (18) H56—C46—H58 109.5
C17—C26—H11 109.1 H57—C46—H58 109.5
C9—C26—H11 109.1 O7—C47—H59 109.5
C17—C26—H12 109.1 O7—C47—H60 109.5
C9—C26—H12 109.1 H59—C47—H60 109.5
H11—C26—H12 107.8 O7—C47—H61 109.5
C15—C27—C23 109.92 (18) H59—C47—H61 109.5
C15—C27—H13 109.7 H60—C47—H61 109.5
C23—C27—H13 109.7 O8—C48—H62 109.5
C15—C27—H14 109.7 O8—C48—H63 109.5
C23—C27—H14 109.7 H62—C48—H63 109.5
H13—C27—H14 108.2 O8—C48—H64 109.5
C21—C28—C5 114.67 (19) H62—C48—H64 109.5
C21—C28—H15 108.6 H63—C48—H64 109.5
C5—C28—H15 108.6 O9—C49—H65 109.5
C21—C28—H16 108.6 O9—C49—H66 109.5
C5—C28—H16 108.6 H65—C49—H66 109.5
H15—C28—H16 107.6 O9—C49—H67 109.5
C32—C29—C31 107.7 (3) H65—C49—H67 109.5
C32—C29—C1 112.8 (2) H66—C49—H67 109.5
C31—C29—C1 110.5 (2) O5—Li1—O6 107.2 (3)
C32—C29—C30 111.3 (3) O5—Li1—O7 111.3 (3)
C31—C29—C30 106.4 (3) O5—Li1—O8 111.0 (3)
C1—C29—C30 108.0 (2) O6—Li1—O7 112.3 (3)
C29—C30—H17 109.5 O6—Li1—O8 109.9 (3)
C29—C30—H18 109.5 O7—Li1—O8 105.3 (3)
H17—C30—H18 109.5 O7—Li1—H74 97 (2)
C29—C30—H19 109.5 O6—Li1—H74 126 (2)
H17—C30—H19 109.5 O8—Li1—H74 16 (2)
H18—C30—H19 109.5 O5—Li1—H74 103 (2)
C29—C31—H20 109.5 C10—O2—H68 111 (2)
C29—C31—H21 109.5 C22—O3—H69 108 (2)
H20—C31—H21 109.5 C16—O4—H70 108 (2)
C29—C31—H22 109.5 C45—O5—Li1 123.8 (3)
H20—C31—H22 109.5 C45—O5—H71 105 (3)
H21—C31—H22 109.5 Li1—O5—H71 130 (3)
C29—C32—H23 109.5 C46—O6—Li1 125.8 (2)
C29—C32—H24 109.5 C46—O6—H72 107 (3)
H23—C32—H24 109.5 Li1—O6—H72 127 (3)
C29—C32—H25 109.5 C47—O7—Li1 127.7 (3)
H23—C32—H25 109.5 C47—O7—H73 111 (4)
H24—C32—H25 109.5 Li1—O7—H73 120 (4)
C36—C33—C34 109.3 (3) C48—O8—Li1 130.6 (3)
C36—C33—C35 109.1 (3) C48—O8—H74 113 (7)
C34—C33—C35 106.5 (3) Li1—O8—H74 115 (7)
C36—C33—C7 109.9 (2) C49—O9—H75 109.5
C6—C1—C2—C3 1.2 (4) C20—C21—C22—O3 178.3 (2)
C29—C1—C2—C3 −175.8 (2) C28—C21—C22—O3 −0.6 (3)
C1—C2—C3—C4 0.3 (4) C20—C21—C22—C23 −1.1 (3)
C1—C2—C3—C25 −179.8 (2) C28—C21—C22—C23 179.9 (2)
C2—C3—C4—O1 177.1 (2) O3—C22—C23—C24 −176.5 (2)
C25—C3—C4—O1 −2.8 (3) C21—C22—C23—C24 3.0 (3)
C2—C3—C4—C5 −1.9 (3) O3—C22—C23—C27 8.3 (3)
C25—C3—C4—C5 178.2 (2) C21—C22—C23—C27 −172.2 (2)
O1—C4—C5—C6 −177.0 (2) C20—C19—C24—C23 0.6 (4)
C3—C4—C5—C6 1.9 (3) C41—C19—C24—C23 179.7 (2)
O1—C4—C5—C28 1.6 (3) C22—C23—C24—C19 −2.8 (4)
C3—C4—C5—C28 −179.5 (2) C27—C23—C24—C19 172.4 (2)
C2—C1—C6—C5 −1.1 (4) C2—C3—C25—C11 95.4 (3)
C29—C1—C6—C5 175.7 (2) C4—C3—C25—C11 −84.7 (3)
C4—C5—C6—C1 −0.4 (4) C12—C11—C25—C3 −97.4 (2)
C28—C5—C6—C1 −179.0 (2) C10—C11—C25—C3 84.6 (3)
C12—C7—C8—C9 0.7 (3) C18—C17—C26—C9 −83.1 (3)
C33—C7—C8—C9 −178.8 (2) C16—C17—C26—C9 96.4 (3)
C7—C8—C9—C10 0.7 (3) C8—C9—C26—C17 102.9 (3)
C7—C8—C9—C26 −179.4 (2) C10—C9—C26—C17 −77.1 (3)
C8—C9—C10—O2 176.83 (19) C14—C15—C27—C23 76.7 (3)
C26—C9—C10—O2 −3.1 (3) C16—C15—C27—C23 −98.7 (2)
C8—C9—C10—C11 −1.2 (3) C24—C23—C27—C15 −85.5 (3)
C26—C9—C10—C11 178.8 (2) C22—C23—C27—C15 89.5 (3)
O2—C10—C11—C12 −177.59 (19) C22—C21—C28—C5 −89.8 (3)
C9—C10—C11—C12 0.4 (3) C20—C21—C28—C5 91.3 (3)
O2—C10—C11—C25 0.4 (3) C6—C5—C28—C21 −100.5 (3)
C9—C10—C11—C25 178.4 (2) C4—C5—C28—C21 81.0 (3)
C10—C11—C12—C7 1.0 (3) C6—C1—C29—C32 12.1 (4)
C25—C11—C12—C7 −177.0 (2) C2—C1—C29—C32 −171.1 (3)
C8—C7—C12—C11 −1.6 (3) C6—C1—C29—C31 132.7 (3)
C33—C7—C12—C11 177.9 (2) C2—C1—C29—C31 −50.6 (4)
C18—C13—C14—C15 1.1 (3) C6—C1—C29—C30 −111.3 (3)
C37—C13—C14—C15 −179.7 (2) C2—C1—C29—C30 65.4 (4)
C13—C14—C15—C16 2.1 (3) C8—C7—C33—C36 −113.7 (3)
C13—C14—C15—C27 −173.5 (2) C12—C7—C33—C36 66.8 (3)
C14—C15—C16—O4 173.58 (19) C8—C7—C33—C34 125.9 (3)
C27—C15—C16—O4 −10.9 (3) C12—C7—C33—C34 −53.5 (3)
C14—C15—C16—C17 −4.0 (3) C8—C7—C33—C35 7.8 (4)
C27—C15—C16—C17 171.6 (2) C12—C7—C33—C35 −171.7 (3)
O4—C16—C17—C18 −175.0 (2) C14—C13—C37—C39 −0.9 (4)
C15—C16—C17—C18 2.5 (3) C18—C13—C37—C39 178.4 (2)
O4—C16—C17—C26 5.6 (3) C14—C13—C37—C38 120.3 (3)
C15—C16—C17—C26 −176.9 (2) C18—C13—C37—C38 −60.5 (4)
C16—C17—C18—C13 0.9 (3) C14—C13—C37—C40 −118.2 (3)
C26—C17—C18—C13 −179.6 (2) C18—C13—C37—C40 61.1 (3)
C14—C13—C18—C17 −2.7 (3) C20—C19—C41—C42 120.0 (4)
C37—C13—C18—C17 178.1 (2) C24—C19—C41—C42 −58.9 (5)
C24—C19—C20—C21 1.3 (4) C20—C19—C41—C44 −119.8 (4)
C41—C19—C20—C21 −177.7 (2) C24—C19—C41—C44 61.2 (4)
C19—C20—C21—C22 −1.1 (3) C20—C19—C41—C43 −2.7 (4)
C19—C20—C21—C28 177.8 (2) C24—C19—C41—C43 178.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O8—H74···O9 0.67 (3) 2.01 (8) 2.673 (3) 167 (3)
O2—H68···O1 0.83 (3) 1.66 (4) 2.490 (2) 172 (3)
O3—H69···O1 0.89 (3) 1.64 (3) 2.520 (2) 169 (3)
O4—H70···O2 0.90 (3) 1.77 (3) 2.650 (2) 166 (3)
O5—H71···O1i 0.88 (4) 1.87 (4) 2.714 (3) 160 (4)
O6—H72···O4ii 0.94 (5) 1.81 (5) 2.732 (3) 165 (4)
O7—H73···O3i 0.79 (6) 1.91 (6) 2.676 (3) 163 (6)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2.

Funding Statement

This work was funded by The Mazda Foundation. grant 17KK-077. Japan Society for the Promotion of Science grant 16F16353.

References

  1. Bock, H., John, A., Naether, C. & Havlas, Z. (1995). J. Am. Chem. Soc. 117, 9367–9368.
  2. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davidson, M. G., Howard, J. A. K., Lamb, S. & Lehmann, C. W. (1997). Chem. Commun. pp. 1607–1608.
  4. Dürr, S., Bechlars, B. & Radius, U. (2006). Inorg. Chim. Acta, 359, 4215–4226.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). Chem. Eur. J. 9, 509–514. [DOI] [PubMed]
  8. Guillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). Chem. Eur. J. 8, 2072–2080. [DOI] [PubMed]
  9. Gutsche, C. D. (1998). Calixarenes Revisited. Cambridge, UK: Royal Society of Chemistry.
  10. Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19–24.
  11. Hanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228–6238. [DOI] [PubMed]
  12. Hanna, T. A., Liu, L., Zakharov, L. N., Rheingold, A. L., Watson, W. H. & Gutsche, C. D. (2002). Tetrahedron, 58, 9751–9757.
  13. Harrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159–1161.
  14. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.
  15. Lee, D. S., Elsegood, M. R. J., Redshaw, C. & Zhan, S. (2009). Acta Cryst. C65, m291–m295. [DOI] [PubMed]
  16. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Vicens, J. & Böhmer, V. (1991). Editors. Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academic Publishers: Dordrecht, The Netherlands.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018001834/xi2008sup1.cif

e-74-00575-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001834/xi2008Isup2.hkl

e-74-00575-Isup2.hkl (452KB, hkl)

CCDC reference: 1563055

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES