Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 6;74(Pt 5):638–641. doi: 10.1107/S2056989018005182

Synthesis, crystal structure and aggregation-induced emission of a new pyrene-based compound, 3,3-diphenyl-2-[4-(pyren-1-yl)phen­yl]acrylo­nitrile

Bao-Xi Miao a, Xin-Xue Tang a, Li-Fang Zhang a,*
PMCID: PMC5947477  PMID: 29850081

There are alternating relatively strong and weak intermolecular π–π interactions between adjacent pyrene ring systems, forming a one-dimensional supramolecular structure. The compound is weakly fluorescent in THF solution, but it is highly emissive in the condensed phase, revealing distinct aggregation-induced emission (AIE) characteristics.

Keywords: synthesis, aggregation-induced emission, pyrene, crystal structure

Abstract

The title organic compound, C37H23N, crystallizing in the triclinic space group P Inline graphic, has been designed, synthesized and characterized by single-crystal X-ray diffaction, MS, NMR and elemental analysis. There are alternating relatively strong and weak intermolecular π–π interactions between adjacent pyrene ring systems, forming a one-dimensional supramolecular structure. The compound is weakly fluorescent in THF solution, but it is highly emissive in the condensed phase, revealing distinct aggregation-induced emission (AIE) characteristics.

Chemical context  

Over the last several decades, research on organic fluorescent materials has gained important momentum because of their wide range of applications in organic light-emitting diodes (OLED), organic field-effect transistors (OFET), organic lasers, fluorescent sensors and solar cells and so on (Indumathi et al., 2017; Mishra et al., 2011; Nie et al., 2017; Sasabe et al., 2011; Zhao et al., 2010). As a well known fluoro­phore, pyrene and its derivatives have attracted much attention owing to its pure blue fluorescence with high quantum yield, exceptionally long fluorescence lifetime, excellent thermal stability and high charge-carrier mobility (Figueira-Duarte et al., 2011; Luo et al., 2001; Zhang et al., 2016d , 2017). However, pyrene-based compounds show notorious aggregation-caused quenching (ACQ), which severely limits their application range. Encouragingly, the discovery of aggregation-induced emission (AIE) by Tang and co-workers has opened up a new approach for excellent emission materials in the solid state (Yuan et al., 2013). Indeed, propeller-like conformations such as tetra­phenyl­ethene (TPE) and tri­phenyl­acrylo­nitrile (TPAN) have been widely used for the design of AIE-active compounds because of their easy preparation and outstanding AIE effects (Han et al., 2016; Jadhav et al., 2015; Lu et al., 2015; Tasso et al., 2015; Zhang et al., 2016a ). Compared to the propeller-shaped AIE-active moiety TPE, TPAN also exhibits typical crystallization-induced emission (CIE) behaviours, so the combination of TPAN with other fluoro­phores can readily generate mechanochromic materials, displaying reversible solid-state emission upon mechanical stimuli and solvent evaporation (Hirata et al., 2006; Zhang et al., 2016b ). As a result of their promising potential applications in optical recording and as fluorescent switches and security inks, these mechanochromic materials have attracted considerable attention (Srinivasan et al., 2009; Zhang et al., 2018). Herein, we report the synthesis and crystal structure of a new pyrene-based tri­phenyl­acrylo­nitrile, 2-[4-(1-pyren­yl)phen­yl]-3,3-di­phenyl­acrylo­nitrile, using a Suzuki cross-coupling reaction between 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile and 1-pyrenylboronic acid, which may exhibit both AIE and mechanochromic characteristics.graphic file with name e-74-00638-scheme1.jpg

Structural commentary  

The single X-ray diffraction analysis agrees well with the expected structure of the title compound, as shown in Fig. 1. The 2,3,3-tri­phenyl­acrylo­nitrile unit, which exhibits the typical propeller-shaped structure, is linked by a planar pyrenyl unit at one phenyl segment. The length of the central C2—C3 bond is 1.3623 (14) Å, which is typical for a double C=C bond. The C—N bond length is 1.1479 (14) Å, which is comparable with those of other cyanide-containing organic or inorganic compounds, showing the existence of a cyanide group. The pyrenyl ring system is almost strictly planar, with the largest derivation from the mean plane being 0.027 (3) Å for atom C31.

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with 30% probability displacement ellipsoids.

Supra­molecular features  

In the crystal, there are alternating relatively strong and weak inter­molecular π–π inter­actions between adjacent pyrene ring systems with shortest inter­atomic distances C26⋯C37(1 − x, −y, 2 − z) = 3.511 (3) and C31⋯C31(2 − x, −y, 2 − z) = 3.306 (3) Å, which link the mol­ecules into a one-dimensional supra­molecular structure. In addition, there are C6—H6⋯N1 inter­actions with a C⋯N distance of 3.3563 (17) Å (Table 1) between the cyanide nitro­gen atom and a benzene carbon atom, which link the above one-dimensional supra­molecular structures into two-dimensional supra­molecular networks parallel to (010), as shown in Fig. 2. These inter­molecular inter­actions can be compared with those in 1-pyrenyl-based triaryl­amines (Zhang et al., 2016c ).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.73 3.3563 (17) 125

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The supra­molecular structure of the title compound built up through π–π and C—H⋯N inter­actions.

Aggregation-induced emission  

The corresponding emission spectra of the title compound in aqueous THF with different water/THF ratios at a concentration of 5 × 10−5 M are shown in Fig. 3. It can be seen that the title compound shows weak fluorescence when the water fraction is below 70%, which is ascribed to the active intra­molecular rotations of the genuinely dissolved luminogens in these mixtures. The yellow fluorescence starts to increase gradually at a water content of 80%, at which the luminogens begin to aggregate, and reaches a maximum, which is nearly 50 times stronger than that in the pure THF solution, when the water content is 90%. The title compound therefore exhibits typical aggregation-induced emission (AIE) activity.

Figure 3.

Figure 3

Fluorescence spectra of the title compound in water–THF mixtures with different water fractions.

Database Suvey  

The structure of the title compound can be compared with our previously reported seriors of pyrenyl-based triaryl­amines in which two compounds crystallize in the same P Inline graphic space group (Zhang et al., 2016c ). In these compounds, the substituent groups are all at the 1-position of the pyrene ring system. Importantly, because of the existence of the relatively larger planar pyrene ring system, there are inter­molecular π–π inter­actions between adjacent pyrene ring systems, providing evidence that the presence of a pyrene ring system is favorable for the formation of strong inter­molecular inter­actions.

Synthesis and crystallization  

The starting material 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile was synthesized according to the literature (Wang et al., 2000). All other chemicals were purchased from commercial sources and used as received without further purification. A mixture of 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile (1.8013 g, 5 mmol), 1-pyrenylboronic acid (1.2304 g, 5 mmol), catalyst Pd(PPh3)4 (0.1156 g, 2 mol%), K2CO3 (2.7642 g, 20 mmol, dissolved in 5 mL of water) and 20 mL of MeOH in 80 mL of toluene was stirred at 353 K for 16 h. The reaction mixture was then cooled down and extracted with methyl­ene dichloride. The combined organic layer was dried over anhydrous MgSO4 and filtered. The solvent was removed and the residue was purified by silica gel chromatography using hexa­ne/methyl­ene dichloride (v/v = 1:1) as eluent to afford the title compound (2.0683 g; yield 86%). Light-yellow block-shaped crystals were obtained by slow evaporation of a hexa­ne/methyl­ene dichloride solution (v/v = 1:1)

1H NMR (600 MHz, chloro­form-d) δ 8.27–8.18 (m, 3H), 8.16–8.10 (m, 3H), 8.09–8.02 (m, 2H), 7.97 (d, J = 7.8 Hz, 1H), 7.59–7.46 (m, 9H), 7.40–7.29 (m, 3H), 7.21–7.15 (m, 2H). MALDI–TOF MS: m/z calculated for C37H23N 481.5853, found 481.5806 [M]+. Elemental analysis calculated for C37H23N: C, 92.18%; H, 4.86%; N, 2.85%; found: C, 92.28%, H, 4.81%; N, 2.91%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C37H23N
M r 481.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 123
a, b, c (Å) 9.2277 (2), 10.6445 (3), 14.639 (2)
α, β, γ (°) 105.169 (2), 94.806 (2), 113.255 (2)
V3) 1246.38 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.12 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2015)
T min, T max 0.981, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 22549, 5093, 4402
R int 0.026
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.104, 1.04
No. of reflections 5093
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19

Computer programs: APEX2 and SAINT-Plus (Bruker, 2001), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2005).

Supplementary Material

Crystal structure: contains datablock(s) I, 1. DOI: 10.1107/S2056989018005182/eb2006sup1.cif

e-74-00638-sup1.cif (745.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005182/eb2006Isup2.hkl

e-74-00638-Isup2.hkl (405.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005182/eb2006Isup3.cml

CCDC reference: 1834096

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Fundamental Research Funds for the Central Universities (No. 2017BSCXA05).

supplementary crystallographic information

Crystal data

C37H23N Z = 2
Mr = 481.51 F(000) = 504
Triclinic, P1 Dx = 1.283 Mg m3
a = 9.2277 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6445 (3) Å Cell parameters from 2445 reflections
c = 14.639 (2) Å θ = 3.0–26.4°
α = 105.169 (2)° µ = 0.07 mm1
β = 94.806 (2)° T = 123 K
γ = 113.255 (2)° Block, yellow
V = 1246.38 (18) Å3 0.12 × 0.12 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
φ and ω scans θmax = 26.4°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2015) h = −11→11
Tmin = 0.981, Tmax = 0.995 k = −13→13
22549 measured reflections l = −17→18
5093 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2438P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5093 reflections Δρmax = 0.22 e Å3
343 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 1.02807 (12) 0.88812 (10) 0.68529 (7) 0.0324 (2)
C1 0.94092 (13) 0.76789 (11) 0.65188 (7) 0.0229 (2)
C2 0.83242 (12) 0.61531 (11) 0.61689 (7) 0.0196 (2)
C3 0.77520 (11) 0.54507 (11) 0.52005 (7) 0.0191 (2)
C4 0.80379 (11) 0.62187 (11) 0.44699 (7) 0.0200 (2)
C5 0.79817 (13) 0.75520 (12) 0.46234 (8) 0.0241 (2)
H5 0.7715 0.7965 0.5187 0.029*
C6 0.83202 (14) 0.82631 (12) 0.39420 (8) 0.0279 (2)
H6 0.8284 0.9150 0.4054 0.033*
C7 0.87130 (13) 0.76576 (12) 0.30952 (8) 0.0273 (2)
H7 0.8958 0.8144 0.2645 0.033*
C8 0.87392 (13) 0.63244 (12) 0.29233 (8) 0.0266 (2)
H8 0.8992 0.5912 0.2353 0.032*
C9 0.83892 (12) 0.56010 (11) 0.35990 (7) 0.0228 (2)
H9 0.8388 0.4698 0.3472 0.027*
C10 0.68717 (12) 0.38450 (11) 0.48036 (7) 0.0208 (2)
C11 0.54277 (13) 0.31868 (12) 0.41204 (7) 0.0265 (2)
H11 0.4995 0.3752 0.3924 0.032*
C12 0.46275 (15) 0.16898 (13) 0.37298 (8) 0.0369 (3)
H12 0.3654 0.1259 0.3282 0.044*
C13 0.52712 (17) 0.08421 (13) 0.40034 (9) 0.0420 (3)
H13 0.4735 −0.0159 0.3740 0.050*
C14 0.67154 (18) 0.14849 (13) 0.46697 (10) 0.0402 (3)
H14 0.7157 0.0914 0.4849 0.048*
C15 0.75108 (14) 0.29761 (12) 0.50735 (9) 0.0297 (3)
H15 0.8476 0.3399 0.5527 0.036*
C16 0.79833 (12) 0.55102 (10) 0.69650 (7) 0.0191 (2)
C17 0.64459 (12) 0.44808 (12) 0.69409 (8) 0.0243 (2)
H17 0.5606 0.4181 0.6418 0.029*
C18 0.61664 (12) 0.39052 (12) 0.76912 (8) 0.0251 (2)
H18 0.5137 0.3226 0.7666 0.030*
C19 0.74037 (12) 0.43273 (11) 0.84834 (7) 0.0197 (2)
C20 0.89266 (12) 0.53771 (11) 0.85158 (7) 0.0215 (2)
H20 0.9763 0.5683 0.9042 0.026*
C21 0.92078 (12) 0.59701 (11) 0.77726 (7) 0.0207 (2)
H21 1.0225 0.6683 0.7813 0.025*
C22 0.71039 (11) 0.36891 (11) 0.92838 (7) 0.0197 (2)
C23 0.65220 (12) 0.42907 (11) 1.00476 (8) 0.0228 (2)
H23 0.6337 0.5090 1.0052 0.027*
C24 0.62136 (12) 0.37253 (11) 1.07996 (7) 0.0239 (2)
H24 0.5815 0.4142 1.1296 0.029*
C25 0.64954 (11) 0.25348 (11) 1.08188 (7) 0.0205 (2)
C26 0.62014 (12) 0.19169 (12) 1.15898 (7) 0.0254 (2)
H26 0.5804 0.2318 1.2094 0.031*
C27 0.64880 (13) 0.07757 (12) 1.15974 (8) 0.0275 (2)
H27 0.6296 0.0412 1.2110 0.033*
C28 0.70848 (12) 0.01052 (11) 1.08316 (8) 0.0242 (2)
C29 0.73803 (13) −0.10905 (12) 1.08179 (9) 0.0306 (3)
H29 0.7200 −0.1470 1.1324 0.037*
C30 0.79388 (14) −0.17187 (12) 1.00585 (9) 0.0327 (3)
H30 0.8124 −0.2516 1.0061 0.039*
C31 0.82237 (13) −0.11705 (12) 0.92967 (9) 0.0287 (2)
H31 0.8589 −0.1607 0.8790 0.034*
C32 0.79652 (12) 0.00371 (11) 0.92856 (8) 0.0227 (2)
C33 0.83002 (12) 0.06669 (11) 0.85275 (8) 0.0233 (2)
H33 0.8716 0.0273 0.8032 0.028*
C34 0.80244 (12) 0.18199 (11) 0.85180 (7) 0.0214 (2)
H34 0.8242 0.2193 0.8011 0.026*
C35 0.74010 (11) 0.24854 (10) 0.92750 (7) 0.0182 (2)
C36 0.70957 (11) 0.19041 (11) 1.00497 (7) 0.0187 (2)
C37 0.73828 (11) 0.06826 (11) 1.00549 (7) 0.0205 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0421 (6) 0.0230 (5) 0.0248 (5) 0.0069 (4) 0.0025 (4) 0.0092 (4)
C1 0.0288 (5) 0.0241 (6) 0.0177 (5) 0.0112 (5) 0.0060 (4) 0.0100 (4)
C2 0.0196 (5) 0.0189 (5) 0.0221 (5) 0.0087 (4) 0.0052 (4) 0.0087 (4)
C3 0.0165 (4) 0.0208 (5) 0.0224 (5) 0.0093 (4) 0.0049 (4) 0.0085 (4)
C4 0.0171 (4) 0.0214 (5) 0.0199 (5) 0.0067 (4) 0.0027 (4) 0.0073 (4)
C5 0.0273 (5) 0.0268 (5) 0.0221 (5) 0.0139 (4) 0.0077 (4) 0.0097 (4)
C6 0.0331 (6) 0.0272 (6) 0.0292 (6) 0.0151 (5) 0.0082 (5) 0.0144 (5)
C7 0.0278 (5) 0.0326 (6) 0.0236 (5) 0.0101 (5) 0.0072 (4) 0.0163 (5)
C8 0.0252 (5) 0.0317 (6) 0.0202 (5) 0.0095 (5) 0.0067 (4) 0.0078 (4)
C9 0.0220 (5) 0.0221 (5) 0.0225 (5) 0.0084 (4) 0.0044 (4) 0.0062 (4)
C10 0.0214 (5) 0.0210 (5) 0.0201 (5) 0.0081 (4) 0.0083 (4) 0.0073 (4)
C11 0.0244 (5) 0.0308 (6) 0.0204 (5) 0.0081 (4) 0.0067 (4) 0.0076 (4)
C12 0.0323 (6) 0.0337 (6) 0.0232 (6) −0.0020 (5) 0.0087 (5) 0.0006 (5)
C13 0.0559 (8) 0.0195 (6) 0.0365 (7) 0.0037 (6) 0.0234 (6) 0.0025 (5)
C14 0.0576 (8) 0.0267 (6) 0.0465 (7) 0.0232 (6) 0.0239 (6) 0.0157 (6)
C15 0.0318 (6) 0.0273 (6) 0.0342 (6) 0.0154 (5) 0.0088 (5) 0.0117 (5)
C16 0.0218 (5) 0.0177 (5) 0.0199 (5) 0.0099 (4) 0.0054 (4) 0.0072 (4)
C17 0.0193 (5) 0.0295 (6) 0.0234 (5) 0.0082 (4) 0.0008 (4) 0.0121 (4)
C18 0.0174 (5) 0.0274 (5) 0.0280 (5) 0.0049 (4) 0.0031 (4) 0.0133 (4)
C19 0.0214 (5) 0.0188 (5) 0.0212 (5) 0.0101 (4) 0.0053 (4) 0.0080 (4)
C20 0.0201 (5) 0.0218 (5) 0.0198 (5) 0.0070 (4) 0.0007 (4) 0.0067 (4)
C21 0.0192 (5) 0.0176 (5) 0.0227 (5) 0.0049 (4) 0.0045 (4) 0.0069 (4)
C22 0.0154 (4) 0.0203 (5) 0.0196 (5) 0.0042 (4) 0.0009 (4) 0.0071 (4)
C23 0.0213 (5) 0.0206 (5) 0.0260 (5) 0.0089 (4) 0.0048 (4) 0.0071 (4)
C24 0.0215 (5) 0.0254 (5) 0.0201 (5) 0.0078 (4) 0.0057 (4) 0.0034 (4)
C25 0.0153 (4) 0.0222 (5) 0.0170 (5) 0.0024 (4) 0.0008 (4) 0.0054 (4)
C26 0.0197 (5) 0.0317 (6) 0.0163 (5) 0.0033 (4) 0.0028 (4) 0.0070 (4)
C27 0.0211 (5) 0.0332 (6) 0.0207 (5) 0.0010 (4) 0.0005 (4) 0.0149 (4)
C28 0.0168 (5) 0.0236 (5) 0.0252 (5) 0.0010 (4) −0.0032 (4) 0.0113 (4)
C29 0.0230 (5) 0.0263 (6) 0.0361 (6) 0.0013 (4) −0.0045 (5) 0.0180 (5)
C30 0.0257 (6) 0.0203 (5) 0.0477 (7) 0.0062 (4) −0.0038 (5) 0.0137 (5)
C31 0.0230 (5) 0.0202 (5) 0.0377 (6) 0.0072 (4) 0.0003 (4) 0.0062 (5)
C32 0.0169 (5) 0.0194 (5) 0.0259 (5) 0.0046 (4) −0.0015 (4) 0.0053 (4)
C33 0.0207 (5) 0.0239 (5) 0.0216 (5) 0.0087 (4) 0.0038 (4) 0.0033 (4)
C34 0.0206 (5) 0.0243 (5) 0.0169 (5) 0.0070 (4) 0.0039 (4) 0.0072 (4)
C35 0.0147 (4) 0.0185 (5) 0.0170 (5) 0.0037 (4) 0.0007 (4) 0.0050 (4)
C36 0.0142 (4) 0.0191 (5) 0.0169 (5) 0.0025 (4) −0.0005 (3) 0.0051 (4)
C37 0.0147 (5) 0.0192 (5) 0.0212 (5) 0.0021 (4) −0.0027 (4) 0.0069 (4)

Geometric parameters (Å, º)

N1—C1 1.1479 (14) C19—C20 1.3953 (14)
C1—C2 1.4482 (14) C19—C22 1.4945 (13)
C2—C3 1.3623 (14) C20—C21 1.3881 (14)
C2—C16 1.4947 (13) C20—H20 0.9300
C3—C4 1.4889 (13) C21—H21 0.9300
C3—C10 1.4911 (14) C22—C23 1.3950 (14)
C4—C5 1.4002 (15) C22—C35 1.4094 (14)
C4—C9 1.4006 (14) C23—C24 1.3853 (15)
C5—C6 1.3878 (14) C23—H23 0.9300
C5—H5 0.9300 C24—C25 1.3971 (15)
C6—C7 1.3876 (16) C24—H24 0.9300
C6—H6 0.9300 C25—C36 1.4240 (14)
C7—C8 1.3852 (16) C25—C26 1.4419 (14)
C7—H7 0.9300 C26—C27 1.3438 (17)
C8—C9 1.3898 (15) C26—H26 0.9300
C8—H8 0.9300 C27—C28 1.4369 (17)
C9—H9 0.9300 C27—H27 0.9300
C10—C11 1.3926 (15) C28—C29 1.3986 (16)
C10—C15 1.3938 (15) C28—C37 1.4251 (14)
C11—C12 1.3909 (16) C29—C30 1.3884 (19)
C11—H11 0.9300 C29—H29 0.9300
C12—C13 1.378 (2) C30—C31 1.3864 (17)
C12—H12 0.9300 C30—H30 0.9300
C13—C14 1.382 (2) C31—C32 1.4007 (15)
C13—H13 0.9300 C31—H31 0.9300
C14—C15 1.3871 (17) C32—C37 1.4203 (15)
C14—H14 0.9300 C32—C33 1.4352 (15)
C15—H15 0.9300 C33—C34 1.3514 (15)
C16—C21 1.3967 (14) C33—H33 0.9300
C16—C17 1.3994 (14) C34—C35 1.4417 (14)
C17—C18 1.3868 (14) C34—H34 0.9300
C17—H17 0.9300 C35—C36 1.4254 (13)
C18—C19 1.3967 (14) C36—C37 1.4275 (15)
C18—H18 0.9300
N1—C1—C2 175.73 (11) C21—C20—C19 120.78 (9)
C3—C2—C1 120.14 (9) C21—C20—H20 119.6
C3—C2—C16 126.86 (9) C19—C20—H20 119.6
C1—C2—C16 112.98 (8) C20—C21—C16 120.86 (9)
C2—C3—C4 122.58 (9) C20—C21—H21 119.6
C2—C3—C10 121.61 (9) C16—C21—H21 119.6
C4—C3—C10 115.73 (8) C23—C22—C35 119.64 (9)
C5—C4—C9 118.34 (9) C23—C22—C19 119.62 (9)
C5—C4—C3 122.32 (9) C35—C22—C19 120.74 (9)
C9—C4—C3 119.33 (9) C24—C23—C22 121.53 (10)
C6—C5—C4 120.63 (10) C24—C23—H23 119.2
C6—C5—H5 119.7 C22—C23—H23 119.2
C4—C5—H5 119.7 C23—C24—C25 120.60 (9)
C7—C6—C5 120.35 (10) C23—C24—H24 119.7
C7—C6—H6 119.8 C25—C24—H24 119.7
C5—C6—H6 119.8 C24—C25—C36 118.98 (9)
C8—C7—C6 119.69 (10) C24—C25—C26 122.48 (10)
C8—C7—H7 120.2 C36—C25—C26 118.54 (10)
C6—C7—H7 120.2 C27—C26—C25 121.57 (10)
C7—C8—C9 120.26 (10) C27—C26—H26 119.2
C7—C8—H8 119.9 C25—C26—H26 119.2
C9—C8—H8 119.9 C26—C27—C28 121.50 (9)
C8—C9—C4 120.67 (10) C26—C27—H27 119.3
C8—C9—H9 119.7 C28—C27—H27 119.3
C4—C9—H9 119.7 C29—C28—C37 118.84 (10)
C11—C10—C15 118.72 (10) C29—C28—C27 122.65 (10)
C11—C10—C3 120.39 (9) C37—C28—C27 118.52 (10)
C15—C10—C3 120.83 (9) C30—C29—C28 120.91 (10)
C12—C11—C10 120.46 (11) C30—C29—H29 119.5
C12—C11—H11 119.8 C28—C29—H29 119.5
C10—C11—H11 119.8 C31—C30—C29 120.71 (10)
C13—C12—C11 120.26 (12) C31—C30—H30 119.6
C13—C12—H12 119.9 C29—C30—H30 119.6
C11—C12—H12 119.9 C30—C31—C32 120.40 (11)
C12—C13—C14 119.74 (11) C30—C31—H31 119.8
C12—C13—H13 120.1 C32—C31—H31 119.8
C14—C13—H13 120.1 C31—C32—C37 119.40 (10)
C13—C14—C15 120.42 (12) C31—C32—C33 122.04 (10)
C13—C14—H14 119.8 C37—C32—C33 118.55 (9)
C15—C14—H14 119.8 C34—C33—C32 121.47 (9)
C14—C15—C10 120.38 (11) C34—C33—H33 119.3
C14—C15—H15 119.8 C32—C33—H33 119.3
C10—C15—H15 119.8 C33—C34—C35 121.57 (9)
C21—C16—C17 118.43 (9) C33—C34—H34 119.2
C21—C16—C2 119.78 (9) C35—C34—H34 119.2
C17—C16—C2 121.76 (9) C22—C35—C36 119.10 (9)
C18—C17—C16 120.43 (9) C22—C35—C34 122.76 (9)
C18—C17—H17 119.8 C36—C35—C34 118.13 (9)
C16—C17—H17 119.8 C25—C36—C35 120.14 (9)
C17—C18—C19 121.18 (9) C25—C36—C37 119.75 (9)
C17—C18—H18 119.4 C35—C36—C37 120.11 (9)
C19—C18—H18 119.4 C32—C37—C28 119.74 (10)
C20—C19—C18 118.26 (9) C32—C37—C36 120.13 (9)
C20—C19—C22 120.70 (9) C28—C37—C36 120.13 (10)
C18—C19—C22 121.04 (9)
C1—C2—C3—C4 −7.36 (15) C35—C22—C23—C24 −0.53 (15)
C16—C2—C3—C4 173.99 (9) C19—C22—C23—C24 179.41 (9)
C1—C2—C3—C10 169.22 (9) C22—C23—C24—C25 0.67 (15)
C16—C2—C3—C10 −9.43 (15) C23—C24—C25—C36 −0.39 (15)
C2—C3—C4—C5 −39.58 (14) C23—C24—C25—C26 179.60 (9)
C10—C3—C4—C5 143.65 (10) C24—C25—C26—C27 −179.66 (10)
C2—C3—C4—C9 139.89 (10) C36—C25—C26—C27 0.33 (15)
C10—C3—C4—C9 −36.88 (12) C25—C26—C27—C28 −0.70 (16)
C9—C4—C5—C6 −2.14 (15) C26—C27—C28—C29 −179.46 (10)
C3—C4—C5—C6 177.33 (9) C26—C27—C28—C37 0.40 (15)
C4—C5—C6—C7 0.29 (16) C37—C28—C29—C30 −0.64 (15)
C5—C6—C7—C8 1.12 (17) C27—C28—C29—C30 179.22 (10)
C6—C7—C8—C9 −0.62 (16) C28—C29—C30—C31 0.28 (16)
C7—C8—C9—C4 −1.29 (15) C29—C30—C31—C32 0.57 (16)
C5—C4—C9—C8 2.65 (15) C30—C31—C32—C37 −1.02 (15)
C3—C4—C9—C8 −176.85 (9) C30—C31—C32—C33 177.76 (9)
C2—C3—C10—C11 132.68 (10) C31—C32—C33—C34 179.06 (10)
C4—C3—C10—C11 −50.52 (12) C37—C32—C33—C34 −2.15 (15)
C2—C3—C10—C15 −50.29 (14) C32—C33—C34—C35 0.84 (15)
C4—C3—C10—C15 126.51 (10) C23—C22—C35—C36 0.13 (14)
C15—C10—C11—C12 1.15 (15) C19—C22—C35—C36 −179.81 (8)
C3—C10—C11—C12 178.24 (9) C23—C22—C35—C34 −179.06 (9)
C10—C11—C12—C13 −1.11 (16) C19—C22—C35—C34 1.00 (14)
C11—C12—C13—C14 0.13 (18) C33—C34—C35—C22 179.93 (9)
C12—C13—C14—C15 0.79 (18) C33—C34—C35—C36 0.73 (14)
C13—C14—C15—C10 −0.73 (18) C24—C25—C36—C35 −0.01 (14)
C11—C10—C15—C14 −0.24 (16) C26—C25—C36—C35 180.00 (8)
C3—C10—C15—C14 −177.31 (10) C24—C25—C36—C37 −179.68 (9)
C3—C2—C16—C21 141.70 (11) C26—C25—C36—C37 0.33 (14)
C1—C2—C16—C21 −37.03 (13) C22—C35—C36—C25 0.13 (14)
C3—C2—C16—C17 −40.26 (15) C34—C35—C36—C25 179.36 (8)
C1—C2—C16—C17 141.01 (10) C22—C35—C36—C37 179.80 (8)
C21—C16—C17—C18 −1.85 (16) C34—C35—C36—C37 −0.97 (14)
C2—C16—C17—C18 −179.92 (10) C31—C32—C37—C28 0.64 (14)
C16—C17—C18—C19 −0.35 (17) C33—C32—C37—C28 −178.18 (9)
C17—C18—C19—C20 1.73 (16) C31—C32—C37—C36 −179.31 (9)
C17—C18—C19—C22 −179.10 (10) C33—C32—C37—C36 1.87 (14)
C18—C19—C20—C21 −0.91 (15) C29—C28—C37—C32 0.18 (14)
C22—C19—C20—C21 179.93 (9) C27—C28—C37—C32 −179.68 (9)
C19—C20—C21—C16 −1.31 (16) C29—C28—C37—C36 −179.88 (9)
C17—C16—C21—C20 2.68 (15) C27—C28—C37—C36 0.26 (14)
C2—C16—C21—C20 −179.22 (9) C25—C36—C37—C32 179.33 (8)
C20—C19—C22—C23 93.06 (12) C35—C36—C37—C32 −0.34 (14)
C18—C19—C22—C23 −86.08 (13) C25—C36—C37—C28 −0.61 (14)
C20—C19—C22—C35 −87.00 (12) C35—C36—C37—C28 179.71 (8)
C18—C19—C22—C35 93.85 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···N1i 0.93 2.73 3.3563 (17) 125

Symmetry code: (i) −x+2, −y+2, −z+1.

References

  1. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Figueira-Duarte, T. M. & Müllen, K. (2011). Chem. Rev. 111, 7260–7314. [DOI] [PubMed]
  4. Han, F. F., Zhang, R., Zhang, Z. M., Su, J. G. & Ni, Z. H. (2016). RSC Adv. 6, 68178–68184.
  5. Hirata, S. & Watanabe, T. (2006). Adv. Mater. 18, 2725–2729.
  6. Indumathi, C., Sabari Girisun, T. C., Anitha, K. & Alfred Cecil Raj, S. (2017). J. Phys. Chem. Solids, 106, 37–43.
  7. Jadhav, T., Dhokale, B., Mobin, S. M. & Misra, R. (2015). J. Mater. Chem. C, 3, 9981–9988.
  8. Lu, Q. Y., Li, X. F., Li, J., Yang, Z. Y., Xu, B. J., Chi, Z. G., Xu, J. R. & Zhang, Y. (2015). J. Mater. Chem. C, 3, 1225–1234.
  9. Luo, J. D., Xie, Z. L., Lam, J. W. Y., Cheng, L., Chen, H. Y., Qiu, C. F., Kwok, H. S., Zhan, X. W., Liu, Y. Q., Zhu, D. P. & Tang, B. Z. (2001). Chem. Commun. 18, 1740–1741. [DOI] [PubMed]
  10. Mishra, A., Uhrich, C., Reinole, E., Pfeiffer, M. & Bauerle, P. (2011). Adv. Enery Mater. 2, 265–273.
  11. Nie, J., Li, N., Ni, Z. H., Zhao, Y. & Zhang, L. F. (2017). Tetrahedron Lett. 58, 1980–1984.
  12. Sasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621–630.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Srinivasan, S., Babu, P. A., Mahesh, S. & Ajayaghosh, A. (2009). J. Am. Chem. Soc. 131, 15122–15123. [DOI] [PubMed]
  16. Tasso, T. T., Furuyama, T. & Kobayashi, N. (2015). Chem. Eur. J. 21, 4817–4824. [DOI] [PubMed]
  17. Wang, S. J., Oldham, W. J., Hudack, R. A. Jr & Bazan, G. C. (2000). J. Am. Chem. Soc. 122, 5695–5709.
  18. Yuan, W. Z., Tan, Y. Q., Gong, Y. Y., Lu, P., Lam, J. W. Y., Shen, X. Y., Feng, C. F., Sung, H. Y., Lu, Y. W., Williams, L. D., Sun, J. Z., Zhang, Y. M. & Tang, B. Z. (2013). Adv. Mater. 25, 2837–2843. [DOI] [PubMed]
  19. Zhang, Z. M., Han, F. F., Zhang, R., Li, N. & Ni, Z. H. (2016a). Tetrahedron Lett. 57, 1917–1920.
  20. Zhang, R., Zhang, T. F., Xu, L., Han, F. F., Zhao, Y. & Ni, Z. H. (2017). J. Mol. Struct. 1127, 237–246.
  21. Zhang, T. F., Zhang, R., Zhao, Z. M. & Ni, Z. H. (2016b). RSC Adv. 6, 79871–79878.
  22. Zhang, T. F., Zhang, R., Zhao, Y. & Ni, Z. H. (2018). Dyes Pigm. 148, 276–285.
  23. Zhang, R., Zhao, Y., Li, G. L., Yang, D. S. & Ni, Z. H. (2016c). RSC Adv. 6, 9037–9048.
  24. Zhang, R., Zhao, Y., Zhang, T. F., Xu, L. & Ni, Z. H. (2016d). Dyes Pigm. 130, 106–115.
  25. Zhao, Z. J., Chen, S. M., Lam, J. W. Y., Lu, P., Zhong, Y. C., Wong, K. S., Kwok, H. S. & Tang, B. Z. (2010). Chem. Commun. 46, 2221–2223. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 1. DOI: 10.1107/S2056989018005182/eb2006sup1.cif

e-74-00638-sup1.cif (745.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005182/eb2006Isup2.hkl

e-74-00638-Isup2.hkl (405.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005182/eb2006Isup3.cml

CCDC reference: 1834096

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES