Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 17;74(Pt 5):594–599. doi: 10.1107/S2056989017016589

An exploration of O—H⋯O and C—H⋯π inter­actions in a long-chain-ester-substituted phenyl­phenol: methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate

David K Geiger a,*, H Cristina Geiger a, Dominic L Morell a
PMCID: PMC5947469  PMID: 29850074

The superstructure of 4-(9-methyl­oxycarbonyl­non­yloxy)phenyl­phenol is dominated by O—H⋯O and C—H⋯O hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface, fingerprint plot, inter­action energy and energy framework analyses were used to explore the nature and strength of the inter­molecular inter­actions.

Keywords: crystal structure, Hirshfeld surface, energy framework, inter­action energy, hydrogen bonds, C—H⋯π inter­actions

Abstract

An understanding of the driving forces resulting in crystallization vs organogel formation is essential to the development of modern soft materials. In the mol­ecular structure of the title compound, methyl 10-[4-(4-hydroxyphenyl)phen­oxy]decanoate (MBO10Me), C23H30O4, the aromatic rings of the biphenyl group are canted by 6.6 (2)° and the long-chain ester group has an extended conformation. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains along [10Inline graphic]. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure. The extended structure exhibits a lamellar sheet arrangement of mol­ecules stacking along the b-axis direction. Each mol­ecule has six nearest neighbors and the seven-mol­ecule bundles stack to form a columnar superstructure. Inter­action energies within the bundles are dominated by dispersion forces, whereas inter­columnar inter­actions have a greater electrostatic component.

Chemical context  

In a gel, the scaffold mol­ecules (the gelator) assemble into a network of fibers, which trap large numbers of solvent mol­ecules by way of non-covalent inter­actions (Weiss, 2014). Organogels, which are obtained by dissolving a small amount of a low-mol­ecular-mass organic gelator in an organic solvent, have myriad uses, including drug delivery and biomedical diagnostics (Wu & Wang, 2016; Tibbitt et al., 2016), medical implants (Liow et al., 2016; Yasmeen et al., 2014), and tissue engineering (Xavier et al., 2015; Yan et al., 2015).

For a gel, self-assembly of a three-dimensional arrangement of mol­ecules incorporating a large number of solvent mol­ecules results in a thermodynamically stable state, whereas self-assembly followed by crystallization gives a solid. The factors resulting in gelation rather than crystallization are subtle and, as a result, there are few examples of single-crystal structure determinations of organogelators (Adhikari et al., 2016; Rojek et al., 2015; Cui et al., 2010; Martin et al., 2016; Geiger, Zick et al., 2017; Geiger, Geiger et al., 2017).

Traditional hydrogen bonding, van der Waals forces, and π–π and C—H⋯π inter­actions play important roles in determining the stability of organogels and crystalline lattices. The combination of solid-state structural data obtained via X-ray diffraction analysis and inter­action energies determined using computational techniques affords a powerful means of exploring the subtle differences in the driving force for crystallization vs gelation.graphic file with name e-74-00594-scheme1.jpg

Recently, we reported the crystal structures and gelation properties of two bis­(long-chain-ester)-substituted biphenyl compounds (Geiger, Geiger et al., 2017). To further understand the factors favoring gelation over crystallization, we have extended our exploration to a mono-substituted analog. In this report, we explore the structure, gelation ability, and inter­molecular inter­actions exhibited by methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate (MBO10Me). Using CrystalExplorer17 (Turner et al., 2017), we have estimated the strengths of the primary inter­molecular inter­actions found in the supra­molecular structure. As expected, the presence of the phenol functional group results in an extended O—H⋯O and C–H⋯O hydrogen-bonding network. In addition, van der Waals forces and C—H⋯π inter­actions are observed.

Structural commentary  

MBO10Me was isolated as a side product during the synthesis of the corresponding bis­(ester-substituted)biphenyl, 4,4′-bis­(9-methyl­oxycarbonyl­non­yloxy)biphenyl, BBO10Me (see Scheme below).graphic file with name e-74-00594-scheme2.jpg

Although BBO10Me readily forms stable gels in a variety of solvents, MBO10Me does not behave as an organogelator in any of the solvents examined. The solid-state structures of BBO6Me and BBO6Et have been reported (Geiger, Geiger et al., 2017). BBO6Me behaves as an organogelator, but BBO6Et does not. The two compounds are isostructural and a comparative energy framework analysis (Turner et al., 2015) showed that the ethyl ester exhibits weaker inter­columnar inter­actions. The structural characterization of MBO10Me was undertaken in an effort to better understand the subtle differences in the strengths of the inter­molecular inter­actions that control gelation.

Fig. 1 shows the mol­ecular structure of MBO10Me with the atom-labeling scheme. The dihedral angle between the two phenyl rings is 6.6 (2) ° and the C6—C1—C7—C12 torsion angle is −6.3 (4)°. The ester chain adopts a straight-chain conformation, as is found in similar structures (Geiger, Zick et al., 2017; Geiger, Geiger et al., 2017), which maximizes the inter­molecular van der Waals inter­actions. The ester chain is, however, tilted out of the plane of the phenyl ring to which it is attached, with a C13—O2—C4—C3 torsion angle of 173.2 (3)°.

Figure 1.

Figure 1

View of the mol­ecular structure of MBO10Me, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

As seen in Table 1 and Fig. 2, O—H⋯O hydrogen bonds, in which the phenol group is the donor and the ester carbonyl group is the acceptor, and C—H⋯O hydrogen bonds, in which the methyl group is the donor and the phenol is the acceptor, result in sheets parallel to the ac plane that are composed of inter­linked Inline graphic(52) rings. The structure is extended into the third dimension via C—H⋯π inter­actions involving phenyl ring hydrogen atoms and the π systems of both phenyl rings (see Fig. 3 and Table 1). The result is a columnar structure similar to that observed in BBO6Me and BBO6Et (Geiger, Geiger et al., 2017) with an important difference: the columns are joined by an O—H⋯O hydrogen-bonding network in which the phenol is the donor and the ester carbonyl is the acceptor (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.89 (4) 1.96 (4) 2.813 (5) 162 (4)
C23—H23C⋯O1ii 0.98 2.46 3.149 (5) 127
C23—H23A⋯O3iii 0.98 2.74 3.564 (6) 142
C3—H3⋯O2iv 0.95 2.82 3.627 (4) 143
C2—H2⋯Cg1iv 0.95 2.98 3.737 (4) 138
C9—H9⋯Cg1iv 0.95 2.89 3.716 (4) 146
C5—H5⋯Cg2v 0.95 2.95 3.722 (4) 139
C12—H12⋯Cg2v 0.95 2.83 3.661 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Two views of the packing in MBO10Me showing the layers parallel to (010). Only the H atoms involved in the O—H⋯O and C—H⋯O hydrogen bonds are shown. Symmetry codes: (a) x + Inline graphic, −y + Inline graphic, z − Inline graphic; (b) x, y z + 1; (c) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (d) x, y, z − 1.

Figure 3.

Figure 3

Partial crystal packing diagram of MBO10Me, emphasizing the C—H⋯π inter­actions. Only H atoms involved in these inter­actions are shown.

Database survey  

A search of the Cambridge Structural Database (CSD, V5.38, last update May 2017; Groom et al., 2016) for 4,4′-biphenols yielded 21 structures, excluding those in which the biphenol was coordinated to a metal. There are 15 examples of structures with biphenol mol­ecules in which the dihedral angle between phenyl rings is 2° or less. [The calculated rotational barrier in the gas phase for 4,4′-biphenyl is ca 8 kJ mol−1 (Johansson & Olsen, 2008).] In the title compound, MBO10Me, the dihedral angle between the two phenyl rings is 6.6 (2)°.

Hirshfeld surface analysis, inter­action energies  

Using CrystalExplorer17 (Turner et al., 2017), the Hirshfeld surface and fingerprint plots were calculated (see Section 9 for details). As seen in Fig. 4, the closest inter­molecular contacts involve the phenol group. Each of the types of hydrogen-bonding inter­actions are clearly discernible in the fingerprint plot. The presence of C—H⋯π bonding is also apparent. The H⋯O and H⋯C surface-contact coverages are 17.6% and 22.9%, respectively. No significant π–π inter­actions are are observed [the closest ring centroid-to-ring centroid distance is 4.921 (2) Å].

Figure 4.

Figure 4

Fingerprint plots for MBO10Me, including (a) all inter­molecular contacts, (b) H⋯O inter­actions, (c) C—H⋯π inter­actions, and (d) Hirshfeld surface for MBO10Me.

Table 2 shows the results of the inter­action energy calculations (see Section 9 for details). The results are represented graphically in Fig. 5 as framework energy diagrams (Turner et al., 2015). In an energy framework, the cylinder size correlates to the strength of the inter­action. The framework is reminiscent of that observed in the bis­(substituted) compounds with inter­actions that are primarily dispersive in nature between the six nearest intra­columnar neighbors. However, the inter­columnar inter­actions, which possess the O—H⋯O hydrogen bonding, have greater electrostatic components. These findings show that the van der Waals and C—H⋯π inter­actions result in significantly favorable inter­molecular attractive forces, surpassing the strength of the inter­columnar O—H⋯O inter­action.

Table 2. Inter­action energies.

N refers to the number of mol­ecules with an R mol­ecular centroid-to-centroid distance (Å). Energies are in kJ mol−1.

N primary inter­action R Eele Epol Edis Erep E tot
2 C—H⋯π 4.91 −13.6 −2.8 −83.5 43.2 −62.5
2 C—H⋯π 4.98 −13.5 −3.5 −76.1 38.7 −59.2
2 H⋯H 6.70 −8.2 −1.2 −38.2 18.1 −31.7
2 O1—H⋯O3 23.60 −34.2 −7.1 −10.6 33.0 −30.3
2 C—H⋯O1 27.25 −6.1 −1.3 −5.5 8.8 −6.8
2 C—H⋯O1 25.53 −1.9 −0.4 −4.4 1.6 −5.1

Scale factors used to determine E tot: k ele = 1.057, k pol = 0.740, k dis = 0.871, k rep = 0.618 (Mackenzie et al., 2017). See Section 9 for calculation details.

Figure 5.

Figure 5

Energy framework diagram for separate electrostatic (top, red) and dispersion (middle, green) components of MBO10Me and the total inter­action energy (bottom, blue). The energy factor scale is 120 and the cut-off is 5.00 kJ mol−1.

Based on the three structures reported to date, a columnar supra­molecular structure appears to be a common feature of long-chain ester compounds with a biphenyl core. The findings reported herein support the rationale posited for the difference in gelation ability exhibited by BBO6Me and BBO6Et (Geiger, Geiger et al., 2017), i.e., the strength of the inter­columnar inter­actions. The O—H⋯O hydrogen bonds between columns in MBO10Me are about twice the strength of the inter­columnar inter­actions found in BBO6Me (−15.5 kJ mol−1) and three times that found in BBO6Et (−10.1 kJ mol−1). A possible explanation for the lack of gelation ability of MBO10Me is that the stronger inter­columnar inter­actions favor formation of the crystal lattice rather than incorporation of a large number of solvent mol­ecules giving a gel.

Synthesis and crystallization  

Methyl 10-[4-(4-hydroxy­phenyl)phen­oxy]decan­oate (MBO10Me)  

The title compound was isolated as a minor side-product during the synthesis of the organogelator 4,4′-bis-(9-methyl­oxycarbonyl­non­yloxy)biphenyl (BBO10Me). 1H NMR (400 MHz, DMSO-d6) δ 9.40 (s, 1H), 7.44 (d, 2H), 7.38 (d, 2H), 6.92 (d, 2H), 6.68 (d, 2H), 4.02 (t, 2H), 3.60 (s, 3H), 2.20 (t, 2H), 1.73 (m, 2H), 1.35–1.45 (m, 12H). Single crystals suitable for X-ray analysis were isolated from the NMR tube in DMSO-d 6.

Gelation studies  

The gelation behavior of MBO10Me was examined in n-octa­nol, n-hexa­nol, n-butanol and ethanol. Gelation attempts were carried out using a 2.0% (wt/wt) of the compound and solvent in a screw-capped vial. The mixture was heated until all the solid dissolved and was then allowed to cool to room temperature. Formation of a gel is indicated when inversion of the vial yields no movement of the solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference-Fourier maps. H atoms were refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for the aromatic positions, C—H = 0.99 Å and U iso(H) = 1.2U eq(C) for the methyl­ene groups, and C—H = 0.98 Å and U iso(H) = 1.5U eq(C) for the methyl group. The phenolic H atom was refined freely, including the isotropic displacement parameter. A meaningless Flack parameter and corresponding standard deviation were observed.

Table 3. Experimental details.

Crystal data
Chemical formula C23H30O4
M r 370.47
Crystal system, space group Monoclinic, C c
Temperature (K) 200
a, b, c (Å) 42.287 (9), 7.2848 (15), 6.7006 (13)
β (°) 91.226 (12)
V3) 2063.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.64, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 10387, 3095, 2363
R int 0.060
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.122, 1.05
No. of reflections 3095
No. of parameters 249
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.18

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Hirshfeld surface, fingerprint plots, inter­action energy calculations  

Hirshfeld surfaces, fingerprint plots, inter­action energies and energy frameworks (Turner et al., 2015) were calculated using CrystalExplorer17 (Turner et al., 2017). Inter­action energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination and are corrected for basis set superposition energy using the counterpoise method. The inter­action energy is broken down as

E tot = k ele E′ ele + k pol E′ pol + k dis E′ dis + k rep E′ repwhere the k values are scale factors, E′ ele represents the electrostatic component, E′ pol the polarization energy, E′ dis the dispersion energy, and E′ rep the exchange-repulsion energy (Turner et al., 2014; Mackenzie et al., 2017). The C—H bond lengths were converted to normalized values based on neutron diffraction results (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017016589/su5401sup1.cif

e-74-00594-sup1.cif (335.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016589/su5401Isup2.hkl

e-74-00594-Isup2.hkl (247.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016589/su5401Isup3.mol

Supporting information file. DOI: 10.1107/S2056989017016589/su5401Isup4.cml

CCDC reference: 1586244

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer and a grant from the Geneseo Foundation.

supplementary crystallographic information

Crystal data

C23H30O4 F(000) = 800
Mr = 370.47 Dx = 1.192 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 42.287 (9) Å Cell parameters from 122 reflections
b = 7.2848 (15) Å θ = 3.1–19.4°
c = 6.7006 (13) Å µ = 0.08 mm1
β = 91.226 (12)° T = 200 K
V = 2063.7 (7) Å3 Plate, clear colorless
Z = 4 0.40 × 0.40 × 0.20 mm

Data collection

Bruker SMART X2S benchtop diffractometer 3095 independent reflections
Radiation source: sealed microfocus tube 2363 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromator Rint = 0.060
Detector resolution: 8.3330 pixels mm-1 θmax = 25.3°, θmin = 2.8°
ω scans h = −44→50
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −8→8
Tmin = 0.64, Tmax = 0.98 l = −8→8
10387 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: mixed
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2432P] where P = (Fo2 + 2Fc2)/3
3095 reflections (Δ/σ)max < 0.001
249 parameters Δρmax = 0.12 e Å3
2 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.73167 (7) 0.2440 (4) −0.5378 (5) 0.0736 (9)
H1 0.7463 (10) 0.294 (5) −0.458 (7) 0.077 (14)*
O2 0.51725 (5) 0.2275 (3) 0.0196 (3) 0.0512 (7)
O3 0.28496 (7) 0.1690 (4) 1.2022 (5) 0.0826 (9)
O4 0.29945 (7) 0.3224 (4) 1.4752 (4) 0.0800 (9)
C1 0.60847 (8) 0.2531 (4) −0.2156 (5) 0.0383 (8)
C2 0.58278 (8) 0.1710 (5) −0.3145 (5) 0.0442 (8)
H2 0.5858 0.1167 −0.4415 0.053*
C3 0.55318 (8) 0.1662 (5) −0.2339 (5) 0.0447 (8)
H3 0.5364 0.108 −0.3058 0.054*
C4 0.54735 (8) 0.2444 (5) −0.0505 (5) 0.0401 (9)
C5 0.57240 (9) 0.3313 (5) 0.0505 (5) 0.0508 (9)
H5 0.569 0.3892 0.1753 0.061*
C6 0.60217 (8) 0.3326 (4) −0.0319 (6) 0.0499 (9)
H6 0.619 0.3903 0.0402 0.06*
C7 0.64072 (7) 0.2542 (4) −0.3000 (5) 0.0392 (8)
C8 0.64804 (9) 0.1590 (5) −0.4734 (6) 0.0600 (10)
H8 0.6317 0.0942 −0.5427 0.072*
C9 0.67810 (9) 0.1556 (5) −0.5479 (6) 0.0662 (11)
H9 0.6822 0.0868 −0.665 0.079*
C10 0.70209 (8) 0.2498 (4) −0.4554 (6) 0.0522 (10)
C11 0.69596 (9) 0.3481 (5) −0.2861 (6) 0.0600 (10)
H11 0.7124 0.4153 −0.2207 0.072*
C12 0.66573 (8) 0.3490 (5) −0.2107 (5) 0.0552 (10)
H12 0.6619 0.4174 −0.0929 0.066*
C13 0.51112 (8) 0.2887 (5) 0.2186 (5) 0.0469 (9)
H13A 0.5118 0.4244 0.2255 0.056*
H13B 0.5272 0.2385 0.3135 0.056*
C14 0.47868 (8) 0.2203 (5) 0.2700 (6) 0.0483 (9)
H14A 0.4788 0.0844 0.2685 0.058*
H14B 0.4633 0.2624 0.1663 0.058*
C15 0.46794 (8) 0.2860 (4) 0.4725 (5) 0.0437 (8)
H15A 0.4682 0.4219 0.4748 0.052*
H15B 0.4831 0.2421 0.5766 0.052*
C16 0.43495 (8) 0.2191 (4) 0.5219 (5) 0.0426 (8)
H16A 0.4199 0.2639 0.4178 0.051*
H16B 0.4348 0.0832 0.5171 0.051*
C17 0.42356 (8) 0.2799 (4) 0.7235 (5) 0.0429 (8)
H17A 0.424 0.4157 0.7289 0.052*
H17B 0.4385 0.2338 0.8276 0.052*
C18 0.39041 (9) 0.2150 (4) 0.7728 (5) 0.0448 (8)
H18A 0.3754 0.261 0.6691 0.054*
H18B 0.3899 0.0792 0.7683 0.054*
C19 0.37950 (8) 0.2779 (4) 0.9753 (5) 0.0442 (8)
H19A 0.3811 0.4134 0.9811 0.053*
H19B 0.3942 0.2279 1.0785 0.053*
C20 0.34601 (8) 0.2228 (5) 1.0281 (5) 0.0469 (9)
H20A 0.331 0.2703 0.9249 0.056*
H20B 0.3444 0.0873 1.0291 0.056*
C21 0.33705 (9) 0.2965 (5) 1.2292 (6) 0.0546 (10)
H21A 0.3522 0.2475 1.3304 0.066*
H21B 0.3396 0.4316 1.2272 0.066*
C22 0.30427 (9) 0.2536 (5) 1.2951 (6) 0.0529 (9)
C23 0.26842 (13) 0.2933 (7) 1.5605 (9) 0.0984 (18)
H23A 0.2635 0.1618 1.5605 0.148*
H23B 0.2524 0.3589 1.4805 0.148*
H23C 0.2685 0.3397 1.6978 0.148*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0492 (17) 0.092 (2) 0.080 (2) −0.0003 (13) 0.0247 (15) −0.0105 (16)
O2 0.0425 (14) 0.0684 (17) 0.0429 (15) −0.0038 (12) 0.0052 (12) −0.0054 (12)
O3 0.0494 (15) 0.109 (2) 0.090 (2) −0.0115 (16) 0.0097 (14) −0.0197 (19)
O4 0.076 (2) 0.100 (2) 0.0656 (19) −0.0162 (16) 0.0320 (16) −0.0190 (17)
C1 0.046 (2) 0.0295 (16) 0.040 (2) 0.0002 (12) 0.0028 (15) 0.0012 (13)
C2 0.048 (2) 0.0502 (19) 0.0340 (19) −0.0005 (15) 0.0007 (15) −0.0056 (15)
C3 0.0430 (18) 0.049 (2) 0.042 (2) −0.0037 (14) −0.0013 (15) −0.0019 (15)
C4 0.0399 (19) 0.0411 (19) 0.040 (2) 0.0010 (14) 0.0033 (16) 0.0048 (15)
C5 0.054 (2) 0.052 (2) 0.047 (2) −0.0067 (16) 0.0087 (17) −0.0128 (17)
C6 0.045 (2) 0.0500 (18) 0.055 (2) −0.0121 (14) 0.0052 (15) −0.0159 (16)
C7 0.045 (2) 0.0299 (16) 0.043 (2) 0.0006 (12) 0.0043 (16) −0.0003 (13)
C8 0.055 (2) 0.066 (2) 0.060 (2) −0.0132 (16) 0.0147 (18) −0.0250 (19)
C9 0.061 (2) 0.071 (2) 0.066 (3) −0.0080 (19) 0.021 (2) −0.0298 (19)
C10 0.048 (2) 0.049 (2) 0.060 (3) 0.0047 (15) 0.0116 (18) 0.0014 (17)
C11 0.047 (2) 0.069 (2) 0.064 (3) −0.0045 (16) 0.0020 (19) −0.012 (2)
C12 0.048 (2) 0.067 (2) 0.051 (2) −0.0021 (16) 0.0061 (18) −0.0191 (17)
C13 0.047 (2) 0.053 (2) 0.040 (2) −0.0002 (15) 0.0056 (16) −0.0014 (16)
C14 0.048 (2) 0.051 (2) 0.046 (2) −0.0051 (15) 0.0042 (16) −0.0068 (17)
C15 0.0403 (18) 0.051 (2) 0.040 (2) 0.0011 (15) 0.0004 (15) −0.0007 (16)
C16 0.0392 (18) 0.0465 (19) 0.042 (2) −0.0024 (14) 0.0000 (15) −0.0047 (16)
C17 0.0442 (19) 0.0486 (19) 0.0359 (19) 0.0004 (15) −0.0003 (15) 0.0005 (16)
C18 0.0471 (19) 0.047 (2) 0.040 (2) 0.0001 (15) −0.0005 (14) −0.0055 (17)
C19 0.044 (2) 0.0509 (19) 0.0374 (19) −0.0005 (15) −0.0007 (16) 0.0000 (16)
C20 0.045 (2) 0.052 (2) 0.043 (2) −0.0011 (15) 0.0009 (16) −0.0029 (17)
C21 0.050 (2) 0.070 (3) 0.043 (2) −0.0068 (17) 0.0075 (17) −0.0075 (18)
C22 0.049 (2) 0.055 (2) 0.056 (3) 0.0026 (17) 0.0095 (18) 0.002 (2)
C23 0.090 (4) 0.100 (4) 0.108 (5) −0.009 (3) 0.061 (3) −0.008 (3)

Geometric parameters (Å, º)

O1—C10 1.378 (4) C13—H13A 0.99
O1—H1 0.89 (4) C13—H13B 0.99
O2—C4 1.372 (4) C14—C15 1.518 (5)
O2—C13 1.435 (4) C14—H14A 0.99
O3—C22 1.188 (5) C14—H14B 0.99
O4—C22 1.327 (5) C15—C16 1.521 (4)
O4—C23 1.458 (5) C15—H15A 0.99
C1—C6 1.391 (5) C15—H15B 0.99
C1—C2 1.395 (4) C16—C17 1.511 (4)
C1—C7 1.487 (3) C16—H16A 0.99
C2—C3 1.374 (4) C16—H16B 0.99
C2—H2 0.95 C17—C18 1.522 (4)
C3—C4 1.381 (5) C17—H17A 0.99
C3—H3 0.95 C17—H17B 0.99
C4—C5 1.396 (5) C18—C19 1.514 (5)
C5—C6 1.385 (5) C18—H18A 0.99
C5—H5 0.95 C18—H18B 0.99
C6—H6 0.95 C19—C20 1.521 (4)
C7—C12 1.388 (4) C19—H19A 0.99
C7—C8 1.394 (5) C19—H19B 0.99
C8—C9 1.376 (5) C20—C21 1.506 (5)
C8—H8 0.95 C20—H20A 0.99
C9—C10 1.363 (5) C20—H20B 0.99
C9—H9 0.95 C21—C22 1.497 (5)
C10—C11 1.371 (5) C21—H21A 0.99
C11—C12 1.385 (5) C21—H21B 0.99
C11—H11 0.95 C23—H23A 0.98
C12—H12 0.95 C23—H23B 0.98
C13—C14 1.506 (4) C23—H23C 0.98
C10—O1—H1 112 (3) C14—C15—C16 112.8 (3)
C4—O2—C13 118.5 (2) C14—C15—H15A 109.0
C22—O4—C23 117.3 (3) C16—C15—H15A 109.0
C6—C1—C2 115.9 (3) C14—C15—H15B 109.0
C6—C1—C7 121.9 (3) C16—C15—H15B 109.0
C2—C1—C7 122.2 (3) H15A—C15—H15B 107.8
C3—C2—C1 122.1 (3) C17—C16—C15 114.3 (2)
C3—C2—H2 119.0 C17—C16—H16A 108.7
C1—C2—H2 119.0 C15—C16—H16A 108.7
C2—C3—C4 121.4 (3) C17—C16—H16B 108.7
C2—C3—H3 119.3 C15—C16—H16B 108.7
C4—C3—H3 119.3 H16A—C16—H16B 107.6
O2—C4—C3 116.9 (3) C16—C17—C18 114.6 (2)
O2—C4—C5 125.1 (3) C16—C17—H17A 108.6
C3—C4—C5 118.0 (3) C18—C17—H17A 108.6
C6—C5—C4 119.7 (3) C16—C17—H17B 108.6
C6—C5—H5 120.1 C18—C17—H17B 108.6
C4—C5—H5 120.1 H17A—C17—H17B 107.6
C5—C6—C1 122.9 (3) C19—C18—C17 113.6 (3)
C5—C6—H6 118.6 C19—C18—H18A 108.9
C1—C6—H6 118.6 C17—C18—H18A 108.9
C12—C7—C8 115.2 (3) C19—C18—H18B 108.9
C12—C7—C1 122.3 (3) C17—C18—H18B 108.9
C8—C7—C1 122.4 (3) H18A—C18—H18B 107.7
C9—C8—C7 122.3 (3) C18—C19—C20 115.6 (3)
C9—C8—H8 118.8 C18—C19—H19A 108.4
C7—C8—H8 118.8 C20—C19—H19A 108.4
C10—C9—C8 120.7 (3) C18—C19—H19B 108.4
C10—C9—H9 119.6 C20—C19—H19B 108.4
C8—C9—H9 119.6 H19A—C19—H19B 107.4
C9—C10—C11 119.1 (3) C21—C20—C19 111.5 (3)
C9—C10—O1 118.4 (3) C21—C20—H20A 109.3
C11—C10—O1 122.5 (3) C19—C20—H20A 109.3
C10—C11—C12 119.8 (3) C21—C20—H20B 109.3
C10—C11—H11 120.1 C19—C20—H20B 109.3
C12—C11—H11 120.1 H20A—C20—H20B 108.0
C11—C12—C7 122.8 (3) C22—C21—C20 116.2 (3)
C11—C12—H12 118.6 C22—C21—H21A 108.2
C7—C12—H12 118.6 C20—C21—H21A 108.2
O2—C13—C14 107.0 (3) C22—C21—H21B 108.2
O2—C13—H13A 110.3 C20—C21—H21B 108.2
C14—C13—H13A 110.3 H21A—C21—H21B 107.4
O2—C13—H13B 110.3 O3—C22—O4 123.7 (4)
C14—C13—H13B 110.3 O3—C22—C21 125.7 (4)
H13A—C13—H13B 108.6 O4—C22—C21 110.5 (3)
C13—C14—C15 113.0 (3) O4—C23—H23A 109.5
C13—C14—H14A 109.0 O4—C23—H23B 109.5
C15—C14—H14A 109.0 H23A—C23—H23B 109.5
C13—C14—H14B 109.0 O4—C23—H23C 109.5
C15—C14—H14B 109.0 H23A—C23—H23C 109.5
H14A—C14—H14B 107.8 H23B—C23—H23C 109.5
C6—C1—C2—C3 −1.0 (4) C8—C9—C10—O1 −179.0 (3)
C7—C1—C2—C3 178.3 (3) C9—C10—C11—C12 0.6 (5)
C1—C2—C3—C4 0.5 (5) O1—C10—C11—C12 179.8 (3)
C13—O2—C4—C3 173.2 (3) C10—C11—C12—C7 −0.3 (6)
C13—O2—C4—C5 −5.6 (5) C8—C7—C12—C11 −0.8 (5)
C2—C3—C4—O2 −178.1 (3) C1—C7—C12—C11 178.8 (3)
C2—C3—C4—C5 0.8 (5) C4—O2—C13—C14 −169.0 (3)
O2—C4—C5—C6 177.1 (3) O2—C13—C14—C15 −176.1 (3)
C3—C4—C5—C6 −1.7 (5) C13—C14—C15—C16 179.1 (3)
C4—C5—C6—C1 1.2 (5) C14—C15—C16—C17 179.3 (3)
C2—C1—C6—C5 0.2 (5) C15—C16—C17—C18 179.4 (3)
C7—C1—C6—C5 −179.2 (3) C16—C17—C18—C19 −179.9 (3)
C6—C1—C7—C12 −6.3 (4) C17—C18—C19—C20 177.7 (2)
C2—C1—C7—C12 174.4 (3) C18—C19—C20—C21 −178.3 (3)
C6—C1—C7—C8 173.2 (3) C19—C20—C21—C22 178.9 (3)
C2—C1—C7—C8 −6.1 (4) C23—O4—C22—O3 −0.9 (6)
C12—C7—C8—C9 1.6 (5) C23—O4—C22—C21 179.6 (4)
C1—C7—C8—C9 −178.0 (3) C20—C21—C22—O3 −0.8 (6)
C7—C8—C9—C10 −1.4 (6) C20—C21—C22—O4 178.8 (3)
C8—C9—C10—C11 0.2 (6)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.89 (4) 1.96 (4) 2.813 (5) 162 (4)
C23—H23C···O1ii 0.98 2.46 3.149 (5) 127
C23—H23A···O3iii 0.98 2.74 3.564 (6) 142
C3—H3···O2iv 0.95 2.82 3.627 (4) 143
C2—H2···Cg1iv 0.95 2.98 3.737 (4) 138
C9—H9···Cg1iv 0.95 2.89 3.716 (4) 146
C5—H5···Cg2v 0.95 2.95 3.722 (4) 139
C12—H12···Cg2v 0.95 2.83 3.661 (4) 147

Symmetry codes: (i) x+1/2, −y+1/2, z−3/2; (ii) x−1/2, −y+1/2, z+5/2; (iii) x, −y, z+1/2; (iv) x, −y, z−1/2; (v) x, −y+1, z+1/2.

References

  1. Adhikari, B. R., Kim, D., Bae, J. H., Yeon, J., Roshan, K. C., Kang, S. K. & Lee, E. H. (2016). Cryst. Growth Des. 16, 7198–7204.
  2. Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790–811. Heidelberg: Springer Verlag.
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cui, J., Shen, Z. & Wan, X. (2010). Langmuir, 26, 97–103. [DOI] [PubMed]
  5. Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791–796. [DOI] [PubMed]
  6. Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350–356. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Johansson, M. P. & Olsen, J. (2008). J. Chem. Theory Comput. 4, 1460–1471. [DOI] [PubMed]
  9. Liow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295–316. [DOI] [PubMed]
  10. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Martin, A. D., Wojciechowski, J. P., Bhadbhade, M. M. & Thordarson, P. (2016). Langmuir, 32, 2245–2250. [DOI] [PubMed]
  13. Rojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593–597. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704–717. [DOI] [PubMed]
  18. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au
  20. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  21. Weiss, R. G. (2014). J. Am. Chem. Soc. 136, 7519–7530. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Wu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211–6225. [DOI] [PubMed]
  24. Xavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109–3118. [DOI] [PubMed]
  25. Yan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183–200. [DOI] [PubMed]
  26. Yasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977–12985. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017016589/su5401sup1.cif

e-74-00594-sup1.cif (335.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016589/su5401Isup2.hkl

e-74-00594-Isup2.hkl (247.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017016589/su5401Isup3.mol

Supporting information file. DOI: 10.1107/S2056989017016589/su5401Isup4.cml

CCDC reference: 1586244

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES