Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 6;74(Pt 5):620–624. doi: 10.1107/S2056989018004905

Crystal structure of an iridium(III) complex of the [C(dppm)2] PCP pincer ligand system and its conjugate CH acid form

Christian Reitsamer a, Inge Schlapp-Hackl a,*, Gabriel Partl a, Walter Schuh a, Holger Kopacka a, Klaus Wurst a, Paul Peringer a
PMCID: PMC5947474  PMID: 29850078

The crystal structures of [IrIII(CO)(C(dppm)2-κ 3P,C,P′)ClH]Cl and [IrIII(CO)(CH(dppm)2-κ 3P,C,P′)ClH]Cl2 have been determined. Both complexes show a slightly distorted octa­hedral coordinated IrIII centre. The PCP pincer ligand system is arranged in a meridional manner.

Keywords: iridium (III), PCP pincer, carbodi­phospho­rane (CDP), crystal structure, NMR

Abstract

After the successful creation of the newly designed PCP carbodi­phospho­rane (CDP) ligand [Reitsamer et al. (2012). Dalton Trans. 41, 3503–3514; Stallinger et al. (2007). Chem. Commun. pp. 510–512], the treatment of this PCP pincer system with the transition metal iridium and further the analysis of the structures by single-crystal diffraction and by NMR spectroscopy were of major inter­est. Two different iridium complexes, namely (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}methane-κ3 P,C,P′)carbonyl­chlorido­hydridoiridium(III) chloride di­chloro­methane tris­olvate, [IrIII(CO){C(dppm)23 P,C,P′}ClH]Cl·3CH2Cl2 (1) and the closely related (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}methanide(1+)-κ3 P,C,P′)carbonyl­chlorido­hy­dridoirid­ium(III) dichloride–hydro­chloric acid–water (1/2/5.5), [IrIII(CO){CH(dppm)23 P,C,P′)ClH]Cl}2 (2), have been designed and both complexes show a slightly distorted octa­hedral coordinated IrIII centre. The PCP pincer ligand system is arranged in a meridional manner, the CO ligand is located trans to the central PCP carbon and a hydride and chloride are located perpendicular above and below the P2C2 plane. With an Ir—CCDP distance of 2.157 (5) Å, an Ir—CO distance of 1.891 (6) Å and a quite short C—O distance of 1.117 (7) Å, complex 1 presents a strong carbonyl bond. Complex 2, the corresponding CH acid of 1, shows an additionally attached proton at the carbodi­phospho­rane carbon atom located anti­periplanar to the hydride of the metal centre. In comparison with complex 1, the Ir—CCDP distance of 2.207 (3) Å is lengthened and the Ir—C—O values indicate a weaker trans influence of the central carbodi­phospho­rane carbon atom.

Chemical context  

Based on a great number of investigations of iridium complexes in organic synthesis (Oro & Claver, 2009), on the large variety of metal–pincer ligand inter­actions and reactivities (Morales-Morales & Jensen, 2007; Choi et al., 2011), the catalytic and stoichiometric organometallic chemistry of iridium PCP pincer complexes attracted our attention.

Up to now, diverse PCP pincer systems have been generated and these systems are, in general, classified according to the charge of the central carbon atom. Both an anionic sp2 or sp3 hybridization of the central carbon atom is possible (Table 1) and the charge arises from the metallation of the pertinent C—H functionalities of the non-coordinated ligand subunits. Furthermore, neutral PCP pincer ligands containing a divalent carbon(II) donor atom, for instance an alkyl­idene carbene or a NHC, are well known (Table 1; Crocker et al., 1982). Moreover, PCP pincer complexes based on tropylium backbones have been reported. The cationic central carbon atom is part of a seven-membered six-electron arene fragment and because of the C—C bond lengths, designation as a cyclo­hepta­trienyl­idene carbene is allowed (Table 1).

Table 1. Comparative Ir—CPCP and Ir—CCO bond lengths (Å) of different [Ir(CO)ClH(PCP)] complexes.

PCP ligand or backbone (charges are omitted) PCP central carbon atom Ir—CCO Ir—CPCP Reference
C6H3-1,3-[OPR 2]2 sp 2 2.045 (3) 1.949 (4) Goldberg et al. (2015)
C6H3-1,3-[OPR 2]2 sp 2 2.057 (3) 1.913 (4) Goldberg et al. (2015)
C6H3-1,3-[OPR 2]2 sp 2 2.071 (2) 1.921 (3) Goldberg et al. (2015)
C(NCH2PR 2)2C10H6 NHC 2.078 (4) 1.904 (5) Hill & McQueen (2012)
benzotropylium alkyl­idene 2.082 1.929 Leis et al. (2014)
tropylium alkyl­idene 2.093 (5) 1.916 (5) Winter et al. (2005)
C6H3-1,3-[P(CF3)2]2 sp 2 2.103 (2) 1.952 (3) Adams et al. (2011)
C3H3-1,2-[OPR 2]2 sp 3 2.126 (8) 1.880 (7) Ruhland & Herdtweck (2005)
CH(NCH2PR 2)2C10H6 sp 3 2.141 (5) 1.904 (6) Hill & McQueen (2012)
C(dppm)2 CDP 2.157 (5) 1.891 (6) this work
cyclo­hex­yl sp 3 2.159 (4) 1.909 (5) Jonasson et al. (2015)
trypticene sp 3 2.163 (2) 1.895 (2) Azerraf & Gelman (2009)
cyclo­hex­yl sp 3 2.165 (5) 1.906 (6) Mayer et al. (1993)
trypticene sp 3 2.193(3 1.898 (3) Azerraf & Gelman (2009)
CH(dppm)2 protonated CDP 2.207 (3) 1.874 (4) this work
cyclo­hepta­trien­yl sp 3 2.25 (2) 1.78 (1) Nemeh et al. (1998)

Our focus is on the creation of new iridium complexes containing a PCP ligand system with a neutral or a cationic central carbon atom, respectively. The central carbon is part of a carbodi­phospho­rane (CDP) functionality and can be described as a naked carbon atom or as a divalent carbon(0) atom in an excited singlet (1D) state stabilized by two tertiary phosphines via donor–acceptor inter­actions. Consequently, this central atom disposes of two lone-electron pairs and is able to inter­act with one or two Lewis acids (Petz & Frenking, 2010).graphic file with name e-74-00620-scheme1.jpg

The protonated CDP ligand system [CH(dppm)2]Cl enters an oxidative addition reaction with Vaska’s compound [IrI(CO)Cl(PPh3)2], forming the iridium PCP pincer CDP complex [IrIII(CO)(C(dppm)2-κ 3P,C,P′)ClH]Cl (1) (see reaction scheme). During this reaction sequence, the central carbon atom is deprotonated, becomes neutral and coordin­ates the iridium transition metal. Treatment of complex 1 with hydro­chloric acid leads to the protonation of the central carbon atom and consequently to the formation of the conjugate CH acid of 1, the [Ir(CO)(CH(dppm)2-κ 3P,C,P′)ClH]Cl2 complex 2 (see reaction scheme). Relative to the hydrido ligand at the iridium transition metal, the additionally attached proton adopts a syn- or anti-periplanar conformation. In solution, the existence of both isomers can be demonstrated by the use of NMR spectroscopy. However, the examination of several crystals revealed only the anti-periplanar configuration of complex 2. Whether this is incidental or the crystallization is accompanied by the isomerization of the syn-periplanar to the anti-periplanar conformation is unclear.

Structural commentary  

Complex 1 (Fig. 1) crystallizes in the monoclinic space group P21/n and the asymmetric unit consists of one formula unit of 1 and three mol­ecules of CH2Cl2. The structure can be divided into two parts, the [IrIII(CO)(C(dppm)2-κ 3P,C,P′)ClH]+ monocation and the chloride counter-ion. The iridium transition metal centre exhibits an octa­hedral ligand system, formed by a meridional arranged C(dppm)2, relative to the C1 atom, a trans-coordinated carbonyl unit, and a chlorido and hydrido ligand located perpendicular to the meridional plane or more precisely trans to each other. The P1—Ir1—P4 angle of 170.69 (5)° indicates a small deviation from the octa­hedral geometry and this value is larger compared to many related Iridium PCP pincer complexes. The environment of the CDP carbon atom C1 is strictly planar (sum of angles at C1 = 360°; Table 2) and the C1—P2 and C1—P3 bond lengths are 1.697 (5) and 1.711 (5) Å, respectively. Not only the geometry, but also the bond lengths are characteristic for a carbodi­phospho­rane atom, which inter­acts with one Lewis acid (Petz & Frenking, 2010). In general, bond lengths are directly connected with the valence-bond structure of a carbon atom and an increasing of the valence state causes a significant expansion of the bond gaps [Csp 2 < C(carbene) < Csp 3]. Consequently, the Ir1—C1 separation of 2.157 (5) Å indicates an sp 3 hybridization of the carbodiphosphorane carbon atom, which is substantiated by the data collected in Table 1. Additionally, inter­actions (Table 3) between the chloride counter-ion and the methyl­ene groups of the PCP pincer ligand system can be detected and the bond lengths of about 2.60 Å [Cl2⋯H2B(1 + x, y, z)] and 2.62 Å [Cl2⋯H3B(1 + x, y, z)] illustrate the location within the van der Waals radii. These C—H⋯X inter­actions are a common feature of complexes containing dppm or related ligands (Jones & Ahrens, 1998). Moreover, the chloride counter-ion inter­acts with the hydrogen atoms of the CH2Cl2 mol­ecules as well, forming distances of about 2.59 Å [Cl2⋯H5B(Inline graphic + x, Inline graphic − y, Inline graphic + z)] and 2.47 Å [Cl2⋯H6B(−Inline graphic − x, Inline graphic + y, Inline graphic − z)].

Figure 1.

Figure 1

Structure of complex 1 with displacement ellipsoids drawn at the 30% probability level. Solvent residues are omitted.

Table 2. Selected distances and angles (Å, °) of 1 and 2 .

  complex 1 complex 2 a
Ir1—C1 2.157 (5) 2.207 (3)
Ir1—C4 1.891 (6) 1.874 (4)
Ir1—P1 2.344 (1) 2.347 (1)
Ir1—P4 2.315 (2) 2.332 (1)
Ir1—H1 1.54 (3) 1.52 (4)
C4—O1 1.117 (7) 1.135 (5)
P1—C2 1.827 (5) 1.837 (4)
P2—C2 1.800 (5) 1.803 (4)
P2—C1 1.697 (5) 1.802 (3)
P3—C1 1.711 (5) 1.801 (3)
P2—C1—P3 125.7 (3) 122.1 (2)
P2—C1—Ir1 113.9 (3) 107.8 (2)
P3—C1—Ir1 120.4 (3) 114.5 (2)
P4—Ir1—P1 170.7 (1) 171.9 (1)

Note: (a) the second independent formula unit displays similar values.

Table 3. Hydrogen-bond geometry (Å, °) for complex 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl2 0.98 2.60 3.534 (5) 160
C3—H3B⋯Cl2i 0.98 2.62 3.544 (5) 157
C5—H5B⋯Cl2ii 0.98 2.59 3.541 (10) 165
C6—H6B⋯Cl2iii 0.98 2.47 3.436 (10) 169
C7—H7A⋯Cl1iv 0.98 2.50 3.447 (15) 163
C105—H105⋯Cl1v 0.94 2.72 3.573 (8) 151
C312—H312⋯Cl2i 0.94 2.78 3.690 (6) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

The asymmetric unit of 2 comprises two [IrIII(CO)(CH(dppm)2-κ 3P,C,P′)ClH]Cl2 complex mol­ecules (Fig. 2), four mol­ecules of HCl and eleven mol­ecules of water in total. Both complex mol­ecules are distinctly asymmetric in the solid state. As a result of the threefold coordination of the transition metal by the PCP pincer ligand system, two five-membered metallacycles are formed, each adopting an approximately envelope conformation. One methyl­ene group (C3) and one phospho­rus atom (P2) are positioned at the flap positions above the plane generated by the C1–C2–P1–Ir1 and C1–Ir1–P3–P4 atoms. Complex 2 crystallizes in the monoclinic space group P21/n and the complex mol­ecule can be described as one [IrIII(CO)(CH(dppm)2-κ 3P,C,P′)ClH]2+ dication stabilized by two chloride counter-ions. Overall, complex 2 represents the conjugate CH acid of the [IrIII(CO)(C(dppm)2-κ 3P,C,P′)ClH]Cl complex (1). The carbodi­phospho­rane carbon atom additionally coordinates a second Lewis acid, the proton H1, which adopts an anti-periplanar conformation relative to the hydrido ligand H11. As a consequence, atom C1 forms a distorted tetra­hedron with the directly coordinated atoms (sum of angles = 344.3°). In comparison with complex 1, the values of the angles P2—C1–Ir1 and P3—C1—Ir1 are significantly reduced, whereas the P2—C1—P3 angles differs to a lesser extent (Table 2). The coordination of a second Lewis acid causes a lengthening of the C1—P distances by about 0.098 Å, resulting in bond lengths in the range of P—C single bonds. Moreover, the Ir1—C1 distance [2.207 (3) Å] is markedly longer compared to that of the conjugate base 1 [2.157 (5) Å], as has also been observed in other carbodi­phospho­rane complexes (Petz et al., 2009; Reitsamer et al., 2012; Tonner et al., 2006). Furthermore, the protonation of the C1 atom leads to a decrease of the trans influence of the carbodi­phospho­rane carbon donor atom, confirmed by an shortening of the Ir—CO distance and an increasing of the carbonyl bond gap. Besides, C—H⋯O and C—H⋯Cl interactions (Table 4) between the methylene groups of the dppm moieties and the water or HCl molecules can be detected, causing for example separations in the range of 2.61 Å [H2A⋯O4(1 − x, 1 − y, 1 − z)], 2.89 Å [H2B⋯Cl7(x − Inline graphic, −y + Inline graphic, z + Inline graphic)], 2.51 Å [H3A⋯Cl8(x, 1 + y, z)] and 2.57 Å [H3B⋯Cl5(x, 1 + y, z)].

Figure 2.

Figure 2

Structure of one of the two independent molecules of complex 2 with displacement ellipsoids drawn at the 30% probability level. Solvent residues are omitted.

Table 4. Hydrogen-bond geometry (Å, °) for complex 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.96 (3) 2.82 (3) 3.252 (3) 109 (2)
C3—H3A⋯Cl8i 0.98 2.51 3.466 (4) 164
C3—H3B⋯Cl5i 0.98 2.57 3.493 (4) 158
C6—H6A⋯O8ii 0.98 2.59 3.431 (5) 144
C6—H6B⋯Cl9ii 0.98 2.82 3.746 (4) 158
C7—H7A⋯Cl1A iii 0.98 2.73 3.614 (6) 150
C7—H7B⋯Cl4iii 0.98 2.60 3.518 (4) 157
C206—H206⋯Cl7iii 0.94 2.79 3.719 (4) 172
C310—H310⋯Cl4ii 0.94 2.83 3.714 (4) 158
C602—H602⋯Cl9ii 0.94 2.62 3.557 (4) 179
C704—H704⋯Cl1iv 0.94 2.82 3.534 (6) 134
C708—H708⋯Cl2 0.94 2.80 3.503 (4) 132
C710—H710⋯Cl5v 0.94 2.72 3.614 (4) 160
C712—H712⋯Cl10iii 0.94 2.81 3.734 (6) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

In 1, there are inter­actions (Table 3) between the chloride counter-ion and the methyl­ene groups of the PCP pincer ligand system [Cl2⋯H2B = 2.60 Å, H3B⋯Cl2(1 + x, y, z) = 2.62 Å] with distances shorter than the sum of the van der Waals radii. Such C—H⋯X inter­actions are a common feature of complexes containing dppm or related ligands (Jones & Ahrens, 1998). Moreover, the chloride counter-ion also inter­acts with the hydrogen atoms of the CH2Cl2 mol­ecules [H5B⋯Cl2(Inline graphic + x, Inline graphic − y, Inline graphic + z) = 2.59 Å and H5B⋯Cl2(−Inline graphic − x, Inline graphic + y, Inline graphic − z) = 2.47 Å].

In 2, C—H⋯O and C—H⋯Cl inter­actions (Table 4) occur between the methyl­ene groups of the dppm moieties and the water or HCl mol­ecules and there are short contacts of 2.61 Å [H2A⋯O4(1 − x, 1 − y, 1 − z)], 2.89 Å [H2B⋯Cl7(x − Inline graphic, −y + Inline graphic, z + Inline graphic)], 2.51 Å [H3A⋯Cl8(x, 1 + y, z)] and 2.57 Å [H3B⋯Cl5(x, 1 + y, z)]. A network of different inter­actions occurs between the two independent complex mol­ecules. The water and hydro­chloric acid solvent mol­ecules form hydrogen bonds with the chloride ligands or counter-ions and the hydrogen atoms of the complex mol­ecules, respectively.

Synthesis and crystallization  

All preparations were carried out under an inert atmosphere (N2) using standard Schlenk techniques. The 1H, 13C and 31P NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer and were referenced against the 13C/1H solvent peaks of the solvents chloro­form, methanol or the external 85% H3PO4 standard, respectively. The phospho­rus atoms in the NMR data are labelled as in Figs. 1 and 2.

Synthesis of [Ir(CO)(C(dppm)2- κ 3P,C,P′)ClH]Cl (1): A mixture of 19.5 mg of Vaska’s complex (0.025 mmol), 20.4 mg of [CH(dppm)2]Cl (0.025 mmol) (Reitsamer et al., 2012) and CHCl3 (0.6 ml) was stirred at ambient temperature for 15 min. The solvent was evaporated in vacuo and the residue was digested with a mixture of CH2Cl2 (0.1 ml) and ethyl acetate (0.7 ml). The solid was separated and washed twice with ethyl acetate (0.6 ml). Single crystals were grown by slow evaporation of a solution in CH2Cl2. 31P {1H} NMR (CHCl3): δ 31.9 (P2/P3, N = 71), δ 8.2 (P1/P4); 13C {1H} NMR (CDCl3): δ −4.4 (C1, 1 J P2/P3C1 = 86, 1 J P1/P4C1 = 6, 1 J C1H(11) = 4); 1H NMR (CDCl3): δ −16.7 (H11, 1 J P1/P4H11 = 10).

Synthesis of [Ir(CO)(CH(dppm)2- κ 3P,C,P′)ClH]Cl2 (2): 19.5 mg of Vaska’s complex (0.025 mmol) and 20.4 mg of [CH(dppm)2]Cl (0.025 mmol) (Reitsamer et al., 2012) were solved in CHCl3 (0.6 ml). The mixture was stirred at ambient temperature for 15 min. After addition of 0.1 ml of hydro­chloric acid (10 mol L−1), the product crystallized upon standing for a day. 31P {1H} NMR (CHCl3/MeOH): δ 45.3 (P2/P3, N = 61), δ 1.7 (P1/P4); 13C {1H} NMR (CDCl3): δ 9.1 (C1, 1 J P2/P3C1) = 38, 1 J C1H1 = 122); 1H NMR (CDCl3/MeOH): δ −18.9 (H11, 1 J P1/P4H11 = 11).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. Refinement of complex 1 resulted in the location of the hydride hydrogen atom. The bond length was restrained to a distance of 1.6 Å and a fixed isotropic displacement parameter of 1.5U eq of iridium was applied. The hydrido ligand of complex 2 was also detected and refined isotropically without the use of bond restraints. Furthermore, the proton of the CDP carbon atom was spotted and refined with bond restraints of 0.98 Å. The hydrogen atoms of the water and solvent mol­ecules could only be partially detected and were omitted. A determination of a 1:1 positional disorder of one water mol­ecule (O4 and O4A) and one HCl or chloride (Cl10 and Cl1A) was possible. Eight chloride positions can be detected, which are occupied by a total of four chlorides and four hydro­chloric acid units. The hydrogen-atom positions of the phenyl subunits and methyl­ene groups were refined with calculated positions (C—H = 0.94 and 0.98 Å) using a riding model with U iso(H) = 1.2U eq(C).

Table 5. Experimental details.

  complex 1 complex 2
Crystal data
Chemical formula [IrClH(CO)(C51H44P4)]Cl·3CH2Cl2 [IrClH(C51H44P4)(CO)]Cl2·2HCl·5.5H2O
M r 1327.64 1281.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 233 233
a, b, c (Å) 12.3477 (2), 24.7472 (5), 19.0123 (3) 19.7138 (2), 22.7327 (2), 25.3120 (3)
β (°) 91.700 (1) 98.781 (1)
V3) 5807.05 (18) 11210.6 (2)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.82 2.78
Crystal size (mm) 0.3 × 0.15 × 0.05 0.3 × 0.2 × 0.06
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 33007, 10203, 8088 68943, 22078, 17290
R int 0.061 0.037
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.098, 1.06 0.033, 0.088, 1.04
No. of reflections 10203 22078
No. of parameters 625 1268
No. of restraints 1 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
     
Δρmax, Δρmin (e Å−3) 1.68, −0.91 2.03, −0.99

Computer programs: COLLECT Nonius, 1999, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 and SHELXL97 (Sheldrick, 2008) and ChemDraw (Cambridge Soft, 2001).

The two complex mol­ecules of 2 are related to each other by the presence of a pseudo-symmetry centre. A halving of the c axis and consequently the changing of the monoclinic setting from P21/n to P21/c allows the consideration of one formula unit of 2. A closer observation of the sections of the reciprocal lattice along c* (l = 2n + 1) at different values of l results in the presence of frequent weak reflections. Consequently, an inter­pretation of this system as three-dimensional network between two complex mol­ecules, four hydro­chloric acid units and eleven water mol­ecules allows the involvement of these weak, but clearly existing reflections, and establishes the possibility of the distinction of the chloride and oxygen positions.

Supplementary Material

Crystal structure: contains datablock(s) global, complex1, complex2. DOI: 10.1107/S2056989018004905/eb2007sup1.cif

e-74-00620-sup1.cif (71.5KB, cif)

Structure factors: contains datablock(s) complex1. DOI: 10.1107/S2056989018004905/eb2007complex1sup2.hkl

Structure factors: contains datablock(s) complex2. DOI: 10.1107/S2056989018004905/eb2007complex2sup3.hkl

CCDC references: 1577807, 1577808

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Crystal data

[IrClH(CO)(C51H44P4)]Cl·3CH2Cl2 F(000) = 2648
Mr = 1327.64 Dx = 1.519 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.3477 (2) Å Cell parameters from 76576 reflections
b = 24.7472 (5) Å θ = 1.0–25.0°
c = 19.0123 (3) Å µ = 2.82 mm1
β = 91.700 (1)° T = 233 K
V = 5807.05 (18) Å3 Prism, colorless
Z = 4 0.3 × 0.15 × 0.05 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Data collection

Nonius KappaCCD diffractometer 8088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.061
Graphite monochromator θmax = 25.0°, θmin = 1.4°
phi– and ω–scans h = −14→13
33007 measured reflections k = −29→29
10203 independent reflections l = −22→22

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0396P)2 + 13.9388P] where P = (Fo2 + 2Fc2)/3
10203 reflections (Δ/σ)max = 0.002
625 parameters Δρmax = 1.68 e Å3
1 restraint Δρmin = −0.91 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Special details

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The hydrogen atom at Ir1 were found and must be refined with bond restraint of 1.6 angs. and a fixed isotropc displacement parameter of 1.5 times higher than Ueq of Ir1.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.086262 (15) 0.157429 (8) 0.860593 (10) 0.02760 (8)
H1 0.071 (4) 0.2193 (11) 0.863 (3) 0.041*
Cl1 0.12882 (13) 0.05923 (6) 0.85269 (8) 0.0467 (4)
Cl2 −0.41779 (12) 0.14124 (7) 0.72730 (9) 0.0543 (4)
P1 −0.10105 (10) 0.14212 (5) 0.85315 (7) 0.0291 (3)
P2 −0.04100 (10) 0.17204 (5) 0.71034 (7) 0.0264 (3)
P3 0.20212 (10) 0.15691 (5) 0.70266 (6) 0.0258 (3)
P4 0.26873 (10) 0.17562 (6) 0.84860 (7) 0.0285 (3)
O1 0.0951 (4) 0.1610 (2) 1.0188 (2) 0.0661 (14)
C1 0.0843 (4) 0.1623 (2) 0.7473 (3) 0.0295 (11)
C2 −0.1350 (4) 0.1327 (2) 0.7597 (3) 0.0287 (11)
H2A −0.1294 0.0945 0.7472 0.034*
H2B −0.2093 0.1448 0.7493 0.034*
C3 0.3047 (4) 0.1398 (2) 0.7698 (3) 0.0305 (11)
H3A 0.3056 0.1008 0.7783 0.037*
H3B 0.3766 0.1510 0.7549 0.037*
C4 0.0912 (4) 0.1583 (2) 0.9601 (3) 0.0410 (14)
C101 −0.1556 (4) 0.0815 (2) 0.8934 (3) 0.0378 (13)
C102 −0.2431 (5) 0.0545 (3) 0.8631 (3) 0.0489 (15)
H102 −0.2743 0.0671 0.8205 0.059*
C103 −0.2854 (6) 0.0090 (3) 0.8950 (4) 0.0621 (19)
H103 −0.3455 −0.0089 0.8743 0.074*
C104 −0.2387 (6) −0.0097 (3) 0.9572 (4) 0.067 (2)
H104 −0.2655 −0.0412 0.9783 0.080*
C105 −0.1535 (6) 0.0173 (3) 0.9883 (4) 0.067 (2)
H105 −0.1236 0.0053 1.0315 0.080*
C106 −0.1112 (5) 0.0624 (3) 0.9563 (3) 0.0519 (16)
H106 −0.0516 0.0803 0.9775 0.062*
C107 −0.1853 (4) 0.1971 (2) 0.8843 (3) 0.0328 (12)
C108 −0.1433 (5) 0.2475 (3) 0.9003 (4) 0.0513 (16)
H108 −0.0686 0.2536 0.8962 0.062*
C109 −0.2081 (6) 0.2891 (3) 0.9222 (4) 0.0607 (19)
H109 −0.1780 0.3234 0.9308 0.073*
C110 −0.3162 (5) 0.2806 (3) 0.9313 (4) 0.0602 (19)
H110 −0.3604 0.3088 0.9470 0.072*
C111 −0.3597 (5) 0.2303 (3) 0.9173 (4) 0.064 (2)
H111 −0.4338 0.2240 0.9242 0.076*
C112 −0.2951 (5) 0.1891 (3) 0.8933 (4) 0.0522 (16)
H112 −0.3260 0.1552 0.8829 0.063*
C201 −0.0556 (4) 0.1498 (2) 0.6200 (3) 0.0307 (12)
C202 −0.0488 (5) 0.0946 (2) 0.6065 (3) 0.0393 (13)
H202 −0.0412 0.0700 0.6440 0.047*
C203 −0.0531 (5) 0.0761 (3) 0.5384 (3) 0.0526 (16)
H203 −0.0485 0.0388 0.5297 0.063*
C204 −0.0640 (5) 0.1112 (3) 0.4826 (3) 0.0527 (17)
H204 −0.0658 0.0979 0.4362 0.063*
C205 −0.0723 (5) 0.1654 (3) 0.4949 (3) 0.0509 (16)
H205 −0.0810 0.1895 0.4568 0.061*
C206 −0.0677 (5) 0.1852 (2) 0.5635 (3) 0.0372 (13)
H206 −0.0729 0.2225 0.5716 0.045*
C207 −0.0969 (4) 0.2400 (2) 0.7139 (3) 0.0320 (12)
C208 −0.0311 (5) 0.2827 (2) 0.7380 (3) 0.0420 (14)
H208 0.0427 0.2769 0.7491 0.050*
C209 −0.0760 (7) 0.3337 (3) 0.7453 (4) 0.0604 (19)
H209 −0.0331 0.3625 0.7627 0.072*
C210 −0.1832 (7) 0.3423 (3) 0.7272 (4) 0.069 (2)
H210 −0.2127 0.3771 0.7308 0.083*
C211 −0.2478 (6) 0.3003 (3) 0.7038 (4) 0.0639 (19)
H211 −0.3211 0.3066 0.6918 0.077*
C212 −0.2055 (5) 0.2493 (2) 0.6978 (3) 0.0429 (14)
H212 −0.2503 0.2206 0.6828 0.051*
C301 0.2117 (4) 0.1022 (2) 0.6384 (3) 0.0317 (12)
C302 0.1958 (5) 0.0497 (2) 0.6616 (3) 0.0480 (15)
H302 0.1760 0.0431 0.7082 0.058*
C303 0.2094 (6) 0.0069 (3) 0.6153 (4) 0.064 (2)
H303 0.1995 −0.0288 0.6306 0.077*
C304 0.2373 (6) 0.0170 (3) 0.5470 (4) 0.070 (2)
H304 0.2479 −0.0120 0.5160 0.084*
C305 0.2497 (6) 0.0689 (3) 0.5237 (4) 0.066 (2)
H305 0.2662 0.0756 0.4766 0.079*
C306 0.2378 (6) 0.1115 (3) 0.5701 (3) 0.0518 (16)
H306 0.2478 0.1472 0.5545 0.062*
C307 0.2528 (4) 0.2156 (2) 0.6562 (2) 0.0294 (11)
C308 0.1817 (5) 0.2551 (2) 0.6310 (3) 0.0448 (15)
H308 0.1072 0.2515 0.6385 0.054*
C309 0.2191 (5) 0.2996 (3) 0.5952 (4) 0.0550 (17)
H309 0.1702 0.3258 0.5777 0.066*
C310 0.3276 (6) 0.3051 (3) 0.5853 (3) 0.0532 (17)
H310 0.3537 0.3358 0.5620 0.064*
C311 0.3980 (5) 0.2664 (3) 0.6090 (3) 0.0498 (16)
H311 0.4724 0.2705 0.6014 0.060*
C312 0.3620 (5) 0.2216 (2) 0.6438 (3) 0.0423 (14)
H312 0.4116 0.1950 0.6592 0.051*
C401 0.3590 (4) 0.1508 (2) 0.9181 (3) 0.0320 (12)
C402 0.3547 (5) 0.1748 (2) 0.9852 (3) 0.0431 (14)
H402 0.3100 0.2051 0.9917 0.052*
C403 0.4148 (5) 0.1547 (3) 1.0413 (3) 0.0528 (17)
H403 0.4107 0.1709 1.0858 0.063*
C404 0.4810 (5) 0.1109 (3) 1.0320 (3) 0.0548 (18)
H404 0.5217 0.0971 1.0705 0.066*
C405 0.4882 (6) 0.0872 (3) 0.9672 (4) 0.0612 (19)
H405 0.5341 0.0574 0.9613 0.073*
C406 0.4272 (5) 0.1073 (3) 0.9099 (3) 0.0488 (15)
H406 0.4328 0.0911 0.8654 0.059*
C407 0.3075 (4) 0.2449 (2) 0.8343 (3) 0.0332 (12)
C408 0.2362 (5) 0.2876 (2) 0.8433 (3) 0.0436 (14)
H408 0.1670 0.2807 0.8607 0.052*
C409 0.2651 (7) 0.3400 (3) 0.8272 (4) 0.0613 (19)
H409 0.2156 0.3684 0.8331 0.074*
C410 0.3658 (7) 0.3504 (3) 0.8027 (4) 0.067 (2)
H410 0.3851 0.3859 0.7908 0.080*
C411 0.4388 (6) 0.3093 (3) 0.7955 (4) 0.066 (2)
H411 0.5089 0.3170 0.7802 0.079*
C412 0.4104 (5) 0.2564 (2) 0.8104 (3) 0.0483 (15)
H412 0.4605 0.2283 0.8043 0.058*
C5 0.1302 (10) 0.3639 (5) 1.0447 (5) 0.115 (4)
H5A 0.2050 0.3771 1.0441 0.138*
H5B 0.1056 0.3673 1.0930 0.138*
Cl3 0.1294 (3) 0.29711 (13) 1.02240 (17) 0.1278 (10)
Cl4 0.0511 (4) 0.4043 (2) 0.9911 (3) 0.211 (2)
C6 −0.0035 (10) 0.5119 (4) 0.8155 (7) 0.125 (4)
H6A 0.0440 0.5090 0.8576 0.150*
H6B −0.0163 0.5503 0.8062 0.150*
Cl5 0.0611 (3) 0.48306 (14) 0.7439 (2) 0.1557 (14)
Cl6 −0.1255 (4) 0.48058 (19) 0.8312 (3) 0.204 (2)
C7 0.5564 (14) 0.4630 (5) 0.7031 (10) 0.171 (6)
H7A 0.4951 0.4878 0.6961 0.205*
H7B 0.6196 0.4799 0.6822 0.205*
Cl7 0.5296 (4) 0.40838 (13) 0.66066 (17) 0.1600 (16)
Cl8 0.5822 (3) 0.45621 (16) 0.7924 (3) 0.1825 (19)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02108 (11) 0.03984 (13) 0.02192 (11) −0.00021 (9) 0.00161 (7) 0.00209 (9)
Cl1 0.0525 (9) 0.0430 (8) 0.0451 (8) 0.0033 (7) 0.0104 (7) 0.0113 (6)
Cl2 0.0278 (7) 0.0736 (11) 0.0614 (10) 0.0034 (7) −0.0001 (7) 0.0024 (8)
P1 0.0210 (6) 0.0401 (8) 0.0262 (7) −0.0005 (6) 0.0029 (5) 0.0042 (6)
P2 0.0223 (6) 0.0338 (7) 0.0230 (7) 0.0004 (5) 0.0009 (5) 0.0016 (5)
P3 0.0228 (6) 0.0337 (7) 0.0209 (6) −0.0002 (5) 0.0016 (5) 0.0012 (5)
P4 0.0210 (6) 0.0400 (7) 0.0247 (7) −0.0015 (6) 0.0021 (5) 0.0004 (6)
O1 0.068 (3) 0.104 (4) 0.027 (3) −0.009 (3) 0.004 (2) −0.004 (2)
C1 0.024 (3) 0.044 (3) 0.021 (2) −0.002 (2) 0.004 (2) 0.003 (2)
C2 0.024 (3) 0.037 (3) 0.025 (3) −0.005 (2) 0.001 (2) 0.000 (2)
C3 0.026 (3) 0.038 (3) 0.028 (3) 0.002 (2) 0.002 (2) 0.002 (2)
C4 0.022 (3) 0.064 (4) 0.037 (4) −0.003 (3) 0.002 (2) −0.001 (3)
C101 0.033 (3) 0.042 (3) 0.039 (3) 0.003 (3) 0.012 (3) 0.010 (3)
C102 0.044 (4) 0.056 (4) 0.047 (4) −0.012 (3) 0.005 (3) 0.009 (3)
C103 0.047 (4) 0.056 (4) 0.084 (5) −0.016 (3) 0.006 (4) 0.009 (4)
C104 0.056 (5) 0.058 (4) 0.087 (6) −0.011 (4) 0.019 (4) 0.028 (4)
C105 0.062 (5) 0.071 (5) 0.068 (5) 0.002 (4) 0.008 (4) 0.037 (4)
C106 0.045 (4) 0.055 (4) 0.055 (4) 0.000 (3) 0.004 (3) 0.019 (3)
C107 0.025 (3) 0.049 (3) 0.024 (3) 0.001 (2) 0.001 (2) −0.001 (2)
C108 0.040 (4) 0.056 (4) 0.058 (4) 0.003 (3) 0.018 (3) −0.011 (3)
C109 0.053 (4) 0.055 (4) 0.076 (5) 0.001 (3) 0.022 (4) −0.020 (4)
C110 0.046 (4) 0.072 (5) 0.063 (4) 0.019 (4) 0.012 (3) −0.021 (4)
C111 0.030 (3) 0.086 (5) 0.076 (5) 0.007 (3) 0.011 (3) −0.026 (4)
C112 0.033 (3) 0.061 (4) 0.063 (4) 0.000 (3) 0.004 (3) −0.012 (3)
C201 0.022 (3) 0.046 (3) 0.024 (3) −0.004 (2) 0.001 (2) −0.003 (2)
C202 0.036 (3) 0.044 (3) 0.037 (3) 0.002 (3) −0.006 (3) −0.002 (3)
C203 0.054 (4) 0.057 (4) 0.046 (4) 0.001 (3) −0.008 (3) −0.019 (3)
C204 0.054 (4) 0.075 (5) 0.028 (3) 0.000 (3) −0.001 (3) −0.015 (3)
C205 0.049 (4) 0.071 (5) 0.032 (3) −0.005 (3) −0.005 (3) 0.008 (3)
C206 0.037 (3) 0.046 (3) 0.029 (3) −0.001 (3) −0.001 (2) 0.005 (2)
C207 0.036 (3) 0.035 (3) 0.025 (3) 0.004 (2) 0.005 (2) 0.005 (2)
C208 0.044 (3) 0.037 (3) 0.045 (3) 0.000 (3) −0.010 (3) 0.002 (3)
C209 0.081 (5) 0.043 (4) 0.057 (4) −0.001 (3) −0.006 (4) −0.008 (3)
C210 0.089 (6) 0.044 (4) 0.075 (5) 0.031 (4) 0.017 (5) 0.000 (4)
C211 0.053 (4) 0.063 (5) 0.076 (5) 0.020 (4) 0.010 (4) 0.009 (4)
C212 0.033 (3) 0.048 (4) 0.048 (4) 0.007 (3) 0.003 (3) 0.003 (3)
C301 0.026 (3) 0.043 (3) 0.027 (3) −0.002 (2) 0.003 (2) −0.005 (2)
C302 0.048 (4) 0.039 (3) 0.056 (4) −0.004 (3) 0.000 (3) −0.008 (3)
C303 0.069 (5) 0.045 (4) 0.078 (5) 0.000 (3) −0.001 (4) −0.012 (4)
C304 0.062 (5) 0.067 (5) 0.082 (6) 0.002 (4) 0.006 (4) −0.042 (4)
C305 0.082 (5) 0.074 (5) 0.043 (4) −0.020 (4) 0.022 (4) −0.025 (4)
C306 0.068 (4) 0.051 (4) 0.036 (3) −0.012 (3) 0.012 (3) −0.010 (3)
C307 0.026 (3) 0.041 (3) 0.021 (3) −0.004 (2) 0.004 (2) −0.002 (2)
C308 0.030 (3) 0.049 (4) 0.055 (4) −0.001 (3) −0.001 (3) 0.016 (3)
C309 0.052 (4) 0.048 (4) 0.066 (4) 0.006 (3) 0.007 (3) 0.024 (3)
C310 0.057 (4) 0.057 (4) 0.045 (4) −0.016 (3) 0.005 (3) 0.013 (3)
C311 0.034 (3) 0.067 (4) 0.048 (4) −0.012 (3) 0.006 (3) 0.016 (3)
C312 0.037 (3) 0.048 (3) 0.043 (3) 0.000 (3) 0.006 (3) 0.010 (3)
C401 0.020 (2) 0.046 (3) 0.030 (3) −0.003 (2) 0.000 (2) 0.005 (2)
C402 0.038 (3) 0.057 (4) 0.034 (3) 0.000 (3) −0.008 (3) 0.003 (3)
C403 0.048 (4) 0.076 (5) 0.033 (3) −0.010 (4) −0.006 (3) 0.005 (3)
C404 0.042 (4) 0.077 (5) 0.044 (4) −0.012 (3) −0.019 (3) 0.021 (3)
C405 0.051 (4) 0.070 (5) 0.062 (5) 0.020 (3) −0.019 (4) 0.010 (4)
C406 0.043 (4) 0.066 (4) 0.037 (3) 0.010 (3) −0.001 (3) 0.000 (3)
C407 0.035 (3) 0.042 (3) 0.023 (3) −0.005 (2) −0.006 (2) −0.001 (2)
C408 0.045 (3) 0.042 (3) 0.043 (3) −0.002 (3) −0.008 (3) −0.002 (3)
C409 0.073 (5) 0.041 (4) 0.070 (5) 0.001 (3) −0.014 (4) 0.001 (3)
C410 0.089 (6) 0.050 (4) 0.063 (5) −0.018 (4) 0.016 (4) 0.002 (3)
C411 0.066 (5) 0.072 (5) 0.062 (5) −0.033 (4) 0.025 (4) −0.013 (4)
C412 0.053 (4) 0.049 (4) 0.043 (4) −0.011 (3) 0.014 (3) −0.010 (3)
C5 0.149 (11) 0.116 (8) 0.080 (7) −0.014 (7) 0.015 (7) 0.006 (6)
Cl3 0.126 (2) 0.136 (2) 0.124 (2) −0.0242 (19) 0.0329 (19) −0.0336 (19)
Cl4 0.129 (3) 0.220 (5) 0.283 (6) −0.001 (3) −0.020 (4) 0.108 (4)
C6 0.127 (10) 0.090 (7) 0.156 (11) −0.015 (7) −0.019 (8) −0.005 (7)
Cl5 0.161 (3) 0.121 (3) 0.184 (4) −0.014 (2) −0.012 (3) −0.022 (2)
Cl6 0.201 (5) 0.178 (4) 0.233 (5) −0.085 (3) 0.028 (4) 0.007 (3)
C7 0.224 (17) 0.070 (7) 0.219 (17) −0.005 (9) 0.035 (14) 0.040 (9)
Cl7 0.274 (5) 0.103 (2) 0.104 (2) 0.013 (3) 0.029 (3) 0.0201 (17)
Cl8 0.132 (3) 0.147 (3) 0.268 (6) −0.027 (2) −0.003 (3) −0.093 (3)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Geometric parameters (Å, º)

Ir1—H1 1.54 (3) C205—C206 1.393 (8)
Ir1—C4 1.891 (6) C207—C212 1.387 (8)
Ir1—C1 2.157 (5) C207—C208 1.401 (8)
Ir1—P4 2.3154 (13) C208—C209 1.388 (9)
Ir1—P1 2.3438 (13) C209—C210 1.375 (11)
Ir1—Cl1 2.4919 (14) C210—C211 1.375 (11)
P1—C107 1.822 (5) C211—C212 1.371 (9)
P1—C101 1.823 (5) C301—C306 1.365 (8)
P1—C2 1.827 (5) C301—C302 1.390 (8)
P2—C1 1.697 (5) C302—C303 1.389 (9)
P2—C2 1.800 (5) C303—C304 1.377 (11)
P2—C201 1.808 (5) C304—C305 1.368 (11)
P2—C207 1.821 (5) C305—C306 1.386 (9)
P3—C1 1.711 (5) C307—C312 1.383 (7)
P3—C307 1.821 (5) C307—C308 1.390 (8)
P3—C3 1.821 (5) C308—C309 1.380 (8)
P3—C301 1.829 (5) C309—C310 1.365 (9)
P4—C407 1.804 (5) C310—C311 1.361 (9)
P4—C3 1.807 (5) C311—C312 1.372 (8)
P4—C401 1.811 (5) C401—C406 1.378 (8)
O1—C4 1.117 (7) C401—C402 1.409 (8)
C101—C102 1.381 (8) C402—C403 1.375 (8)
C101—C106 1.383 (8) C403—C404 1.371 (10)
C102—C103 1.386 (9) C404—C405 1.370 (10)
C103—C104 1.382 (10) C405—C406 1.398 (8)
C104—C105 1.366 (10) C407—C408 1.388 (8)
C105—C106 1.380 (9) C407—C412 1.391 (8)
C107—C108 1.382 (8) C408—C409 1.383 (9)
C107—C112 1.385 (8) C409—C410 1.364 (11)
C108—C109 1.376 (9) C410—C411 1.369 (11)
C109—C110 1.367 (9) C411—C412 1.388 (9)
C110—C111 1.379 (10) C5—Cl3 1.705 (11)
C111—C112 1.381 (9) C5—Cl4 1.714 (12)
C201—C206 1.391 (7) C6—Cl6 1.728 (12)
C201—C202 1.392 (7) C6—Cl5 1.750 (13)
C202—C203 1.373 (8) C7—Cl7 1.602 (15)
C203—C204 1.373 (9) C7—Cl8 1.727 (17)
C204—C205 1.367 (9)
H1—Ir1—C4 87.7 (18) C109—C108—C107 121.6 (6)
H1—Ir1—C1 88.6 (18) C110—C109—C108 120.2 (6)
C4—Ir1—C1 176.0 (2) C109—C110—C111 119.4 (6)
H1—Ir1—P4 85.9 (19) C110—C111—C112 120.3 (6)
C4—Ir1—P4 95.39 (16) C111—C112—C107 120.9 (6)
C1—Ir1—P4 82.71 (14) C206—C201—C202 118.8 (5)
H1—Ir1—P1 92.4 (19) C206—C201—P2 123.2 (4)
C4—Ir1—P1 93.70 (16) C202—C201—P2 118.0 (4)
C1—Ir1—P1 88.09 (14) C203—C202—C201 119.9 (5)
P4—Ir1—P1 170.69 (5) C204—C203—C202 121.3 (6)
H1—Ir1—Cl1 174 (2) C205—C204—C203 119.6 (5)
C4—Ir1—Cl1 94.05 (19) C204—C205—C206 120.2 (5)
C1—Ir1—Cl1 89.43 (14) C201—C206—C205 120.2 (5)
P4—Ir1—Cl1 88.63 (5) C212—C207—C208 119.7 (5)
P1—Ir1—Cl1 92.77 (5) C212—C207—P2 120.6 (4)
C107—P1—C101 104.9 (2) C208—C207—P2 119.5 (4)
C107—P1—C2 107.1 (2) C209—C208—C207 119.3 (6)
C101—P1—C2 103.1 (2) C210—C209—C208 119.9 (6)
C107—P1—Ir1 115.57 (18) C209—C210—C211 120.6 (6)
C101—P1—Ir1 118.94 (18) C212—C211—C210 120.3 (7)
C2—P1—Ir1 106.05 (16) C211—C212—C207 120.1 (6)
C1—P2—C2 107.5 (2) C306—C301—C302 120.0 (5)
C1—P2—C201 114.4 (2) C306—C301—P3 122.1 (4)
C2—P2—C201 106.5 (2) C302—C301—P3 117.8 (4)
C1—P2—C207 117.3 (3) C303—C302—C301 119.3 (6)
C2—P2—C207 103.2 (2) C304—C303—C302 119.9 (6)
C201—P2—C207 106.8 (2) C305—C304—C303 120.6 (6)
C1—P3—C307 119.3 (2) C304—C305—C306 119.6 (7)
C1—P3—C3 104.7 (2) C301—C306—C305 120.6 (6)
C307—P3—C3 106.5 (2) C312—C307—C308 118.3 (5)
C1—P3—C301 117.5 (2) C312—C307—P3 121.3 (4)
C307—P3—C301 103.6 (2) C308—C307—P3 120.4 (4)
C3—P3—C301 103.8 (2) C309—C308—C307 120.9 (5)
C407—P4—C3 105.6 (2) C310—C309—C308 119.5 (6)
C407—P4—C401 105.8 (2) C311—C310—C309 120.2 (6)
C3—P4—C401 106.1 (2) C310—C311—C312 121.0 (6)
C407—P4—Ir1 117.58 (18) C311—C312—C307 120.0 (5)
C3—P4—Ir1 104.47 (17) C406—C401—C402 118.2 (5)
C401—P4—Ir1 116.23 (17) C406—C401—P4 123.1 (4)
P2—C1—P3 125.7 (3) C402—C401—P4 118.6 (4)
P2—C1—Ir1 113.9 (3) C403—C402—C401 121.0 (6)
P3—C1—Ir1 120.4 (3) C404—C403—C402 119.8 (6)
P2—C2—P1 107.8 (3) C405—C404—C403 120.6 (6)
P4—C3—P3 106.5 (3) C404—C405—C406 120.1 (6)
O1—C4—Ir1 177.1 (6) C401—C406—C405 120.4 (6)
C102—C101—C106 118.7 (5) C408—C407—C412 118.3 (5)
C102—C101—P1 121.1 (4) C408—C407—P4 122.2 (4)
C106—C101—P1 120.1 (5) C412—C407—P4 119.4 (4)
C101—C102—C103 120.7 (6) C409—C408—C407 121.1 (6)
C104—C103—C102 119.5 (6) C410—C409—C408 119.8 (7)
C105—C104—C103 120.2 (6) C409—C410—C411 120.2 (6)
C104—C105—C106 120.1 (6) C410—C411—C412 120.6 (7)
C105—C106—C101 120.8 (6) C411—C412—C407 119.8 (6)
C108—C107—C112 117.6 (5) Cl3—C5—Cl4 114.8 (7)
C108—C107—P1 122.1 (4) Cl6—C6—Cl5 111.8 (6)
C112—C107—P1 120.3 (4) Cl7—C7—Cl8 116.3 (7)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cl2 0.98 2.60 3.534 (5) 160
C3—H3B···Cl2i 0.98 2.62 3.544 (5) 157
C5—H5B···Cl2ii 0.98 2.59 3.541 (10) 165
C6—H6B···Cl2iii 0.98 2.47 3.436 (10) 169
C7—H7A···Cl1iv 0.98 2.50 3.447 (15) 163
C105—H105···Cl1v 0.94 2.72 3.573 (8) 151
C312—H312···Cl2i 0.94 2.78 3.690 (6) 163

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, y+1/2, −z+3/2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x, −y, −z+2.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Crystal data

[IrClH(C51H44P4)(CO)]Cl2·2HCl·5.5H2O F(000) = 5160
Mr = 1281.32 Dx = 1.518 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 19.7138 (2) Å Cell parameters from 114911 reflections
b = 22.7327 (2) Å θ = 1.0–26.0°
c = 25.3120 (3) Å µ = 2.78 mm1
β = 98.781 (1)° T = 233 K
V = 11210.6 (2) Å3 Prism, colorless
Z = 8 0.3 × 0.2 × 0.06 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Data collection

Nonius KappaCCD diffractometer 17290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 26.0°, θmin = 1.2°
phi– and ω–scans h = −24→22
68943 measured reflections k = −28→28
22078 independent reflections l = −26→31

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0372P)2 + 17.5174P] where P = (Fo2 + 2Fc2)/3
22078 reflections (Δ/σ)max = 0.004
1268 parameters Δρmax = 2.03 e Å3
2 restraints Δρmin = −0.99 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Special details

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Two molecules in the asymmetric unit. Hydrogen atoms at Ir1 and Ir2 were found and refined isotropically. Hydrogens at C1 and C5 were also found but refined with bond restraints (d=0.98 angs.). Between the molecules is a network of hydrogen bonded water and hydrochloric acid molecules and chloride anions. The hydrogen atoms of these molecules could only partially found and were omitted. One water molecule (O4 and O4A) and one Hydrochloric acid or chloride (Cl10 and Cl1A) have a 1:1 position disorder. There are 8 Cl-positions in the network represented 4 chloride and 4 acid units.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 0.181754 (6) 0.912702 (6) 0.415090 (5) 0.02126 (5)
H11 0.2558 (18) 0.9271 (16) 0.4099 (14) 0.029 (10)*
Ir2 0.321407 (6) 0.410832 (6) 0.593150 (5) 0.01959 (4)
H22 0.2500 (17) 0.4236 (15) 0.6005 (14) 0.024 (9)*
P1 0.21221 (5) 0.91856 (4) 0.50825 (4) 0.0253 (2)
P2 0.29369 (4) 0.82093 (4) 0.47570 (4) 0.02331 (19)
P3 0.21933 (4) 0.78277 (4) 0.36170 (3) 0.02198 (18)
P4 0.16639 (5) 0.90008 (4) 0.32262 (4) 0.02340 (19)
P5 0.28901 (5) 0.41950 (4) 0.50063 (3) 0.02245 (19)
P6 0.20630 (4) 0.32196 (4) 0.53195 (3) 0.02165 (18)
P7 0.27874 (4) 0.28207 (4) 0.64560 (3) 0.02201 (18)
P8 0.33514 (4) 0.39775 (4) 0.68539 (3) 0.02260 (19)
Cl1 0.06789 (4) 0.87577 (4) 0.42596 (4) 0.0324 (2)
Cl2 0.43463 (4) 0.37404 (4) 0.58048 (4) 0.0325 (2)
O1 0.13685 (16) 1.03896 (13) 0.40152 (13) 0.0493 (8)
O2 0.37103 (15) 0.53572 (12) 0.60789 (12) 0.0477 (8)
C1 0.22006 (17) 0.82147 (15) 0.42386 (13) 0.0227 (7)
H1 0.1851 (14) 0.8033 (15) 0.4408 (13) 0.029 (10)*
C2 0.25277 (19) 0.84808 (16) 0.52990 (14) 0.0297 (8)
H2A 0.2868 0.8537 0.5620 0.036*
H2B 0.2182 0.8200 0.5382 0.036*
C3 0.21881 (17) 0.83659 (15) 0.30985 (13) 0.0240 (7)
H3A 0.2003 0.8190 0.2753 0.029*
H3B 0.2659 0.8495 0.3082 0.029*
C4 0.15263 (19) 0.99113 (18) 0.40750 (15) 0.0329 (9)
C5 0.27997 (16) 0.32091 (14) 0.58383 (13) 0.0199 (7)
H5 0.3150 (13) 0.3018 (12) 0.5667 (11) 0.010 (8)*
C6 0.24699 (18) 0.34970 (16) 0.47778 (14) 0.0268 (8)
H6A 0.2127 0.3563 0.4460 0.032*
H6B 0.2810 0.3214 0.4688 0.032*
C7 0.27997 (17) 0.33607 (16) 0.69767 (13) 0.0261 (8)
H7A 0.2972 0.3182 0.7323 0.031*
H7B 0.2333 0.3503 0.6987 0.031*
C8 0.35343 (19) 0.48842 (17) 0.60151 (14) 0.0296 (8)
C101 0.27332 (19) 0.97435 (17) 0.53609 (16) 0.0337 (9)
C102 0.2939 (2) 1.01953 (19) 0.50583 (18) 0.0449 (11)
H102 0.2790 1.0207 0.4688 0.054*
C103 0.3370 (3) 1.0636 (2) 0.5305 (2) 0.0622 (14)
H103 0.3511 1.0945 0.5100 0.075*
C104 0.3587 (3) 1.0616 (3) 0.5845 (2) 0.0651 (15)
H104 0.3867 1.0919 0.6009 0.078*
C105 0.3402 (3) 1.0163 (3) 0.6149 (2) 0.0635 (15)
H105 0.3567 1.0150 0.6518 0.076*
C106 0.2969 (2) 0.9722 (2) 0.59107 (17) 0.0491 (11)
H106 0.2836 0.9412 0.6118 0.059*
C107 0.14144 (19) 0.92914 (19) 0.54575 (15) 0.0351 (9)
C108 0.1101 (2) 0.9837 (2) 0.54191 (19) 0.0544 (13)
H108 0.1257 1.0132 0.5207 0.065*
C109 0.0554 (3) 0.9949 (3) 0.5694 (2) 0.0755 (19)
H109 0.0335 1.0317 0.5667 0.091*
C110 0.0343 (3) 0.9514 (4) 0.6005 (2) 0.080 (2)
H110 −0.0020 0.9590 0.6198 0.096*
C111 0.0642 (3) 0.8977 (3) 0.6042 (2) 0.0721 (17)
H111 0.0484 0.8684 0.6255 0.087*
C112 0.1181 (2) 0.8857 (2) 0.57654 (18) 0.0501 (12)
H112 0.1386 0.8483 0.5787 0.060*
C201 0.33327 (18) 0.75168 (15) 0.49610 (14) 0.0281 (8)
C202 0.40045 (19) 0.74022 (17) 0.48793 (15) 0.0321 (8)
H202 0.4243 0.7678 0.4701 0.039*
C203 0.4317 (2) 0.68814 (18) 0.50623 (18) 0.0415 (10)
H203 0.4769 0.6802 0.5008 0.050*
C204 0.3967 (2) 0.6481 (2) 0.5323 (2) 0.0554 (13)
H204 0.4184 0.6129 0.5451 0.066*
C205 0.3306 (3) 0.6586 (2) 0.5399 (2) 0.0663 (16)
H205 0.3072 0.6307 0.5577 0.080*
C206 0.2977 (2) 0.71047 (19) 0.5213 (2) 0.0485 (12)
H206 0.2519 0.7174 0.5258 0.058*
C207 0.36260 (17) 0.86855 (15) 0.46483 (14) 0.0265 (8)
C208 0.37411 (18) 0.88632 (17) 0.41486 (15) 0.0302 (8)
H208 0.3439 0.8747 0.3842 0.036*
C209 0.4301 (2) 0.9212 (2) 0.40997 (19) 0.0450 (11)
H209 0.4376 0.9339 0.3760 0.054*
C210 0.4749 (2) 0.9374 (2) 0.4548 (2) 0.0542 (12)
H210 0.5127 0.9615 0.4512 0.065*
C211 0.4651 (2) 0.9188 (2) 0.5043 (2) 0.0537 (13)
H211 0.4969 0.9291 0.5344 0.064*
C212 0.4087 (2) 0.88487 (19) 0.51046 (16) 0.0401 (10)
H212 0.4013 0.8729 0.5446 0.048*
C301 0.28957 (18) 0.73269 (16) 0.36121 (14) 0.0275 (8)
C302 0.28391 (19) 0.67840 (16) 0.38643 (16) 0.0340 (9)
H302 0.2448 0.6698 0.4021 0.041*
C303 0.3362 (2) 0.63748 (18) 0.38809 (18) 0.0435 (11)
H303 0.3330 0.6010 0.4051 0.052*
C304 0.3928 (2) 0.6506 (2) 0.3647 (2) 0.0519 (13)
H304 0.4284 0.6228 0.3660 0.062*
C305 0.3982 (2) 0.7031 (2) 0.3398 (2) 0.0522 (12)
H305 0.4372 0.7109 0.3238 0.063*
C306 0.3467 (2) 0.74543 (18) 0.33777 (17) 0.0399 (10)
H306 0.3507 0.7818 0.3208 0.048*
C307 0.14376 (18) 0.73816 (15) 0.34728 (14) 0.0278 (8)
C308 0.09406 (19) 0.73260 (17) 0.38036 (17) 0.0355 (9)
H308 0.0971 0.7545 0.4121 0.043*
C309 0.0400 (2) 0.6943 (2) 0.3658 (2) 0.0501 (12)
H309 0.0064 0.6900 0.3883 0.060*
C310 0.0342 (2) 0.6626 (2) 0.3197 (2) 0.0577 (14)
H310 −0.0034 0.6372 0.3103 0.069*
C311 0.0834 (3) 0.6676 (2) 0.28666 (19) 0.0550 (13)
H311 0.0793 0.6458 0.2548 0.066*
C312 0.1387 (2) 0.70459 (19) 0.30041 (17) 0.0424 (10)
H312 0.1729 0.7073 0.2784 0.051*
C401 0.19720 (18) 0.95858 (15) 0.28336 (14) 0.0271 (8)
C402 0.2406 (2) 1.00271 (19) 0.30682 (16) 0.0407 (10)
H402 0.2550 1.0029 0.3440 0.049*
C403 0.2623 (2) 1.0465 (2) 0.27505 (19) 0.0490 (11)
H403 0.2909 1.0768 0.2910 0.059*
C404 0.2426 (2) 1.0462 (2) 0.22070 (18) 0.0481 (11)
H404 0.2575 1.0761 0.1995 0.058*
C405 0.2011 (2) 1.0020 (2) 0.19749 (17) 0.0486 (11)
H405 0.1877 1.0015 0.1602 0.058*
C406 0.1787 (2) 0.95811 (19) 0.22858 (16) 0.0385 (9)
H406 0.1506 0.9278 0.2122 0.046*
C407 0.07960 (18) 0.88841 (16) 0.28820 (14) 0.0279 (8)
C408 0.0603 (2) 0.84135 (19) 0.25456 (16) 0.0393 (10)
H408 0.0919 0.8112 0.2509 0.047*
C409 −0.0058 (2) 0.8386 (2) 0.22621 (18) 0.0516 (12)
H409 −0.0189 0.8065 0.2034 0.062*
C410 −0.0521 (2) 0.8828 (3) 0.23145 (19) 0.0555 (13)
H410 −0.0967 0.8810 0.2120 0.067*
C411 −0.0335 (2) 0.9290 (2) 0.2647 (2) 0.0555 (13)
H411 −0.0653 0.9590 0.2682 0.067*
C412 0.0319 (2) 0.9322 (2) 0.29335 (17) 0.0422 (10)
H412 0.0442 0.9642 0.3164 0.051*
C501 0.35689 (18) 0.43210 (16) 0.46057 (14) 0.0269 (8)
C502 0.3884 (2) 0.48677 (19) 0.46588 (17) 0.0428 (10)
H502 0.3748 0.5146 0.4897 0.051*
C503 0.4395 (2) 0.5004 (2) 0.4363 (2) 0.0528 (13)
H503 0.4614 0.5372 0.4403 0.063*
C504 0.4581 (2) 0.4597 (3) 0.4011 (2) 0.0563 (14)
H504 0.4920 0.4693 0.3801 0.068*
C505 0.4279 (3) 0.4055 (2) 0.3963 (2) 0.0537 (13)
H505 0.4417 0.3777 0.3725 0.064*
C506 0.3774 (2) 0.39124 (19) 0.42598 (17) 0.0397 (10)
H506 0.3569 0.3538 0.4227 0.048*
C508 0.2069 (2) 0.51871 (19) 0.51128 (18) 0.0450 (11)
H508 0.2200 0.5152 0.5484 0.054*
C507 0.22857 (18) 0.47771 (16) 0.47726 (15) 0.0292 (8)
C509 0.1657 (3) 0.5653 (2) 0.4902 (2) 0.0627 (14)
H509 0.1515 0.5935 0.5133 0.075*
C510 0.1457 (2) 0.5704 (2) 0.4363 (3) 0.0641 (15)
H510 0.1190 0.6027 0.4225 0.077*
C511 0.1645 (3) 0.5285 (3) 0.4022 (2) 0.0615 (14)
H511 0.1489 0.5311 0.3653 0.074*
C512 0.2067 (2) 0.4826 (2) 0.42257 (17) 0.0469 (11)
H512 0.2206 0.4544 0.3992 0.056*
C601 0.16664 (17) 0.25250 (15) 0.51261 (13) 0.0254 (8)
C602 0.20494 (19) 0.20844 (17) 0.49293 (17) 0.0369 (9)
H602 0.2517 0.2144 0.4910 0.044*
C603 0.1733 (2) 0.15567 (18) 0.4762 (2) 0.0479 (11)
H603 0.1988 0.1256 0.4629 0.057*
C604 0.1046 (2) 0.14712 (18) 0.47905 (18) 0.0447 (11)
H604 0.0833 0.1116 0.4669 0.054*
C605 0.06694 (19) 0.19022 (17) 0.49950 (16) 0.0364 (9)
H605 0.0205 0.1837 0.5023 0.044*
C606 0.09772 (18) 0.24333 (16) 0.51602 (15) 0.0306 (8)
H606 0.0720 0.2731 0.5295 0.037*
C607 0.13787 (17) 0.37044 (15) 0.54243 (14) 0.0259 (8)
C608 0.12795 (18) 0.38994 (17) 0.59230 (15) 0.0319 (8)
H608 0.1584 0.3784 0.6228 0.038*
C609 0.0731 (2) 0.42652 (19) 0.59750 (18) 0.0423 (10)
H609 0.0669 0.4406 0.6314 0.051*
C610 0.0277 (2) 0.4421 (2) 0.5530 (2) 0.0494 (12)
H610 −0.0090 0.4675 0.5564 0.059*
C611 0.0354 (2) 0.4211 (2) 0.5038 (2) 0.0498 (12)
H611 0.0029 0.4306 0.4738 0.060*
C612 0.09104 (19) 0.38598 (17) 0.49785 (16) 0.0352 (9)
H612 0.0972 0.3726 0.4638 0.042*
C701 0.20732 (18) 0.23359 (16) 0.64540 (15) 0.0295 (8)
C702 0.1496 (2) 0.24920 (19) 0.66759 (17) 0.0411 (10)
H702 0.1469 0.2859 0.6843 0.049*
C703 0.0956 (2) 0.2087 (3) 0.6643 (2) 0.0605 (15)
H703 0.0562 0.2179 0.6794 0.073*
C704 0.0997 (3) 0.1558 (2) 0.6392 (2) 0.0637 (16)
H704 0.0627 0.1295 0.6370 0.076*
C705 0.1562 (3) 0.1405 (2) 0.61746 (19) 0.0538 (13)
H705 0.1582 0.1039 0.6004 0.065*
C706 0.2108 (2) 0.17939 (17) 0.62077 (17) 0.0388 (10)
H706 0.2503 0.1690 0.6063 0.047*
C707 0.35348 (18) 0.23694 (15) 0.66079 (14) 0.0277 (8)
C708 0.40532 (19) 0.23352 (17) 0.62909 (16) 0.0346 (9)
H708 0.4032 0.2560 0.5977 0.042*
C709 0.4600 (2) 0.1961 (2) 0.6451 (2) 0.0511 (12)
H709 0.4950 0.1927 0.6239 0.061*
C710 0.4641 (2) 0.1638 (2) 0.6913 (2) 0.0597 (14)
H710 0.5022 0.1392 0.7016 0.072*
C711 0.4130 (3) 0.1673 (2) 0.7224 (2) 0.0560 (13)
H711 0.4161 0.1453 0.7542 0.067*
C712 0.3572 (2) 0.20293 (18) 0.70703 (17) 0.0413 (10)
H712 0.3215 0.2044 0.7277 0.050*
C801 0.30467 (17) 0.45851 (15) 0.72259 (14) 0.0263 (8)
C802 0.32467 (19) 0.46072 (18) 0.77730 (15) 0.0338 (9)
H802 0.3536 0.4314 0.7945 0.041*
C803 0.3023 (2) 0.5058 (2) 0.80689 (17) 0.0467 (11)
H803 0.3163 0.5073 0.8441 0.056*
C804 0.2597 (2) 0.5484 (2) 0.78201 (19) 0.0481 (11)
H804 0.2450 0.5794 0.8021 0.058*
C805 0.2384 (2) 0.5459 (2) 0.72784 (18) 0.0490 (11)
H805 0.2086 0.5748 0.7110 0.059*
C806 0.2606 (2) 0.50079 (18) 0.69793 (16) 0.0389 (10)
H806 0.2457 0.4990 0.6609 0.047*
C807 0.42090 (18) 0.38327 (17) 0.72028 (14) 0.0295 (8)
C808 0.4713 (2) 0.4244 (2) 0.71341 (17) 0.0417 (10)
H808 0.4605 0.4561 0.6899 0.050*
C809 0.5374 (2) 0.4186 (2) 0.7412 (2) 0.0557 (13)
H809 0.5709 0.4471 0.7375 0.067*
C810 0.5535 (2) 0.3709 (3) 0.7742 (2) 0.0593 (14)
H810 0.5984 0.3665 0.7926 0.071*
C811 0.5045 (3) 0.3298 (2) 0.78038 (19) 0.0580 (13)
H811 0.5160 0.2973 0.8029 0.070*
C812 0.4382 (2) 0.33597 (19) 0.75370 (17) 0.0436 (10)
H812 0.4048 0.3077 0.7584 0.052*
Cl3 0.43500 (8) 0.07777 (6) 0.35337 (6) 0.0683 (4)
Cl4 0.63453 (6) 0.10085 (5) 0.24013 (5) 0.0502 (3)
Cl5 0.36569 (5) −0.10478 (5) 0.26820 (5) 0.0481 (3)
Cl6 0.56146 (9) −0.09005 (6) 0.14042 (6) 0.0753 (4)
Cl7 0.61135 (7) −0.23188 (6) 0.02459 (6) 0.0647 (3)
Cl8 0.18768 (7) −0.22306 (7) 0.18243 (5) 0.0737 (4)
Cl9 0.11836 (6) −0.26763 (6) 0.01405 (5) 0.0558 (3)
Cl10 0.7388 (2) 0.2809 (2) 0.30806 (17) 0.1024 (16) 0.50
Cl1A 0.7741 (3) 0.2425 (3) 0.32103 (18) 0.130 (2) 0.50
O3 0.5264 (2) 0.18247 (18) 0.3666 (2) 0.0951 (14)
O4 0.6467 (4) 0.1744 (4) 0.3440 (3) 0.075 (2) 0.50
O4A 0.6003 (4) 0.2120 (4) 0.2999 (4) 0.090 (3) 0.50
O5 0.82515 (19) 0.34084 (18) 0.39015 (14) 0.0707 (10)
O6 0.43632 (19) 0.00727 (16) 0.25519 (15) 0.0694 (10)
O7 0.5547 (2) −0.01186 (16) 0.23911 (15) 0.0727 (11)
O8 0.3074 (2) −0.1457 (2) 0.15756 (16) 0.0925 (13)
O9 0.3671 (2) −0.2327 (2) 0.12315 (18) 0.0993 (14)
O10 0.4977 (2) −0.2185 (2) 0.11123 (19) 0.1075 (16)
O11 0.2902 (2) −0.31156 (18) 0.15257 (17) 0.0886 (13)
O12 0.18821 (18) −0.36714 (17) 0.09137 (15) 0.0699 (10)
O13 0.05236 (17) −0.24396 (15) 0.10971 (13) 0.0611 (9)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02149 (8) 0.01844 (8) 0.02403 (8) 0.00296 (5) 0.00408 (5) −0.00136 (5)
Ir2 0.01927 (8) 0.01723 (8) 0.02234 (7) −0.00200 (5) 0.00338 (5) 0.00099 (5)
P1 0.0255 (5) 0.0254 (5) 0.0253 (5) 0.0020 (4) 0.0047 (4) −0.0042 (4)
P2 0.0222 (5) 0.0207 (5) 0.0265 (5) 0.0016 (4) 0.0021 (3) 0.0008 (4)
P3 0.0200 (4) 0.0187 (4) 0.0274 (5) 0.0008 (3) 0.0042 (3) −0.0017 (3)
P4 0.0226 (5) 0.0231 (5) 0.0246 (5) 0.0017 (4) 0.0041 (3) 0.0009 (4)
P5 0.0244 (5) 0.0204 (5) 0.0231 (4) −0.0021 (4) 0.0052 (3) 0.0025 (3)
P6 0.0210 (4) 0.0180 (4) 0.0257 (4) −0.0011 (3) 0.0025 (3) 0.0000 (3)
P7 0.0211 (4) 0.0183 (4) 0.0267 (5) 0.0006 (3) 0.0039 (3) 0.0038 (3)
P8 0.0221 (5) 0.0221 (5) 0.0233 (4) 0.0003 (4) 0.0026 (3) −0.0001 (4)
Cl1 0.0236 (4) 0.0342 (5) 0.0405 (5) −0.0006 (4) 0.0082 (4) −0.0009 (4)
Cl2 0.0225 (4) 0.0331 (5) 0.0431 (5) 0.0019 (4) 0.0088 (4) 0.0024 (4)
O1 0.0575 (19) 0.0251 (16) 0.063 (2) 0.0115 (14) 0.0014 (15) −0.0042 (14)
O2 0.0563 (19) 0.0231 (16) 0.062 (2) −0.0135 (14) 0.0038 (15) 0.0009 (14)
C1 0.0216 (18) 0.0210 (18) 0.0255 (18) 0.0034 (14) 0.0040 (13) 0.0010 (14)
C2 0.033 (2) 0.026 (2) 0.0299 (19) 0.0035 (16) 0.0035 (15) 0.0023 (15)
C3 0.0248 (18) 0.0233 (18) 0.0241 (18) 0.0004 (15) 0.0044 (13) 0.0008 (14)
C4 0.030 (2) 0.034 (2) 0.034 (2) 0.0032 (17) 0.0036 (16) −0.0034 (17)
C5 0.0177 (17) 0.0152 (17) 0.0269 (18) −0.0011 (13) 0.0044 (13) 0.0009 (13)
C6 0.031 (2) 0.0250 (19) 0.0246 (18) −0.0032 (15) 0.0044 (14) −0.0008 (14)
C7 0.0265 (19) 0.0275 (19) 0.0243 (18) 0.0016 (15) 0.0041 (14) 0.0022 (15)
C8 0.031 (2) 0.030 (2) 0.0268 (19) 0.0002 (16) 0.0007 (15) 0.0055 (15)
C101 0.028 (2) 0.032 (2) 0.040 (2) −0.0001 (17) 0.0051 (16) −0.0117 (17)
C102 0.041 (2) 0.040 (3) 0.050 (3) −0.009 (2) −0.0041 (19) 0.001 (2)
C103 0.053 (3) 0.048 (3) 0.083 (4) −0.017 (2) 0.000 (3) 0.003 (3)
C104 0.046 (3) 0.065 (4) 0.082 (4) −0.020 (3) 0.001 (3) −0.031 (3)
C105 0.053 (3) 0.084 (4) 0.051 (3) −0.020 (3) 0.001 (2) −0.029 (3)
C106 0.048 (3) 0.061 (3) 0.038 (2) −0.014 (2) 0.0077 (19) −0.012 (2)
C107 0.031 (2) 0.048 (3) 0.0262 (19) 0.0023 (18) 0.0045 (15) −0.0124 (18)
C108 0.053 (3) 0.061 (3) 0.051 (3) 0.022 (2) 0.009 (2) −0.014 (2)
C109 0.050 (3) 0.104 (5) 0.072 (4) 0.030 (3) 0.005 (3) −0.042 (4)
C110 0.035 (3) 0.144 (7) 0.063 (4) 0.001 (4) 0.012 (2) −0.055 (4)
C111 0.052 (3) 0.115 (5) 0.056 (3) −0.025 (3) 0.029 (3) −0.025 (3)
C112 0.046 (3) 0.062 (3) 0.046 (3) −0.008 (2) 0.020 (2) −0.010 (2)
C201 0.030 (2) 0.0218 (19) 0.0320 (19) 0.0026 (15) 0.0018 (15) 0.0021 (15)
C202 0.031 (2) 0.028 (2) 0.037 (2) −0.0013 (16) 0.0032 (16) −0.0023 (16)
C203 0.032 (2) 0.032 (2) 0.058 (3) 0.0126 (18) −0.0019 (18) 0.000 (2)
C204 0.050 (3) 0.035 (3) 0.079 (4) 0.016 (2) 0.006 (2) 0.020 (2)
C205 0.053 (3) 0.043 (3) 0.107 (5) 0.008 (2) 0.022 (3) 0.039 (3)
C206 0.035 (2) 0.033 (2) 0.080 (3) 0.0074 (19) 0.015 (2) 0.019 (2)
C207 0.0241 (18) 0.0218 (19) 0.033 (2) 0.0012 (15) 0.0032 (14) −0.0011 (15)
C208 0.0237 (19) 0.030 (2) 0.037 (2) −0.0011 (16) 0.0051 (15) −0.0042 (16)
C209 0.037 (2) 0.046 (3) 0.057 (3) −0.009 (2) 0.020 (2) 0.000 (2)
C210 0.039 (3) 0.049 (3) 0.075 (4) −0.020 (2) 0.013 (2) −0.010 (3)
C211 0.034 (2) 0.054 (3) 0.067 (3) −0.014 (2) −0.009 (2) −0.014 (2)
C212 0.036 (2) 0.040 (2) 0.041 (2) −0.0037 (19) −0.0050 (17) −0.0007 (19)
C301 0.0256 (19) 0.0235 (19) 0.0323 (19) 0.0042 (15) 0.0008 (14) −0.0092 (15)
C302 0.034 (2) 0.025 (2) 0.042 (2) 0.0051 (16) 0.0012 (17) −0.0049 (17)
C303 0.045 (3) 0.028 (2) 0.053 (3) 0.0117 (19) −0.006 (2) −0.0074 (19)
C304 0.039 (3) 0.042 (3) 0.069 (3) 0.021 (2) −0.008 (2) −0.022 (2)
C305 0.031 (2) 0.057 (3) 0.073 (3) 0.005 (2) 0.020 (2) −0.019 (3)
C306 0.030 (2) 0.036 (2) 0.056 (3) 0.0007 (18) 0.0117 (18) −0.0124 (19)
C307 0.0251 (18) 0.0210 (18) 0.036 (2) −0.0013 (15) −0.0007 (15) 0.0029 (15)
C308 0.028 (2) 0.027 (2) 0.052 (2) 0.0013 (16) 0.0080 (17) 0.0008 (18)
C309 0.032 (2) 0.042 (3) 0.077 (3) −0.012 (2) 0.011 (2) −0.001 (2)
C310 0.034 (3) 0.041 (3) 0.092 (4) −0.016 (2) −0.010 (2) 0.006 (3)
C311 0.062 (3) 0.044 (3) 0.053 (3) −0.013 (2) −0.011 (2) −0.007 (2)
C312 0.048 (3) 0.037 (2) 0.040 (2) −0.011 (2) 0.0022 (19) −0.0063 (19)
C401 0.0264 (19) 0.0223 (19) 0.034 (2) 0.0056 (15) 0.0077 (15) 0.0038 (15)
C402 0.044 (2) 0.039 (2) 0.039 (2) −0.0071 (19) 0.0053 (18) 0.0050 (19)
C403 0.050 (3) 0.041 (3) 0.057 (3) −0.015 (2) 0.009 (2) 0.007 (2)
C404 0.050 (3) 0.046 (3) 0.051 (3) −0.003 (2) 0.014 (2) 0.021 (2)
C405 0.052 (3) 0.059 (3) 0.036 (2) −0.003 (2) 0.008 (2) 0.019 (2)
C406 0.041 (2) 0.042 (2) 0.033 (2) −0.0042 (19) 0.0064 (17) 0.0045 (18)
C407 0.0245 (19) 0.032 (2) 0.0279 (19) 0.0016 (16) 0.0047 (14) 0.0075 (16)
C408 0.030 (2) 0.046 (3) 0.042 (2) −0.0022 (18) 0.0018 (17) −0.0048 (19)
C409 0.040 (3) 0.062 (3) 0.049 (3) −0.011 (2) −0.004 (2) −0.006 (2)
C410 0.026 (2) 0.086 (4) 0.051 (3) −0.002 (2) −0.0063 (19) 0.016 (3)
C411 0.032 (2) 0.068 (3) 0.067 (3) 0.018 (2) 0.010 (2) 0.013 (3)
C412 0.030 (2) 0.046 (3) 0.050 (3) 0.0087 (19) 0.0025 (18) −0.001 (2)
C501 0.0252 (19) 0.030 (2) 0.0261 (18) 0.0020 (16) 0.0067 (14) 0.0079 (15)
C502 0.048 (3) 0.039 (2) 0.043 (2) −0.014 (2) 0.0130 (19) 0.0024 (19)
C503 0.043 (3) 0.057 (3) 0.058 (3) −0.017 (2) 0.008 (2) 0.022 (2)
C504 0.037 (3) 0.079 (4) 0.057 (3) 0.007 (3) 0.019 (2) 0.031 (3)
C505 0.053 (3) 0.059 (3) 0.056 (3) 0.013 (2) 0.030 (2) 0.009 (2)
C506 0.038 (2) 0.041 (2) 0.044 (2) 0.0016 (19) 0.0203 (18) 0.0047 (19)
C508 0.043 (2) 0.035 (2) 0.054 (3) 0.0078 (19) −0.004 (2) −0.008 (2)
C507 0.0265 (19) 0.0222 (19) 0.038 (2) −0.0019 (15) 0.0021 (15) 0.0069 (16)
C509 0.054 (3) 0.041 (3) 0.089 (4) 0.022 (2) −0.001 (3) −0.010 (3)
C510 0.040 (3) 0.046 (3) 0.102 (5) 0.013 (2) 0.000 (3) 0.027 (3)
C511 0.049 (3) 0.071 (4) 0.062 (3) 0.010 (3) −0.001 (2) 0.033 (3)
C512 0.045 (3) 0.056 (3) 0.038 (2) 0.011 (2) 0.0052 (19) 0.015 (2)
C601 0.0259 (19) 0.0231 (19) 0.0269 (18) −0.0046 (15) 0.0030 (14) −0.0013 (14)
C602 0.028 (2) 0.029 (2) 0.054 (3) −0.0029 (17) 0.0083 (17) −0.0089 (18)
C603 0.050 (3) 0.024 (2) 0.073 (3) −0.0040 (19) 0.019 (2) −0.015 (2)
C604 0.043 (3) 0.027 (2) 0.062 (3) −0.0133 (19) 0.004 (2) −0.008 (2)
C605 0.028 (2) 0.033 (2) 0.047 (2) −0.0098 (17) 0.0019 (17) −0.0022 (18)
C606 0.029 (2) 0.027 (2) 0.036 (2) −0.0036 (16) 0.0051 (15) 0.0001 (16)
C607 0.0203 (18) 0.0218 (18) 0.035 (2) −0.0017 (14) 0.0027 (14) 0.0020 (15)
C608 0.0246 (19) 0.031 (2) 0.040 (2) −0.0013 (16) 0.0051 (16) 0.0049 (17)
C609 0.039 (2) 0.034 (2) 0.058 (3) 0.0068 (19) 0.020 (2) 0.000 (2)
C610 0.033 (2) 0.039 (3) 0.077 (3) 0.013 (2) 0.009 (2) 0.005 (2)
C611 0.033 (2) 0.041 (3) 0.070 (3) 0.009 (2) −0.009 (2) 0.012 (2)
C612 0.030 (2) 0.032 (2) 0.040 (2) 0.0032 (17) −0.0048 (16) 0.0008 (17)
C701 0.0243 (19) 0.027 (2) 0.036 (2) −0.0053 (15) 0.0001 (15) 0.0120 (16)
C702 0.031 (2) 0.045 (3) 0.048 (2) −0.0027 (19) 0.0084 (18) 0.018 (2)
C703 0.030 (2) 0.079 (4) 0.073 (4) −0.004 (2) 0.011 (2) 0.038 (3)
C704 0.047 (3) 0.057 (3) 0.079 (4) −0.029 (3) −0.014 (3) 0.037 (3)
C705 0.060 (3) 0.036 (3) 0.057 (3) −0.019 (2) −0.018 (2) 0.019 (2)
C706 0.039 (2) 0.026 (2) 0.047 (2) −0.0073 (17) −0.0048 (18) 0.0105 (18)
C707 0.0265 (19) 0.0186 (18) 0.036 (2) 0.0024 (15) −0.0016 (15) −0.0016 (15)
C708 0.028 (2) 0.027 (2) 0.050 (2) 0.0024 (16) 0.0099 (17) 0.0015 (17)
C709 0.031 (2) 0.042 (3) 0.081 (4) 0.011 (2) 0.011 (2) −0.001 (2)
C710 0.043 (3) 0.042 (3) 0.087 (4) 0.019 (2) −0.014 (3) 0.003 (3)
C711 0.064 (3) 0.041 (3) 0.057 (3) 0.019 (2) −0.006 (2) 0.015 (2)
C712 0.047 (2) 0.035 (2) 0.041 (2) 0.0095 (19) 0.0052 (19) 0.0108 (19)
C801 0.0258 (19) 0.0237 (19) 0.0302 (19) −0.0053 (15) 0.0070 (14) −0.0037 (15)
C802 0.035 (2) 0.036 (2) 0.029 (2) 0.0003 (17) 0.0029 (16) −0.0040 (17)
C803 0.048 (3) 0.057 (3) 0.034 (2) 0.001 (2) 0.0061 (19) −0.015 (2)
C804 0.054 (3) 0.040 (3) 0.053 (3) 0.002 (2) 0.015 (2) −0.020 (2)
C805 0.059 (3) 0.039 (3) 0.050 (3) 0.019 (2) 0.009 (2) 0.000 (2)
C806 0.046 (2) 0.035 (2) 0.034 (2) 0.0104 (19) 0.0016 (18) −0.0025 (18)
C807 0.0250 (19) 0.034 (2) 0.0289 (19) 0.0032 (16) 0.0017 (14) −0.0080 (16)
C808 0.029 (2) 0.054 (3) 0.041 (2) −0.0022 (19) −0.0009 (17) 0.001 (2)
C809 0.030 (2) 0.077 (4) 0.060 (3) −0.009 (2) 0.004 (2) −0.011 (3)
C810 0.030 (2) 0.089 (4) 0.055 (3) 0.018 (3) −0.006 (2) −0.018 (3)
C811 0.052 (3) 0.064 (3) 0.052 (3) 0.024 (3) −0.011 (2) 0.003 (2)
C812 0.042 (2) 0.040 (3) 0.045 (2) 0.008 (2) −0.0066 (19) 0.003 (2)
Cl3 0.0781 (9) 0.0606 (8) 0.0659 (8) −0.0066 (7) 0.0099 (7) −0.0135 (7)
Cl4 0.0385 (6) 0.0501 (7) 0.0642 (7) −0.0033 (5) 0.0146 (5) −0.0015 (5)
Cl5 0.0346 (6) 0.0519 (7) 0.0587 (7) −0.0043 (5) 0.0099 (5) 0.0016 (5)
Cl6 0.1048 (12) 0.0631 (9) 0.0547 (8) 0.0212 (8) 0.0020 (7) −0.0079 (6)
Cl7 0.0642 (8) 0.0604 (8) 0.0692 (8) −0.0040 (6) 0.0092 (6) −0.0160 (7)
Cl8 0.0698 (9) 0.1014 (12) 0.0506 (7) −0.0067 (8) 0.0117 (6) −0.0281 (7)
Cl9 0.0499 (7) 0.0702 (8) 0.0488 (7) 0.0051 (6) 0.0124 (5) 0.0078 (6)
Cl10 0.107 (3) 0.121 (4) 0.075 (2) −0.061 (3) 0.000 (2) 0.017 (2)
Cl1A 0.151 (5) 0.174 (5) 0.071 (3) −0.081 (4) 0.038 (3) −0.053 (3)
O3 0.086 (3) 0.064 (3) 0.142 (4) −0.002 (2) 0.041 (3) −0.014 (3)
O4 0.078 (5) 0.082 (6) 0.068 (5) −0.012 (4) 0.017 (4) −0.005 (4)
O4A 0.098 (6) 0.076 (6) 0.108 (7) −0.011 (5) 0.052 (5) −0.019 (5)
O5 0.072 (2) 0.082 (3) 0.059 (2) −0.003 (2) 0.0104 (18) 0.0081 (19)
O6 0.083 (3) 0.052 (2) 0.077 (3) −0.0134 (19) 0.025 (2) −0.0074 (18)
O7 0.088 (3) 0.057 (2) 0.080 (3) −0.015 (2) 0.034 (2) −0.0096 (19)
O8 0.106 (3) 0.100 (3) 0.070 (3) −0.010 (3) 0.010 (2) −0.003 (2)
O9 0.087 (3) 0.122 (4) 0.089 (3) −0.009 (3) 0.014 (2) −0.020 (3)
O10 0.092 (3) 0.124 (4) 0.110 (4) −0.035 (3) 0.027 (3) −0.009 (3)
O11 0.102 (3) 0.076 (3) 0.084 (3) 0.004 (2) 0.003 (2) 0.012 (2)
O12 0.065 (2) 0.078 (3) 0.068 (2) 0.001 (2) 0.0131 (18) 0.002 (2)
O13 0.064 (2) 0.060 (2) 0.061 (2) −0.0007 (18) 0.0155 (17) −0.0009 (17)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Geometric parameters (Å, º)

Ir1—H11 1.52 (4) C303—C304 1.372 (7)
Ir1—C4 1.874 (4) C304—C305 1.362 (7)
Ir1—C1 2.207 (3) C305—C306 1.394 (6)
Ir1—P4 2.3316 (9) C307—C308 1.388 (5)
Ir1—P1 2.3466 (9) C307—C312 1.401 (5)
Ir1—Cl1 2.4511 (9) C308—C309 1.383 (6)
Ir2—H22 1.48 (3) C309—C310 1.363 (7)
Ir2—C8 1.874 (4) C310—C311 1.379 (7)
Ir2—C5 2.201 (3) C311—C312 1.378 (6)
Ir2—P8 2.3281 (9) C401—C406 1.379 (5)
Ir2—P5 2.3398 (9) C401—C402 1.391 (5)
Ir2—Cl2 2.4500 (9) C402—C403 1.388 (6)
P1—C101 1.816 (4) C403—C404 1.371 (6)
P1—C107 1.819 (4) C404—C405 1.371 (6)
P1—C2 1.837 (4) C405—C406 1.385 (6)
P2—C207 1.791 (4) C407—C408 1.384 (5)
P2—C201 1.797 (4) C407—C412 1.389 (5)
P2—C1 1.802 (3) C408—C409 1.389 (6)
P2—C2 1.803 (4) C409—C410 1.377 (7)
P3—C3 1.793 (3) C410—C411 1.362 (7)
P3—C307 1.793 (4) C411—C412 1.381 (6)
P3—C301 1.794 (3) C501—C506 1.379 (5)
P3—C1 1.801 (3) C501—C502 1.386 (5)
P4—C407 1.817 (4) C502—C503 1.379 (6)
P4—C401 1.819 (4) C503—C504 1.374 (7)
P4—C3 1.832 (3) C504—C505 1.367 (7)
P5—C507 1.818 (4) C505—C506 1.375 (6)
P5—C501 1.821 (4) C508—C507 1.380 (6)
P5—C6 1.842 (4) C508—C509 1.390 (6)
P6—C607 1.793 (4) C507—C512 1.390 (5)
P6—C601 1.797 (3) C509—C510 1.366 (8)
P6—C5 1.803 (3) C510—C511 1.373 (8)
P6—C6 1.805 (4) C511—C512 1.385 (6)
P7—C701 1.787 (4) C601—C606 1.390 (5)
P7—C707 1.789 (3) C601—C602 1.391 (5)
P7—C7 1.799 (4) C602—C603 1.388 (5)
P7—C5 1.799 (3) C603—C604 1.382 (6)
P8—C807 1.814 (4) C604—C605 1.377 (6)
P8—C801 1.824 (4) C605—C606 1.387 (5)
P8—C7 1.830 (4) C607—C608 1.380 (5)
O1—C4 1.135 (5) C607—C612 1.390 (5)
O2—C8 1.134 (4) C608—C609 1.386 (5)
C1—H1 0.960 (18) C609—C610 1.375 (6)
C5—H5 0.972 (17) C610—C611 1.364 (7)
C101—C102 1.379 (6) C611—C612 1.383 (6)
C101—C106 1.399 (6) C701—C706 1.387 (6)
C102—C103 1.397 (6) C701—C702 1.390 (6)
C103—C104 1.369 (8) C702—C703 1.401 (6)
C104—C105 1.368 (8) C703—C704 1.367 (8)
C105—C106 1.394 (6) C704—C705 1.362 (8)
C107—C112 1.379 (6) C705—C706 1.386 (6)
C107—C108 1.382 (6) C707—C708 1.395 (5)
C108—C109 1.394 (7) C707—C712 1.395 (5)
C109—C110 1.368 (9) C708—C709 1.385 (6)
C110—C111 1.354 (9) C709—C710 1.371 (7)
C111—C112 1.385 (7) C710—C711 1.375 (7)
C201—C206 1.383 (5) C711—C712 1.373 (6)
C201—C202 1.396 (5) C801—C806 1.379 (5)
C202—C203 1.382 (5) C801—C802 1.382 (5)
C203—C204 1.371 (6) C802—C803 1.380 (6)
C204—C205 1.367 (7) C803—C804 1.371 (6)
C205—C206 1.392 (6) C804—C805 1.373 (6)
C207—C208 1.379 (5) C805—C806 1.384 (6)
C207—C212 1.406 (5) C807—C812 1.378 (6)
C208—C209 1.379 (5) C807—C808 1.394 (6)
C209—C210 1.378 (7) C808—C809 1.390 (6)
C210—C211 1.364 (7) C809—C810 1.375 (7)
C211—C212 1.381 (6) C810—C811 1.370 (7)
C301—C306 1.381 (5) C811—C812 1.384 (6)
C301—C302 1.402 (5) Cl10—Cl1A 1.132 (7)
C302—C303 1.384 (5) O4—O4A 1.582 (12)
H11—Ir1—C4 94.0 (14) C206—C201—C202 120.1 (3)
H11—Ir1—C1 83.8 (14) C206—C201—P2 119.8 (3)
C4—Ir1—C1 177.82 (15) C202—C201—P2 120.1 (3)
H11—Ir1—P4 85.4 (13) C203—C202—C201 119.6 (4)
C4—Ir1—P4 91.34 (12) C204—C203—C202 120.0 (4)
C1—Ir1—P4 88.58 (9) C205—C204—C203 120.7 (4)
H11—Ir1—P1 88.4 (13) C204—C205—C206 120.4 (4)
C4—Ir1—P1 94.38 (12) C201—C206—C205 119.1 (4)
C1—Ir1—P1 85.48 (9) C208—C207—C212 120.0 (3)
P4—Ir1—P1 171.84 (3) C208—C207—P2 123.6 (3)
H11—Ir1—Cl1 172.2 (14) C212—C207—P2 116.3 (3)
C4—Ir1—Cl1 93.78 (12) C207—C208—C209 119.8 (4)
C1—Ir1—Cl1 88.40 (9) C210—C209—C208 120.1 (4)
P4—Ir1—Cl1 95.15 (3) C211—C210—C209 120.7 (4)
P1—Ir1—Cl1 90.28 (3) C210—C211—C212 120.4 (4)
H22—Ir2—C8 96.4 (13) C211—C212—C207 119.0 (4)
H22—Ir2—C5 81.4 (13) C306—C301—C302 120.5 (3)
C8—Ir2—C5 177.84 (14) C306—C301—P3 123.4 (3)
H22—Ir2—P8 82.3 (13) C302—C301—P3 116.1 (3)
C8—Ir2—P8 91.23 (11) C303—C302—C301 119.7 (4)
C5—Ir2—P8 88.47 (9) C304—C303—C302 119.5 (4)
H22—Ir2—P5 89.4 (13) C305—C304—C303 121.0 (4)
C8—Ir2—P5 93.98 (11) C304—C305—C306 121.0 (4)
C5—Ir2—P5 86.03 (9) C301—C306—C305 118.4 (4)
P8—Ir2—P5 170.65 (3) C308—C307—C312 119.7 (3)
H22—Ir2—Cl2 171.3 (13) C308—C307—P3 124.7 (3)
C8—Ir2—Cl2 92.19 (12) C312—C307—P3 115.5 (3)
C5—Ir2—Cl2 89.97 (9) C309—C308—C307 118.9 (4)
P8—Ir2—Cl2 96.83 (3) C310—C309—C308 121.5 (4)
P5—Ir2—Cl2 90.73 (3) C309—C310—C311 120.1 (4)
C101—P1—C107 102.79 (18) C312—C311—C310 120.0 (4)
C101—P1—C2 105.11 (18) C311—C312—C307 119.8 (4)
C107—P1—C2 107.05 (19) C406—C401—C402 119.1 (3)
C101—P1—Ir1 118.84 (14) C406—C401—P4 119.0 (3)
C107—P1—Ir1 115.65 (12) C402—C401—P4 121.9 (3)
C2—P1—Ir1 106.46 (12) C403—C402—C401 119.6 (4)
C207—P2—C201 105.50 (16) C404—C403—C402 120.8 (4)
C207—P2—C1 115.43 (16) C405—C404—C403 119.5 (4)
C201—P2—C1 118.77 (16) C404—C405—C406 120.4 (4)
C207—P2—C2 110.36 (17) C401—C406—C405 120.5 (4)
C201—P2—C2 107.84 (17) C408—C407—C412 119.0 (4)
C1—P2—C2 98.49 (16) C408—C407—P4 124.0 (3)
C3—P3—C307 108.97 (16) C412—C407—P4 116.8 (3)
C3—P3—C301 110.25 (17) C407—C408—C409 120.1 (4)
C307—P3—C301 104.94 (17) C410—C409—C408 120.0 (4)
C3—P3—C1 107.74 (16) C411—C410—C409 120.2 (4)
C307—P3—C1 110.47 (17) C410—C411—C412 120.5 (4)
C301—P3—C1 114.38 (16) C411—C412—C407 120.2 (4)
C407—P4—C401 102.31 (16) C506—C501—C502 119.7 (3)
C407—P4—C3 108.39 (16) C506—C501—P5 124.0 (3)
C401—P4—C3 103.60 (16) C502—C501—P5 116.3 (3)
C407—P4—Ir1 117.89 (12) C503—C502—C501 120.1 (4)
C401—P4—Ir1 117.09 (12) C504—C503—C502 119.4 (4)
C3—P4—Ir1 106.48 (11) C505—C504—C503 120.5 (4)
C507—P5—C501 101.84 (16) C504—C505—C506 120.4 (4)
C507—P5—C6 106.49 (17) C505—C506—C501 119.7 (4)
C501—P5—C6 107.11 (17) C507—C508—C509 119.5 (4)
C507—P5—Ir2 116.88 (13) C508—C507—C512 119.3 (4)
C501—P5—Ir2 117.33 (12) C508—C507—P5 122.6 (3)
C6—P5—Ir2 106.42 (11) C512—C507—P5 118.1 (3)
C607—P6—C601 105.94 (16) C510—C509—C508 120.7 (5)
C607—P6—C5 116.17 (16) C509—C510—C511 120.3 (4)
C601—P6—C5 117.09 (16) C510—C511—C512 119.6 (5)
C607—P6—C6 109.24 (17) C511—C512—C507 120.5 (5)
C601—P6—C6 109.00 (16) C606—C601—C602 120.2 (3)
C5—P6—C6 98.97 (16) C606—C601—P6 120.2 (3)
C701—P7—C707 105.64 (17) C602—C601—P6 119.5 (3)
C701—P7—C7 110.21 (17) C603—C602—C601 119.2 (3)
C707—P7—C7 108.39 (16) C604—C603—C602 120.3 (4)
C701—P7—C5 114.54 (16) C605—C604—C603 120.5 (4)
C707—P7—C5 110.39 (16) C604—C605—C606 119.8 (4)
C7—P7—C5 107.55 (16) C605—C606—C601 119.9 (3)
C807—P8—C801 104.00 (16) C608—C607—C612 119.5 (3)
C807—P8—C7 108.19 (17) C608—C607—P6 123.2 (3)
C801—P8—C7 103.97 (16) C612—C607—P6 117.2 (3)
C807—P8—Ir2 117.94 (12) C607—C608—C609 120.1 (4)
C801—P8—Ir2 115.07 (12) C610—C609—C608 119.7 (4)
C7—P8—Ir2 106.68 (11) C611—C610—C609 120.6 (4)
H1—C1—P3 106 (2) C610—C611—C612 120.1 (4)
H1—C1—P2 103 (2) C611—C612—C607 119.9 (4)
P3—C1—P2 122.08 (19) C706—C701—C702 120.5 (4)
H1—C1—Ir1 101 (2) C706—C701—P7 117.1 (3)
P3—C1—Ir1 114.48 (16) C702—C701—P7 122.3 (3)
P2—C1—Ir1 107.75 (16) C701—C702—C703 118.0 (4)
P2—C2—P1 107.25 (19) C704—C703—C702 120.5 (5)
P3—C3—P4 110.41 (18) C705—C704—C703 121.6 (4)
O1—C4—Ir1 177.2 (4) C704—C705—C706 119.2 (5)
H5—C5—P7 105.8 (18) C705—C706—C701 120.2 (4)
H5—C5—P6 103.3 (18) C708—C707—C712 120.1 (3)
P7—C5—P6 121.55 (18) C708—C707—P7 124.1 (3)
H5—C5—Ir2 100.6 (18) C712—C707—P7 115.8 (3)
P7—C5—Ir2 114.63 (16) C709—C708—C707 118.2 (4)
P6—C5—Ir2 108.07 (15) C710—C709—C708 121.4 (4)
P6—C6—P5 107.06 (18) C709—C710—C711 120.4 (4)
P7—C7—P8 109.90 (18) C712—C711—C710 119.8 (4)
O2—C8—Ir2 177.3 (4) C711—C712—C707 120.2 (4)
C102—C101—C106 119.8 (4) C806—C801—C802 119.5 (3)
C102—C101—P1 122.6 (3) C806—C801—P8 121.9 (3)
C106—C101—P1 117.5 (3) C802—C801—P8 118.6 (3)
C101—C102—C103 119.8 (4) C803—C802—C801 120.3 (4)
C104—C103—C102 119.8 (5) C804—C803—C802 119.9 (4)
C105—C104—C103 121.2 (4) C803—C804—C805 120.1 (4)
C104—C105—C106 119.6 (5) C804—C805—C806 120.2 (4)
C105—C106—C101 119.7 (4) C801—C806—C805 119.9 (4)
C112—C107—C108 119.8 (4) C812—C807—C808 119.0 (4)
C112—C107—P1 123.3 (3) C812—C807—P8 124.4 (3)
C108—C107—P1 116.9 (3) C808—C807—P8 116.5 (3)
C107—C108—C109 120.0 (5) C809—C808—C807 120.3 (4)
C110—C109—C108 118.8 (5) C810—C809—C808 119.6 (4)
C111—C110—C109 121.6 (5) C811—C810—C809 120.3 (4)
C110—C111—C112 120.1 (6) C810—C811—C812 120.4 (5)
C107—C112—C111 119.6 (5) C807—C812—C811 120.4 (4)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl1 0.96 (3) 2.82 (3) 3.252 (3) 109 (2)
C3—H3A···Cl8i 0.98 2.51 3.466 (4) 164
C3—H3B···Cl5i 0.98 2.57 3.493 (4) 158
C6—H6A···O8ii 0.98 2.59 3.431 (5) 144
C6—H6B···Cl9ii 0.98 2.82 3.746 (4) 158
C7—H7A···Cl1Aiii 0.98 2.73 3.614 (6) 150
C7—H7B···Cl4iii 0.98 2.60 3.518 (4) 157
C206—H206···Cl7iii 0.94 2.79 3.719 (4) 172
C310—H310···Cl4ii 0.94 2.83 3.714 (4) 158
C602—H602···Cl9ii 0.94 2.62 3.557 (4) 179
C704—H704···Cl1iv 0.94 2.82 3.534 (6) 134
C708—H708···Cl2 0.94 2.80 3.503 (4) 132
C710—H710···Cl5v 0.94 2.72 3.614 (4) 160
C712—H712···Cl10iii 0.94 2.81 3.734 (6) 167

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, −y, −z+1.

References

  1. Adams, J. J., Lau, A., Arulsamy, N. & Roddick, D. M. (2011). Organometallics, 30, 689–696.
  2. Azerraf, C. & Gelman, D. (2009). Organometallics, 28, 6578–6584.
  3. Cambridge Soft (2001). ChemDraw. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  4. Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761–1779. [DOI] [PubMed]
  5. Crocker, C., Empsall, H. D., Errington, R. J., Hyde, E. M., McDonald, W. S., Markham, R., Norton, M. C., Shaw, B. L. & Weeks, B. (1982). J. Chem. Soc. Dalton Trans. pp. 1217–1224.
  6. Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Michael Heinekey, D. M. (2015). Organometallics, 34, 753–762.
  7. Hill, A. F. & McQueen, C. M. A. (2012). Organometallics, 31, 8051–8054.
  8. Jonasson, K. J., Polukeev, A. V. & Wendt, O. F. (2015). RSC Adv. 5, 15534–15538.
  9. Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307–2308.
  10. Leis, W., Wernitz, S., Reichart, B., Ruckerbauer, D., Wielandt, J. W. & Mayer, H. A. (2014). Dalton Trans. 43, 12187–12199. [DOI] [PubMed]
  11. Mayer, H. A., Fawzi, R. & Steimann, M. (1993). Chem. Ber. 126, 1341–1346.
  12. Morales-Morales, D. & Jensen, C. (2007). The Chemistry of Pincer Compounds, 1st ed. Amsterdam: Elsevier Science.
  13. Nemeh, S., Flesher, R. J., Gierling, K., Maichle-Mössmer, C., Mayer, H. A. & Kaska, W. C. (1998). Organometallics, 17, 2003–2008.
  14. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  15. Oro, L. A. & Claver, C. (2009). Editors. Iridium Complexes in Organic Synthesis. Weinheim: Wiley-VCH.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Petz, W. & Frenking, G. (2010). Editors. Carbodiphosphoranes and Related Ligands, Vol. 30. Berlin Heidelberg: Springer-Verlag.
  18. Petz, W., Öxler, F. & Neumüller, B. (2009). J. Organomet. Chem. 694, 4094–4099.
  19. Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503–3514. [DOI] [PubMed]
  20. Ruhland, K. & Herdtweck, E. (2005). Adv. Synth. Catal. 347, 398–404.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Stallinger, S., Reitsamer, C., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2007). Chem. Commun. 510–512. [DOI] [PubMed]
  23. Tonner, R., Öxler, F., Bernhard Neumüller, B., Petz, W. & Frenking, G. (2006). Angew. Chem. Int. Ed. 45, 8038–8042. [DOI] [PubMed]
  24. Winter, A. M., Eichele, K., Mack, H. G., Kaska, W. C. & Mayer, H. A. (2005). Organometallics, 24, 1837–1844.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, complex1, complex2. DOI: 10.1107/S2056989018004905/eb2007sup1.cif

e-74-00620-sup1.cif (71.5KB, cif)

Structure factors: contains datablock(s) complex1. DOI: 10.1107/S2056989018004905/eb2007complex1sup2.hkl

Structure factors: contains datablock(s) complex2. DOI: 10.1107/S2056989018004905/eb2007complex2sup3.hkl

CCDC references: 1577807, 1577808

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES