Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 12;74(Pt 5):656–659. doi: 10.1107/S2056989018005583

Crystal structure, hydrogen bonding and Hirshfeld surface analysis of 2-amino-4-meth­oxy-6-methyl­pyrimidinium 4-chloro­benzoate

Muthaiah Jeevaraj a, Palaniyappan Sivajeyanthi a, Bellarmin Edison a, Kaliyaperumal Thanigaimani b, Kasthuri Balasubramani a,*
PMCID: PMC5947481  PMID: 29850085

In the crystal structure of the title compound, C6H10N3O+·C7H4ClO2, the pyrimidine N atom of the cation is hydrogen-bonded to the 4-chloro­benzoate anion through a pair of N—H⋯Ocarbox­yl hydrogen bonds, forming an Inline graphic(8) ring motif which is linked through centrosymmetric Inline graphic(8) ring motifs, forming a pseudo­tetra­meric DDAA array.

Keywords: crystal structure, pseudo­tetra­meric, pyrimidine

Abstract

In the crystal structure of the title salt, C6H10N3O+·C7H4ClO2 , the dihedral angle between the pyrimidine ring of the 2-amino-4-meth­oxy-6-methyl­pyrimidine cation and the the benzene ring of the 2-chloro­benzoate anion is 2.2 (1)°. In the anion, the benzene ring forms a dihedral angle of 8.5 (2)° with the carboxyl group. The pyrimidine N atom of the cation is protonated and the meth­oxy substituent is essentially coplanar with the parent ring. The protonated N atom and the N atom of the 2-amino group are hydrogen bonded to the 4-chloro­benzoate anion through a pair of N—H⋯Ocarbox­yl hydrogen bonds, forming an R 2 2(8) ring motif linked through a centrosymmetric R 2 4(8) ring motif, resulting in a pseudo­tetra­meric DDAA array. These units are linked through inter­molecular meth­oxy C—H⋯Cl hydrogen bonds into ribbon-like chains extending along the c-axis direction. The crystal structure also features π–π stacking inter­actions between the rings in the cation and anion [minimum ring centroid separation = 3.7707 (12) Å].

Chemical context  

Pyrimidine and amino­pyrimidine derivatives are biologically important compounds and they occur in nature as components of nucleic acids such as cytosine, uracil and thymine. Pyrimidine derivatives are also important mol­ecules in biology and have many applications in the areas of pesticides and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as anti­viral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). In order to study the hydrogen-bonding inter­actions, the title compound, the 2-amino-4-meth­oxy-6-methyl­pyrimidinium salt of 4-chloro­benzoate, C6H10N3O+·C7H4ClO2 , was synthesized and its structure, hydrogen-bonding and Hirshfeld surface analysis are reported herein.graphic file with name e-74-00656-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains a 2-amino-4-meth­oxy-6-methyl­pyrimidinium cation and a 4-chloro­benzoate anion (Fig. 1), which are essentially coplanar, with a dihedral angle between the ring systems of the two species of 2.2 (1)°. In the cation, one of the pyrimidine nitro­gen atoms (N1) is protonated and this is reflected in an increase in bond angle at N1 [C11—N1—C13 = 120.53 (17)°], when compared with that at the unprotonated atom (N3) [C9—N3—C13 = 116.32 (18)°] and the corresponding angle of 116.01 (18)° in neutral 2-amino-4-meth­oxy-6-methyl­pyrimidine (Glidewell et al., 2003). The meth­oxy substituent group at C9 of the cation is essentially coplanar with the ring, the N3—C9—O3—C8 torsion angle being −2.9 (3)°. The bond lengths and angles are normal for the carboxyl­ate group of a 4-chloro­benzoate anion, and the benzene ring forms a dihedral angle of 8.5 (2)° with the carboxyl group.

Figure 1.

Figure 1

The asymmetric unit of the the title compound with atom labels, showing non-hydrogen atoms as 30% probability displacement ellipsoids. Inter-species hydrogen bonds are shown as dashed lines.

Supra­molecular features  

In the crystal, the protonated nitro­gen atom (N1) and the amino nitro­gen atom (N2) of the cation inter­act with the carboxyl oxygen atoms O2 and O1, respectively, of the anion through N—H⋯O hydrogen bonds (Table 1), forming an eight-membered Inline graphic(8) ring motif. This is extended into a DDAA array (where D represents a hydrogen-bond donor and A represents a hydrogen-bond acceptor) by N2—H1N⋯O1i hydrogen bonds in a centrosymmetric Inline graphic(8) association [symmetry code: (i) −x + 1, −y + 2, −z + 1], the corresponding graph-set notations for the hetero­tetra­mer being Inline graphic(8), Inline graphic(8), Inline graphic(8). The hetero­tetra­meric units are linked through meth­oxy C8—H8A⋯Clii hydrogen bonds, forming one-dimensional ribbon-like structures (Fig. 2) [symmetry code: (ii) x + 2, −y + Inline graphic, z + Inline graphic]. Only very weak methyl C12—H⋯O2 inter­actions [C⋯O = 3.442 (3) Å; H⋯O2 = 2.76 Å] exist between ribbons. The crystal structure also features π–π stacking inter­actions between the aromatic pyrimidine ring of the cation (Fig. 3) and the benzene ring of the anion, with minimum centroid–centroid and perpendicular inter­planar distances of 3.7780 (12) and 3.7075 (8) Å, respectively, and a slip angle of 19.44° (Hunter et al., 1994).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 1.04 (3) 1.60 (3) 2.636 (3) 176 (2)
N2—H1N⋯O1i 0.86 2.12 2.846 (2) 142
N2—H2N⋯O1 0.86 1.97 2.824 (3) 169
C8—H8A⋯Cl1ii 0.96 2.82 3.770 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Hydrogen bonding in the structure of the title compound showing the Inline graphic(8) and centrosymmetric Inline graphic(8) ring motifs and C—H⋯Cl extensions. Dashed lines indicate the hydrogen bonds.

Figure 3.

Figure 3

The overall view of the packing and stacking inter­actions in the title compound.

Hirshfeld surface analysis  

Three-dimensional (3D) d norm surface analyis is a useful tool for analysing and visualizing the inter­molecular inter­actions. d norm takes negative or positive values depending on whether the inter­molecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka, 2009; McKinnon et al., 2007). The 3D d norm surface of the title compound was shown in Fig. 4. The red points represent closer contacts and negative d norm values on the surface corres­ponding to the N—H⋯O interactions, while C—H⋯O inter­actions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5, revealing the inter­molecular contacts and their percentage distributions on the Hirshfeld surface. H⋯H inter­actions (44.8%) are present as a major contributor while O⋯H/H⋯O (14.6%), H⋯Cl/Cl⋯H (13.3%), C⋯H/H⋯C (7.5%), C⋯C (6.6%), N⋯H/H⋯N (3.4%), C⋯N/N⋯C (3.3%), Cl⋯N/N⋯Cl (1.8%), C⋯Cl/Cl⋯C (1.0%) and Cl⋯O/O⋯Cl (0.7%) contacts also make significant contributions to the Hirshfeld surface. Two ‘wingtips’ in the fingerprint plot are related to H⋯O and O⋯H inter­actions and are shown in Fig. 5.

Figure 4.

Figure 4

The three-dimensional d norm surface of the title compound.

Figure 5.

Figure 5

Two-dimensional fingerprint plots with the relative contributions to the Hirshfeld surface.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016) for 2-amino-4-meth­oxy-6-methyl­pyrimidine yielded only seven structures of proton-transfer salts with carb­oxy­lic acids: VAQSOW [with 3-(N,N-di­methyl­amino)­benzoic acid]; VAQSUC [with methyl­ene hydrogen succinic acid (a monohydrate)]; VAQSEM (with 3-nitro­benzoic acid); VAQSIQ (with benzoic acid); VAQRUB (with 2-fluoro­benzoic acid) and VAQSAI (with 3-chloro­benzoic acid) (all from Aakeröy et al., 2003) and NUQTOJ (with picric acid; Jasinski et al., 2010).

Synthesis and crystallization  

The title compound was synthesized by the reaction of a 1:1 stoichiometric mixture of 2-amino-4-meth­oxy-6-methyl­pyrimidine [0.139 mg (Aldrich)] and 4-chloro­benzoic acid [0.156 mg (Merck)] in 20 ml of a hot methano­lic solution. After warming for a few minutes over a water bath, the solution was cooled and kept at room temperature. Within a few days, colourless block-shaped crystals suitable for the X-ray analysis were obtained (yield: 65%).

refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound pyrimidinium H atoms were located in a difference-Fourier map and refined freely [N—H = 1.03 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with (N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and U iso(H) = 1.2 U eq(C,N) or 1.5U eq(methyl C). A rotating-group model was used for the methyl groups.

Table 2. Experimental details.

Crystal data
Chemical formula C6H10N3O+·C7H4ClO2
M r 295.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1148 (8), 11.2236 (8), 14.579 (1)
β (°) 120.940 (5)
V3) 1419.57 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.35 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.909, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 10962, 3423, 2125
R int 0.024
(sin θ/λ)max−1) 0.669
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.152, 0.99
No. of reflections 3423
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.35

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL2017 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I, 81R. DOI: 10.1107/S2056989018005583/zs2399sup1.cif

e-74-00656-sup1.cif (342.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005583/zs2399Isup2.hkl

e-74-00656-Isup2.hkl (273.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005583/zs2399Isup3.cml

CCDC reference: 1835970

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF) at STIC, Cochin University of Science and Technology, Cochin, for X-ray data collection.

supplementary crystallographic information

Crystal data

C6H10N3O+·C7H4ClO2 F(000) = 616
Mr = 295.72 Dx = 1.384 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.1148 (8) Å Cell parameters from 3319 reflections
b = 11.2236 (8) Å θ = 4.7–53.1°
c = 14.579 (1) Å µ = 0.28 mm1
β = 120.940 (5)° T = 296 K
V = 1419.57 (19) Å3 Block, colorless
Z = 4 0.35 × 0.30 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2125 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
ω and φ scan θmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→12
Tmin = 0.909, Tmax = 0.946 k = −14→14
10962 measured reflections l = −15→18
3423 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.324P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.003
3423 reflections Δρmax = 0.26 e Å3
188 parameters Δρmin = −0.34 e Å3
0 restraints Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 1.08061 (18) 0.73298 (18) 0.57812 (14) 0.0840 (5)
N1 0.62562 (18) 0.71035 (13) 0.45066 (13) 0.0513 (4)
N2 0.61625 (18) 0.91121 (14) 0.47011 (15) 0.0649 (5)
H1N 0.659761 0.979882 0.489408 0.078*
H2N 0.518251 0.904882 0.442578 0.078*
N3 0.85256 (18) 0.82711 (15) 0.52563 (13) 0.0555 (4)
C8 1.1555 (3) 0.8473 (3) 0.6048 (2) 0.0926 (9)
H8A 1.258389 0.838988 0.618161 0.139*
H8B 1.159254 0.877851 0.667577 0.139*
H8C 1.098704 0.901435 0.546305 0.139*
C9 0.9288 (2) 0.7287 (2) 0.53678 (16) 0.0616 (6)
C10 0.8601 (3) 0.6168 (2) 0.50699 (19) 0.0703 (6)
H10 0.919348 0.548952 0.518504 0.084*
C11 0.7049 (3) 0.60891 (17) 0.46085 (17) 0.0595 (5)
C12 0.6128 (3) 0.49752 (19) 0.4188 (2) 0.0872 (8)
H12A 0.531726 0.509732 0.346014 0.131*
H12B 0.568913 0.477063 0.461457 0.131*
H12C 0.678410 0.433995 0.421663 0.131*
C13 0.6995 (2) 0.81598 (16) 0.48261 (15) 0.0489 (4)
Cl1 −0.42873 (6) 0.70123 (7) 0.18780 (6) 0.0859 (3)
O1 0.30336 (15) 0.87707 (12) 0.40502 (13) 0.0710 (5)
O2 0.32766 (15) 0.68727 (12) 0.37489 (12) 0.0648 (4)
C1 0.2501 (2) 0.77506 (16) 0.37387 (15) 0.0506 (5)
C2 0.0808 (2) 0.75559 (16) 0.33048 (14) 0.0455 (4)
C3 0.0178 (2) 0.64290 (17) 0.30515 (16) 0.0532 (5)
H3 0.081505 0.577740 0.317181 0.064*
C4 −0.1384 (2) 0.62496 (19) 0.26221 (16) 0.0591 (5)
H4 −0.179743 0.548535 0.245653 0.071*
C5 −0.2314 (2) 0.72173 (19) 0.24443 (16) 0.0552 (5)
C6 −0.1725 (2) 0.83473 (19) 0.26959 (17) 0.0615 (5)
H6 −0.237007 0.899426 0.257249 0.074*
C7 −0.0160 (2) 0.85154 (17) 0.31355 (16) 0.0559 (5)
H7 0.025012 0.927932 0.332014 0.067*
H1N1 0.508 (3) 0.700 (2) 0.418 (2) 0.089 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0495 (9) 0.1165 (14) 0.0927 (12) 0.0275 (9) 0.0414 (9) 0.0152 (11)
N1 0.0479 (9) 0.0476 (9) 0.0551 (9) 0.0080 (7) 0.0242 (8) −0.0032 (7)
N2 0.0389 (8) 0.0483 (9) 0.0946 (13) 0.0010 (7) 0.0251 (8) −0.0125 (8)
N3 0.0411 (9) 0.0722 (11) 0.0533 (10) 0.0081 (7) 0.0243 (7) −0.0019 (8)
C8 0.0457 (13) 0.140 (3) 0.0899 (19) 0.0033 (14) 0.0337 (13) 0.0031 (17)
C9 0.0507 (12) 0.0858 (15) 0.0564 (13) 0.0194 (10) 0.0333 (10) 0.0100 (11)
C10 0.0728 (15) 0.0697 (14) 0.0839 (16) 0.0340 (12) 0.0514 (13) 0.0182 (12)
C11 0.0738 (14) 0.0508 (11) 0.0653 (13) 0.0173 (9) 0.0439 (11) 0.0081 (9)
C12 0.112 (2) 0.0478 (12) 0.121 (2) 0.0116 (12) 0.0732 (18) 0.0017 (13)
C13 0.0406 (9) 0.0533 (10) 0.0497 (11) 0.0050 (8) 0.0210 (8) −0.0029 (8)
Cl1 0.0454 (3) 0.1120 (6) 0.0929 (5) −0.0142 (3) 0.0302 (3) −0.0069 (4)
O1 0.0424 (7) 0.0458 (8) 0.1021 (12) −0.0028 (6) 0.0210 (7) −0.0149 (7)
O2 0.0454 (8) 0.0481 (7) 0.0872 (11) 0.0023 (6) 0.0242 (7) −0.0098 (7)
C1 0.0404 (9) 0.0449 (10) 0.0527 (11) 0.0003 (7) 0.0141 (8) −0.0010 (8)
C2 0.0406 (9) 0.0447 (9) 0.0424 (10) 0.0005 (7) 0.0149 (8) 0.0012 (7)
C3 0.0495 (11) 0.0465 (10) 0.0573 (11) −0.0031 (8) 0.0230 (9) −0.0053 (8)
C4 0.0549 (12) 0.0578 (12) 0.0623 (13) −0.0144 (9) 0.0285 (10) −0.0095 (10)
C5 0.0416 (10) 0.0722 (13) 0.0468 (11) −0.0074 (9) 0.0191 (8) −0.0020 (9)
C6 0.0429 (10) 0.0607 (12) 0.0702 (14) 0.0087 (9) 0.0215 (10) 0.0076 (10)
C7 0.0442 (10) 0.0459 (10) 0.0643 (12) 0.0007 (8) 0.0184 (9) 0.0034 (9)

Geometric parameters (Å, º)

O3—C9 1.331 (2) C12—H12A 0.9600
O3—C8 1.438 (4) C12—H12B 0.9600
N1—C13 1.350 (2) C12—H12C 0.9600
N1—C11 1.356 (2) Cl1—C5 1.7385 (19)
N1—H1N1 1.03 (3) O1—C1 1.247 (2)
N2—C13 1.314 (2) O2—C1 1.255 (2)
N2—H1N 0.8600 C1—C2 1.506 (2)
N2—H2N 0.8600 C2—C3 1.379 (3)
N3—C9 1.308 (3) C2—C7 1.389 (3)
N3—C13 1.344 (2) C3—C4 1.383 (3)
C8—H8A 0.9600 C3—H3 0.9300
C8—H8B 0.9600 C4—C5 1.372 (3)
C8—H8C 0.9600 C4—H4 0.9300
C9—C10 1.392 (3) C5—C6 1.369 (3)
C10—C11 1.356 (3) C6—C7 1.381 (3)
C10—H10 0.9300 C6—H6 0.9300
C11—C12 1.490 (3) C7—H7 0.9300
C9—O3—C8 118.61 (18) H12A—C12—H12C 109.5
C13—N1—C11 120.53 (17) H12B—C12—H12C 109.5
C13—N1—H1N1 124.1 (13) N2—C13—N3 119.43 (17)
C11—N1—H1N1 115.4 (13) N2—C13—N1 117.68 (16)
C13—N2—H1N 120.0 N3—C13—N1 122.89 (16)
C13—N2—H2N 120.0 O1—C1—O2 124.51 (17)
H1N—N2—H2N 120.0 O1—C1—C2 118.10 (16)
C9—N3—C13 116.32 (18) O2—C1—C2 117.39 (16)
O3—C8—H8A 109.5 C3—C2—C7 118.48 (17)
O3—C8—H8B 109.5 C3—C2—C1 121.00 (16)
H8A—C8—H8B 109.5 C7—C2—C1 120.51 (16)
O3—C8—H8C 109.5 C2—C3—C4 121.22 (18)
H8A—C8—H8C 109.5 C2—C3—H3 119.4
H8B—C8—H8C 109.5 C4—C3—H3 119.4
N3—C9—O3 119.7 (2) C5—C4—C3 118.90 (18)
N3—C9—C10 123.68 (19) C5—C4—H4 120.5
O3—C9—C10 116.64 (19) C3—C4—H4 120.5
C11—C10—C9 118.62 (18) C6—C5—C4 121.40 (18)
C11—C10—H10 120.7 C6—C5—Cl1 119.04 (16)
C9—C10—H10 120.7 C4—C5—Cl1 119.55 (16)
C10—C11—N1 117.9 (2) C5—C6—C7 119.23 (18)
C10—C11—C12 125.36 (19) C5—C6—H6 120.4
N1—C11—C12 116.74 (19) C7—C6—H6 120.4
C11—C12—H12A 109.5 C6—C7—C2 120.74 (18)
C11—C12—H12B 109.5 C6—C7—H7 119.6
H12A—C12—H12B 109.5 C2—C7—H7 119.6
C11—C12—H12C 109.5
O1—C1—C2—C3 −173.20 (19) C4—C5—C6—C7 0.2 (3)
O1—C1—C2—C7 7.8 (3) C5—C6—C7—C2 1.2 (3)
O2—C1—C2—C3 7.7 (3) C13—N1—C11—C10 2.1 (3)
O2—C1—C2—C7 −171.35 (18) C13—N1—C11—C12 −177.2 (2)
C1—C2—C3—C4 −177.99 (18) C11—N1—C13—N2 179.63 (19)
C7—C2—C3—C4 1.0 (3) C11—N1—C13—N3 −0.1 (3)
C1—C2—C7—C6 177.29 (19) C13—N3—C9—O3 179.53 (18)
C3—C2—C7—C6 −1.8 (3) C13—N3—C9—C10 −0.1 (3)
C2—C3—C4—C5 0.3 (3) C9—N3—C13—N1 −0.9 (3)
C8—O3—C9—C10 176.7 (2) C9—N3—C13—N2 179.37 (19)
C8—O3—C9—N3 −2.9 (3) O3—C9—C10—C11 −177.6 (2)
C3—C4—C5—C6 −0.9 (3) N3—C9—C10—C11 2.0 (4)
C3—C4—C5—Cl1 178.62 (16) C9—C10—C11—N1 −2.9 (3)
Cl1—C5—C6—C7 −179.32 (16) C9—C10—C11—C12 176.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 1.04 (3) 1.60 (3) 2.636 (3) 176 (2)
N2—H1N···O1i 0.86 2.12 2.846 (2) 142
N2—H2N···O1 0.86 1.97 2.824 (3) 169
C8—H8A···Cl1ii 0.96 2.82 3.770 (3) 171

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board grant SB/FT/CS-058/2013 to P. Sivajeyanthi and K. Balasubramani.

References

  1. Aakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.
  7. Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.
  10. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189–o1190. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, 81R. DOI: 10.1107/S2056989018005583/zs2399sup1.cif

e-74-00656-sup1.cif (342.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005583/zs2399Isup2.hkl

e-74-00656-Isup2.hkl (273.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005583/zs2399Isup3.cml

CCDC reference: 1835970

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES