Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 12;74(Pt 5):660–663. doi: 10.1107/S2056989018005455

Crystal structure and Hirshfeld surface analysis of 4′-(2-chloro­phen­yl)-1′-methyl-3′′-phenyl-7′′,8′′-di­hydro-5′′H-di­spiro­[indoline-3,2′-pyrrolidine-3′,6′′-iso­quinoline]-2,5′′-dione

R Vishnupriya a, C Selva Meenatchi a, J Suresh a, R V Sumesh b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC5947482  PMID: 29850086

In the crystal structure of the title compound, a di­spiro­[indoline-3,2′-pyrrolidine-3′,6′′-iso­quinoline]-2,5′′-dione, C—H⋯O hydrogen bonding predominates, linking mol­ecules to form chains propagating along [100].

Keywords: crystal structure, di­spiro, indoline, pyrrolidine, iso­quinoline, hydrogen bonding, Hirshfeld surface analysis

Abstract

In the title di­spiro compound, C32H26ClN3O2, the cyclo­hexa­none ring of the iso­quinoline unit has a distorted envelope conformation, with the methyl­ene C atom adjacent to the spiro C atom as the flap. The central 1-methyl­pyrrolidine ring has an envelope conformation with the N atom as the flap. The mean planes of the indolin-2-one ring system, the chloro­benzene ring and the iso­quinoline ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine ring by 87.95 (11), 71.01 (12) and 88.81 (10)°, respectively. There are two short C—H⋯O intra­molecular contacts present. In the crystal, mol­ecules are linked via C—H⋯ O hydrogen bonds, forming chains along the a-axis direction. The NH H atom is involved in a weak N—H⋯O hydrogen bond with the same carbonyl O atom. There are no further significant inter­molecular contacts present. The largest contribution to the overall Hirshfeld surface of 52.3% is due to H—H contacts.

Chemical context  

Spiro scaffolds are being used more and more in drug discovery because of their built-in three-dimensionality and structural variations, resulting in new synthetic routes to introduce spiro building blocks into more pharmaceutically active mol­ecules (Kobayashi et al., 1991; James et al., 1991). The spiro-pyrrolidine ring system is a structural motif present in many biologically important and pharmacologically relevant alkaloids. Spiro-pyrrolidine-indolin-2-one ring systems are also found in a number of alkaloids of biological importance (Hilton et al., 2000). Some derivatives are used as anti­microbial and anti­tumour agents (Sundar et al., 2011), or possess analgesic (Crooks & Sommerville, 1982) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of this importance, the primary goal for the X-ray analyses of the title compound is to obtain detailed information on the structural conformation that may be useful in understanding the chemical reactivity of such compounds.

Structural commentary  

The mol­ecular structure of the title mol­ecule is shown in Fig. 1. There are two short C—H⋯O intra­molecular contacts present (Table 1). In the iso­quinoline ring system (N3/C3/C31–C38) the cyclo­hexa­none ring (C3/C31–C38) adopts a distorted envelope conformation [puckering parameters: Q = 0.500 (2) Å, θ = 63.7 (2)°, φ = 308.9 (3)°], with atom C38 as the flap. The pyridine ring (N3/C32–C36) has a shallow twist-boat conformation [puckering parameters: Q = 0.094 (2) Å, θ = 92.3 (13)°, φ = 84.5 (13)°]. Their mean planes are inclined to each other by 14.06 (10)°, and the phenyl ring (C51–C56) is inclined to the pyridine ring mean plane by 22.35 (12)°.graphic file with name e-74-00660-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids and atom labelling. The intra­molecular C—H⋯O contacts (see Table 1) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O2 0.93 2.57 3.227 (3) 128
C38—H38A⋯O1 0.97 2.46 3.135 (3) 127
C37—H37A⋯O2i 0.97 2.38 3.159 (3) 137
N2—H2⋯O2i 0.88 (3) 2.50 (2) 2.911 (3) 109.0 (19)

Symmetry code: (i) Inline graphic.

In the indolin-2-one ring system (N2/C2/C21–C27), the benzene (C21–C26) and pyrrolidine (N2/C2/C21/C26/C27) rings make a dihedral angle of 2.45 (12)°, while the keto atom O1 deviates from the attached pyrrolidine ring by 0.043 (1) Å. The 1-methyl­pyrrole ring (N1/C2–C5) has an envelope conformation with atom N1 as the flap [puckering parameters: Q = 0.094 (2) Å, θ = 92.3 (13)°, φ = 84.5 (13)°]. The mean planes of the indolin-2-one ring system, the chloro­benzene (C41–C46) ring and the iso­quinoline (N3/C3/C31–C38) ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine (N1/C2–C5) ring by 87.95 (11), 71.01 (12) and 88.81 (10)°, respectively. The sum of the bond angles around atoms N1 and N2 are 333.6 and 358.6°, respectively, indicating a pyramidal geometry and sp3 hybridization.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and a weak N—H⋯O hydrogen bond, forming chains propagating along the a-axis direction (Fig. 2 and Table 1). There are no further significant inter­molecular inter­actions present.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound, illustrating the formation of the hydrogen-bonded (dashed lines; Table 1) chains running along the a-axis direction. H atoms not involved in these inter­actions have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) for the central di­spiro fragment, 1′-methyl­dispiro­[cyclo­hexane-1,3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione (see Fig. 3), gave eight hits of which coordinates were available for six structures. Two compounds closely resemble the title compound, viz. 4′-(4-chloro­phen­yl)-1′-methyl-3,4-di­hydro-1H-di­spiro­[acridine-2,3′- pyrrolidine-2′,3′′-indole]-1,2′′(1′′H)-dione methanol solvate (CSD refcode NAQCAL: Maheswari et al., 2012), and 4′-(2,4-di­chloro­phen­yl)-1′,3′′-dimethyl-1′′-phenyl-7′′,8′′-di­hydro­dispiro­[indole-3,2′-pyrrolidine-3′,6′′-pyrazolo­[3,4-b]quinoline]-2,5′′(1H,1′′H)-dione chloro­form solvate (UQIROD; Sumesh et al., 2016). In both compounds, the mean plane of the 1-methyl­pyrrolidine ring was found to be almost perpendicular to the mean plane of the indoline ring system and the mean plane of the cyclo­hexa­none ring, similar to the situation in the title compound, see Section 2 Structural commentary.

Figure 3.

Figure 3

Structural fragment for the CSD search.

Hirshfeld Analysis  

The program CrystalExplorer (Wolff et al., 2012) was used to generate the Hirshfeld surfaces mapped over d norm, and the electrostatic potential for the title compound. The contact distances, d i and d e, from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of d norm. Two-dimensional fingerprint plots (Rohl et al., 2008) provide an indication of the inter­molecular contacts in the crystal.

The hydrogen-bonding network generated in the crystal can be visualized using Hirshfeld surface analysis. The bright-red spots on the Hirshfeld surface mapped over d norm (Fig. 4), with labels H2 and H37A, on the surface represent donors for potential hydrogen bonds (see Table 1); the corresponding acceptor on the surface appears as a bright-red spot at atom O2.

Figure 4.

Figure 4

d norm mapped on the Hirshfeld surface for visualizing the contacts of the title compound. Dotted lines indicate hydrogen bonds.

The overall two-dimensional fingerprint plot is illustrated in Fig. 5 a, and those delineated into C⋯H/H⋯C, Cl⋯H/H⋯Cl, H⋯H, N⋯H/H⋯·N and O⋯H/H⋯O in Fig. 5 bf, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 52.3%, is due to H⋯H contacts (Fig. 5 d; widely scattered points with a high concentration in the middle region, shown in green). The relative contributions of the other different inter­molecular inter­actions to the Hirshfeld surface in descending order are: C⋯H/H⋯C (23.3%), O⋯H/H⋯O (8.5%), Cl⋯H/H⋯Cl (8.4%), N⋯H/H⋯N (4.1%) and there is only a very small contribution from other contacts, i.e. 3.1%, in the structure. This illustrates that the N—H⋯O and C—H⋯O inter­actions contribute significantly to the crystal packing of the title compound.

Figure 5.

Figure 5

Fingerprint plot of the title compound, (a) all, (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N contacts. The outline of the full fingerprint plots is shown in grey. d i is the closet inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact.

Synthesis and crystallization  

An equimolar mixture of 2-phenyl-5,6,7,8-tetra­hydro-5-quinolinone and 2-chloro­benzaldehyde was dissolved in 10 ml of ethanol followed by the addition of 0.5 equiv. of potassium hydroxide. The mixture was stirred for 1 h at ambient temperature and the precipitate formed was filtered and dried to obtain pure (E)-6-(2-chloro­benzyl­idene)-2-phenyl-7,8-di­hydro­quinolin-5(6H)-one (L) in 94% yield (m.p. 323–324 K). A mixture of isatin (1.1 mmol) and sarcosine (1.1 mmol) was taken in 10 ml of aceto­nitrile in a 50 ml round-bottom flask and heated to reflux for 2 h. Then 1 mmol of L was added to the above reaction mixture and reflux was continued for a further 14 h. After completion of the reaction, as evident from TLC, the solvent was removed under reduced pressure and the residue washed with ice-cold water (50 ml). The crude product was purified by column chromatography using a 90:10 (v/v) petroleum ether–ethyl acetate mixture to obtain the pure product (yield 82%, m.p. 356 K). Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: C—H = 0.93–0.98 Å with U iso = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C32H26ClN3O2
M r 520.01
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 6.7722 (4), 11.5017 (8), 16.6305 (11)
α, β, γ (°) 80.224 (3), 84.618 (3), 81.077 (3)
V3) 1258.09 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.23 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 25368, 4659, 3577
R int 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.133, 1.05
No. of reflections 4659
No. of parameters 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.46

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018005455/su5434sup1.cif

e-74-00660-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005455/su5434Isup2.hkl

e-74-00660-Isup2.hkl (223.6KB, hkl)

CCDC reference: 1835595

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RV thank the management of Madurai College for their encouragement and support.

supplementary crystallographic information

Crystal data

C32H26ClN3O2 Z = 2
Mr = 520.01 F(000) = 544
Triclinic, P1 Dx = 1.373 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.7722 (4) Å Cell parameters from 4659 reflections
b = 11.5017 (8) Å θ = 2–26°
c = 16.6305 (11) Å µ = 0.19 mm1
α = 80.224 (3)° T = 293 K
β = 84.618 (3)° Block, colourless
γ = 81.077 (3)° 0.23 × 0.21 × 0.19 mm
V = 1258.09 (14) Å3

Data collection

Bruker Kappa APEXII diffractometer 4659 independent reflections
Radiation source: fine-focus sealed tube 3577 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 0 pixels mm-1 θmax = 25.5°, θmin = 2.0°
ω and φ scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −13→13
Tmin = 0.967, Tmax = 0.974 l = −20→20
25368 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.8008P] where P = (Fo2 + 2Fc2)/3
4659 reflections (Δ/σ)max < 0.001
347 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.2424 (3) 0.02521 (19) 0.28318 (12) 0.0341 (5)
C3 0.2874 (3) 0.15629 (19) 0.28084 (12) 0.0308 (4)
C4 0.4045 (3) 0.1455 (2) 0.36013 (12) 0.0346 (5)
H4 0.5413 0.1597 0.3411 0.041*
C5 0.4193 (4) 0.0154 (2) 0.39905 (14) 0.0439 (6)
H5A 0.5457 −0.0115 0.4239 0.053*
H5B 0.3102 0.0026 0.4402 0.053*
C21 0.2282 (3) −0.01793 (19) 0.20329 (13) 0.0354 (5)
C22 0.3670 (4) −0.0337 (2) 0.13896 (15) 0.0456 (6)
H22 0.4960 −0.0160 0.1401 0.055*
C23 0.3124 (4) −0.0761 (2) 0.07238 (16) 0.0545 (7)
H23 0.4052 −0.0861 0.0283 0.065*
C24 0.1226 (4) −0.1037 (2) 0.07072 (16) 0.0544 (7)
H24 0.0882 −0.1317 0.0254 0.065*
C25 −0.0169 (4) −0.0903 (2) 0.13520 (16) 0.0487 (6)
H25 −0.1452 −0.1093 0.1343 0.058*
C26 0.0384 (3) −0.04795 (19) 0.20120 (13) 0.0364 (5)
C27 0.0290 (3) 0.01083 (19) 0.32584 (13) 0.0366 (5)
C31 0.4322 (3) 0.18485 (19) 0.20612 (12) 0.0321 (5)
C6 0.3840 (4) −0.1718 (2) 0.35516 (18) 0.0606 (7)
H03A 0.3757 −0.2075 0.3077 0.091*
H03B 0.2642 −0.1783 0.3904 0.091*
H03C 0.4979 −0.2120 0.3840 0.091*
C32 0.3517 (3) 0.25452 (19) 0.13036 (12) 0.0317 (4)
C33 0.4809 (3) 0.2861 (2) 0.06304 (13) 0.0402 (5)
H33 0.6185 0.2756 0.0679 0.048*
C34 0.4035 (3) 0.3327 (2) −0.01031 (13) 0.0438 (6)
H34 0.4870 0.3581 −0.0554 0.053*
C35 0.1978 (3) 0.34183 (19) −0.01695 (12) 0.0340 (5)
C36 0.1461 (3) 0.28141 (17) 0.12155 (12) 0.0292 (4)
C37 0.0024 (3) 0.26574 (19) 0.19474 (12) 0.0322 (5)
H37A −0.0604 0.1955 0.1945 0.039*
H37B −0.1020 0.3341 0.1916 0.039*
C38 0.1032 (3) 0.25252 (19) 0.27456 (12) 0.0316 (4)
H38A 0.0069 0.2330 0.3199 0.038*
H38B 0.1434 0.3283 0.2794 0.038*
C41 0.3264 (3) 0.2350 (2) 0.41643 (12) 0.0355 (5)
C42 0.3936 (3) 0.3452 (2) 0.40547 (14) 0.0418 (5)
C43 0.3308 (4) 0.4279 (2) 0.45654 (16) 0.0517 (6)
H43 0.3777 0.5012 0.4465 0.062*
C44 0.1979 (4) 0.4016 (3) 0.52262 (16) 0.0548 (7)
H44 0.1572 0.4560 0.5585 0.066*
C45 0.1265 (4) 0.2950 (3) 0.53485 (15) 0.0556 (7)
H45 0.0353 0.2773 0.5790 0.067*
C46 0.1880 (3) 0.2129 (2) 0.48247 (14) 0.0444 (6)
H46 0.1356 0.1413 0.4916 0.053*
C51 0.1096 (3) 0.37258 (19) −0.09725 (13) 0.0364 (5)
C52 0.2260 (4) 0.3562 (2) −0.16886 (14) 0.0507 (6)
H52 0.3628 0.3303 −0.1668 0.061*
C53 0.1402 (5) 0.3779 (3) −0.24306 (15) 0.0594 (7)
H53 0.2192 0.3664 −0.2907 0.071*
C54 −0.0620 (5) 0.4166 (3) −0.24678 (15) 0.0588 (7)
H54 −0.1200 0.4305 −0.2967 0.071*
C55 −0.1772 (4) 0.4346 (2) −0.17684 (15) 0.0515 (6)
H55 −0.3135 0.4619 −0.1795 0.062*
C56 −0.0939 (3) 0.4129 (2) −0.10239 (14) 0.0413 (5)
H56 −0.1743 0.4253 −0.0553 0.050*
N1 0.4056 (3) −0.04573 (17) 0.32992 (11) 0.0408 (4)
N2 −0.0728 (3) −0.03406 (17) 0.27448 (12) 0.0399 (4)
N3 0.0704 (2) 0.32058 (15) 0.04888 (10) 0.0322 (4)
O1 −0.0328 (2) 0.03246 (16) 0.39312 (10) 0.0503 (4)
O2 0.6092 (2) 0.14584 (15) 0.20669 (10) 0.0455 (4)
Cl1 0.56220 (11) 0.38517 (7) 0.32331 (5) 0.0654 (2)
H2 −0.202 (4) −0.037 (2) 0.2839 (16) 0.059 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0293 (10) 0.0390 (12) 0.0336 (11) −0.0051 (9) −0.0064 (8) −0.0024 (9)
C3 0.0238 (9) 0.0399 (11) 0.0288 (10) −0.0040 (8) −0.0060 (8) −0.0039 (8)
C4 0.0265 (10) 0.0461 (12) 0.0321 (11) −0.0048 (9) −0.0062 (8) −0.0068 (9)
C5 0.0437 (12) 0.0480 (14) 0.0381 (12) 0.0033 (10) −0.0142 (10) −0.0041 (10)
C21 0.0349 (11) 0.0349 (11) 0.0365 (11) −0.0025 (9) −0.0064 (9) −0.0058 (9)
C22 0.0405 (12) 0.0499 (14) 0.0487 (14) −0.0068 (10) −0.0001 (10) −0.0158 (11)
C23 0.0680 (17) 0.0517 (15) 0.0463 (14) −0.0080 (13) 0.0043 (12) −0.0201 (12)
C24 0.0723 (18) 0.0476 (15) 0.0484 (15) −0.0105 (13) −0.0138 (13) −0.0154 (12)
C25 0.0502 (14) 0.0431 (13) 0.0579 (15) −0.0120 (11) −0.0174 (12) −0.0097 (11)
C26 0.0371 (11) 0.0313 (11) 0.0407 (12) −0.0042 (9) −0.0087 (9) −0.0029 (9)
C27 0.0366 (11) 0.0351 (11) 0.0351 (12) −0.0064 (9) −0.0044 (9) 0.0050 (9)
C31 0.0233 (10) 0.0418 (12) 0.0334 (11) −0.0073 (8) −0.0033 (8) −0.0094 (9)
C6 0.0669 (17) 0.0406 (14) 0.0716 (18) 0.0026 (12) −0.0241 (14) 0.0002 (13)
C32 0.0255 (10) 0.0400 (12) 0.0311 (11) −0.0075 (8) 0.0002 (8) −0.0085 (9)
C33 0.0277 (10) 0.0571 (14) 0.0371 (12) −0.0108 (10) 0.0009 (9) −0.0083 (10)
C34 0.0382 (12) 0.0615 (15) 0.0319 (12) −0.0167 (11) 0.0049 (9) −0.0030 (10)
C35 0.0378 (11) 0.0358 (11) 0.0299 (11) −0.0081 (9) −0.0009 (9) −0.0070 (9)
C36 0.0273 (9) 0.0314 (10) 0.0295 (10) −0.0062 (8) −0.0032 (8) −0.0044 (8)
C37 0.0225 (9) 0.0412 (12) 0.0313 (11) −0.0030 (8) −0.0028 (8) −0.0022 (9)
C38 0.0259 (10) 0.0391 (11) 0.0289 (10) −0.0036 (8) −0.0008 (8) −0.0042 (8)
C41 0.0297 (10) 0.0457 (13) 0.0319 (11) −0.0033 (9) −0.0105 (8) −0.0056 (9)
C42 0.0379 (12) 0.0531 (14) 0.0371 (12) −0.0082 (10) −0.0098 (9) −0.0089 (10)
C43 0.0530 (14) 0.0519 (15) 0.0537 (15) −0.0054 (12) −0.0185 (12) −0.0122 (12)
C44 0.0598 (16) 0.0609 (17) 0.0444 (14) 0.0075 (13) −0.0139 (12) −0.0198 (12)
C45 0.0507 (15) 0.0758 (19) 0.0382 (13) −0.0021 (13) 0.0010 (11) −0.0114 (12)
C46 0.0414 (12) 0.0531 (14) 0.0386 (12) −0.0078 (11) −0.0024 (10) −0.0060 (11)
C51 0.0463 (12) 0.0335 (11) 0.0308 (11) −0.0118 (9) −0.0039 (9) −0.0030 (9)
C52 0.0576 (15) 0.0596 (16) 0.0351 (13) −0.0106 (12) −0.0014 (11) −0.0071 (11)
C53 0.080 (2) 0.0679 (18) 0.0300 (13) −0.0144 (15) −0.0011 (12) −0.0050 (12)
C54 0.080 (2) 0.0622 (17) 0.0358 (14) −0.0165 (15) −0.0193 (13) 0.0025 (12)
C55 0.0562 (15) 0.0499 (15) 0.0478 (15) −0.0106 (12) −0.0181 (12) 0.0047 (11)
C56 0.0492 (13) 0.0392 (12) 0.0362 (12) −0.0093 (10) −0.0062 (10) −0.0035 (9)
N1 0.0401 (10) 0.0395 (10) 0.0421 (11) 0.0021 (8) −0.0145 (8) −0.0053 (8)
N2 0.0318 (10) 0.0430 (11) 0.0457 (11) −0.0109 (8) −0.0048 (8) −0.0027 (8)
N3 0.0324 (9) 0.0357 (9) 0.0295 (9) −0.0060 (7) −0.0039 (7) −0.0060 (7)
O1 0.0482 (9) 0.0646 (11) 0.0376 (9) −0.0161 (8) 0.0046 (7) −0.0035 (8)
O2 0.0219 (7) 0.0657 (11) 0.0470 (9) −0.0041 (7) −0.0028 (6) −0.0048 (8)
Cl1 0.0626 (4) 0.0716 (5) 0.0654 (5) −0.0297 (4) 0.0096 (3) −0.0096 (3)

Geometric parameters (Å, º)

C2—N1 1.469 (3) C33—H33 0.9300
C2—C21 1.511 (3) C34—C35 1.394 (3)
C2—C27 1.569 (3) C34—H34 0.9300
C2—C3 1.577 (3) C35—N3 1.342 (3)
C3—C31 1.532 (3) C35—C51 1.479 (3)
C3—C38 1.532 (3) C36—N3 1.337 (3)
C3—C4 1.579 (3) C36—C37 1.490 (3)
C4—C41 1.510 (3) C37—C38 1.523 (3)
C4—C5 1.518 (3) C37—H37A 0.9700
C4—H4 0.9800 C37—H37B 0.9700
C5—N1 1.463 (3) C38—H38A 0.9700
C5—H5A 0.9700 C38—H38B 0.9700
C5—H5B 0.9700 C41—C42 1.389 (3)
C21—C22 1.373 (3) C41—C46 1.391 (3)
C21—C26 1.387 (3) C42—C43 1.375 (4)
C22—C23 1.385 (3) C42—Cl1 1.743 (2)
C22—H22 0.9300 C43—C44 1.377 (4)
C23—C24 1.375 (4) C43—H43 0.9300
C23—H23 0.9300 C44—C45 1.364 (4)
C24—C25 1.374 (4) C44—H44 0.9300
C24—H24 0.9300 C45—C46 1.384 (4)
C25—C26 1.378 (3) C45—H45 0.9300
C25—H25 0.9300 C46—H46 0.9300
C26—N2 1.391 (3) C51—C52 1.389 (3)
C27—O1 1.210 (3) C51—C56 1.390 (3)
C27—N2 1.358 (3) C52—C53 1.381 (3)
C31—O2 1.213 (2) C52—H52 0.9300
C31—C32 1.475 (3) C53—C54 1.376 (4)
C6—N1 1.465 (3) C53—H53 0.9300
C6—H03A 0.9600 C54—C55 1.366 (4)
C6—H03B 0.9600 C54—H54 0.9300
C6—H03C 0.9600 C55—C56 1.377 (3)
C32—C33 1.389 (3) C55—H55 0.9300
C32—C36 1.394 (3) C56—H56 0.9300
C33—C34 1.364 (3) N2—H2 0.88 (3)
N1—C2—C21 112.06 (17) C35—C34—H34 120.4
N1—C2—C27 113.20 (17) N3—C35—C34 121.76 (19)
C21—C2—C27 101.09 (16) N3—C35—C51 116.63 (18)
N1—C2—C3 102.01 (16) C34—C35—C51 121.59 (19)
C21—C2—C3 118.75 (17) N3—C36—C32 122.40 (18)
C27—C2—C3 110.19 (16) N3—C36—C37 117.68 (17)
C31—C3—C38 108.09 (16) C32—C36—C37 119.91 (17)
C31—C3—C2 107.53 (16) C36—C37—C38 112.47 (16)
C38—C3—C2 115.01 (16) C36—C37—H37A 109.1
C31—C3—C4 108.09 (15) C38—C37—H37A 109.1
C38—C3—C4 114.82 (16) C36—C37—H37B 109.1
C2—C3—C4 102.89 (15) C38—C37—H37B 109.1
C41—C4—C5 115.76 (18) H37A—C37—H37B 107.8
C41—C4—C3 115.84 (16) C37—C38—C3 113.25 (17)
C5—C4—C3 105.59 (17) C37—C38—H38A 108.9
C41—C4—H4 106.3 C3—C38—H38A 108.9
C5—C4—H4 106.3 C37—C38—H38B 108.9
C3—C4—H4 106.3 C3—C38—H38B 108.9
N1—C5—C4 103.22 (17) H38A—C38—H38B 107.7
N1—C5—H5A 111.1 C42—C41—C46 115.9 (2)
C4—C5—H5A 111.1 C42—C41—C4 120.99 (19)
N1—C5—H5B 111.1 C46—C41—C4 123.1 (2)
C4—C5—H5B 111.1 C43—C42—C41 122.9 (2)
H5A—C5—H5B 109.1 C43—C42—Cl1 116.8 (2)
C22—C21—C26 119.4 (2) C41—C42—Cl1 120.30 (18)
C22—C21—C2 131.5 (2) C42—C43—C44 119.6 (3)
C26—C21—C2 109.14 (18) C42—C43—H43 120.2
C21—C22—C23 119.2 (2) C44—C43—H43 120.2
C21—C22—H22 120.4 C45—C44—C43 119.2 (2)
C23—C22—H22 120.4 C45—C44—H44 120.4
C24—C23—C22 120.7 (2) C43—C44—H44 120.4
C24—C23—H23 119.6 C44—C45—C46 120.9 (2)
C22—C23—H23 119.6 C44—C45—H45 119.6
C25—C24—C23 120.8 (2) C46—C45—H45 119.6
C25—C24—H24 119.6 C45—C46—C41 121.4 (2)
C23—C24—H24 119.6 C45—C46—H46 119.3
C24—C25—C26 118.2 (2) C41—C46—H46 119.3
C24—C25—H25 120.9 C52—C51—C56 118.4 (2)
C26—C25—H25 120.9 C52—C51—C35 120.8 (2)
C25—C26—C21 121.8 (2) C56—C51—C35 120.7 (2)
C25—C26—N2 128.1 (2) C53—C52—C51 120.6 (3)
C21—C26—N2 110.08 (19) C53—C52—H52 119.7
O1—C27—N2 125.8 (2) C51—C52—H52 119.7
O1—C27—C2 126.6 (2) C54—C53—C52 120.2 (2)
N2—C27—C2 107.54 (18) C54—C53—H53 119.9
O2—C31—C32 119.56 (18) C52—C53—H53 119.9
O2—C31—C3 121.31 (18) C55—C54—C53 119.7 (2)
C32—C31—C3 119.01 (16) C55—C54—H54 120.2
N1—C6—H03A 109.5 C53—C54—H54 120.2
N1—C6—H03B 109.5 C54—C55—C56 120.8 (2)
H03A—C6—H03B 109.5 C54—C55—H55 119.6
N1—C6—H03C 109.5 C56—C55—H55 119.6
H03A—C6—H03C 109.5 C55—C56—C51 120.4 (2)
H03B—C6—H03C 109.5 C55—C56—H56 119.8
C33—C32—C36 118.10 (19) C51—C56—H56 119.8
C33—C32—C31 120.06 (18) C5—N1—C6 112.86 (19)
C36—C32—C31 121.61 (18) C5—N1—C2 105.95 (17)
C34—C33—C32 119.1 (2) C6—N1—C2 114.76 (18)
C34—C33—H33 120.4 C27—N2—C26 112.06 (18)
C32—C33—H33 120.4 C27—N2—H2 120.9 (18)
C33—C34—C35 119.3 (2) C26—N2—H2 125.6 (18)
C33—C34—H34 120.4 C36—N3—C35 118.38 (17)
N1—C2—C3—C31 87.78 (18) C33—C34—C35—C51 −169.7 (2)
C21—C2—C3—C31 −35.9 (2) C33—C32—C36—N3 9.5 (3)
C27—C2—C3—C31 −151.73 (16) C31—C32—C36—N3 −164.92 (19)
N1—C2—C3—C38 −151.78 (16) C33—C32—C36—C37 −170.98 (19)
C21—C2—C3—C38 84.5 (2) C31—C32—C36—C37 14.6 (3)
C27—C2—C3—C38 −31.3 (2) N3—C36—C37—C38 −165.11 (18)
N1—C2—C3—C4 −26.19 (19) C32—C36—C37—C38 15.4 (3)
C21—C2—C3—C4 −149.88 (17) C36—C37—C38—C3 −51.8 (2)
C27—C2—C3—C4 94.30 (18) C31—C3—C38—C37 55.5 (2)
C31—C3—C4—C41 117.6 (2) C2—C3—C38—C37 −64.7 (2)
C38—C3—C4—C41 −3.1 (3) C4—C3—C38—C37 176.20 (16)
C2—C3—C4—C41 −128.80 (18) C5—C4—C41—C42 147.3 (2)
C31—C3—C4—C5 −112.83 (19) C3—C4—C41—C42 −88.3 (2)
C38—C3—C4—C5 126.44 (19) C5—C4—C41—C46 −31.5 (3)
C2—C3—C4—C5 0.7 (2) C3—C4—C41—C46 93.0 (2)
C41—C4—C5—N1 154.80 (17) C46—C41—C42—C43 0.7 (3)
C3—C4—C5—N1 25.2 (2) C4—C41—C42—C43 −178.2 (2)
N1—C2—C21—C22 −55.7 (3) C46—C41—C42—Cl1 −178.29 (16)
C27—C2—C21—C22 −176.6 (2) C4—C41—C42—Cl1 2.8 (3)
C3—C2—C21—C22 62.8 (3) C41—C42—C43—C44 1.1 (4)
N1—C2—C21—C26 122.16 (19) Cl1—C42—C43—C44 −179.90 (18)
C27—C2—C21—C26 1.3 (2) C42—C43—C44—C45 −1.9 (4)
C3—C2—C21—C26 −119.2 (2) C43—C44—C45—C46 0.9 (4)
C26—C21—C22—C23 1.7 (3) C44—C45—C46—C41 1.0 (4)
C2—C21—C22—C23 179.5 (2) C42—C41—C46—C45 −1.7 (3)
C21—C22—C23—C24 −0.7 (4) C4—C41—C46—C45 177.1 (2)
C22—C23—C24—C25 −0.3 (4) N3—C35—C51—C52 −157.6 (2)
C23—C24—C25—C26 0.4 (4) C34—C35—C51—C52 21.0 (3)
C24—C25—C26—C21 0.7 (3) N3—C35—C51—C56 19.1 (3)
C24—C25—C26—N2 −175.9 (2) C34—C35—C51—C56 −162.3 (2)
C22—C21—C26—C25 −1.8 (3) C56—C51—C52—C53 −0.9 (4)
C2—C21—C26—C25 −180.0 (2) C35—C51—C52—C53 175.9 (2)
C22—C21—C26—N2 175.4 (2) C51—C52—C53—C54 0.2 (4)
C2—C21—C26—N2 −2.8 (2) C52—C53—C54—C55 0.7 (4)
N1—C2—C27—O1 58.7 (3) C53—C54—C55—C56 −0.9 (4)
C21—C2—C27—O1 178.8 (2) C54—C55—C56—C51 0.2 (4)
C3—C2—C27—O1 −54.8 (3) C52—C51—C56—C55 0.7 (3)
N1—C2—C27—N2 −119.41 (19) C35—C51—C56—C55 −176.1 (2)
C21—C2—C27—N2 0.6 (2) C4—C5—N1—C6 −170.69 (19)
C3—C2—C27—N2 127.08 (18) C4—C5—N1—C2 −44.3 (2)
C38—C3—C31—O2 158.3 (2) C21—C2—N1—C5 172.38 (18)
C2—C3—C31—O2 −77.0 (2) C27—C2—N1—C5 −74.1 (2)
C4—C3—C31—O2 33.5 (3) C3—C2—N1—C5 44.3 (2)
C38—C3—C31—C32 −25.8 (2) C21—C2—N1—C6 −62.4 (3)
C2—C3—C31—C32 98.9 (2) C27—C2—N1—C6 51.1 (3)
C4—C3—C31—C32 −150.66 (18) C3—C2—N1—C6 169.51 (19)
O2—C31—C32—C33 −6.9 (3) O1—C27—N2—C26 179.5 (2)
C3—C31—C32—C33 177.10 (19) C2—C27—N2—C26 −2.4 (2)
O2—C31—C32—C36 167.4 (2) C25—C26—N2—C27 −179.7 (2)
C3—C31—C32—C36 −8.6 (3) C21—C26—N2—C27 3.4 (3)
C36—C32—C33—C34 −5.4 (3) C32—C36—N3—C35 −4.4 (3)
C31—C32—C33—C34 169.2 (2) C37—C36—N3—C35 176.14 (18)
C32—C33—C34—C35 −3.3 (4) C34—C35—N3—C36 −4.9 (3)
C33—C34—C35—N3 8.8 (4) C51—C35—N3—C36 173.66 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C22—H22···O2 0.93 2.57 3.227 (3) 128
C38—H38A···O1 0.97 2.46 3.135 (3) 127
C37—H37A···O2i 0.97 2.38 3.159 (3) 137
N2—H2···O2i 0.88 (3) 2.50 (2) 2.911 (3) 109.0 (19)

Symmetry code: (i) x−1, y, z.

Funding Statement

This work was funded by University Grants Commission grant F MRP-7018/16(SERO/UGC) to J. Suresh.

References

  1. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291–294. [DOI] [PubMed]
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641. [DOI] [PubMed]
  5. James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140. [DOI] [PubMed]
  6. Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.
  7. Maheswari, S. U., Perumal, S. & Almansour, A. I. (2012). Tetrahedron Lett. 53, 349–353.
  8. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703. [DOI] [PubMed]
  12. Sumesh, R. V., Muthu, M., Almansour, A. I., Kumar, R. S., Arumugam, N., Athimoolam, S., Jeya Yasmi Prabha, E. A. & Kumar, R. R. (2016). ACS Comb. Sci. 18, 262–270. [DOI] [PubMed]
  13. Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45. [DOI] [PMC free article] [PubMed]
  14. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018005455/su5434sup1.cif

e-74-00660-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005455/su5434Isup2.hkl

e-74-00660-Isup2.hkl (223.6KB, hkl)

CCDC reference: 1835595

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES