Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 17;74(Pt 5):673–677. doi: 10.1107/S2056989018005595

Expected and unexpected products of reactions of 2-hydrazinylbenzo­thia­zole with 3-nitro­benzene­sulfonyl chloride in different solvents

Alexandra Morscher a, Marcus V N de Souza b, James L Wardell b,a, William T A Harrison a,*
PMCID: PMC5947485  PMID: 29850089

Two compounds arose from the same reaction in methanol and the other arose from an unexpected reaction with the acetone solvent.

Keywords: crystal structure, hydrazinyl­benzo­thiazole, hydrogen bonds, molecular salt

Abstract

The syntheses and crystal structures of 2-[2-(propan-2-yl­idene)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (C10H12N2S+·C6H4NO5S), (I), 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (C13H10N4O4S2), (II) and 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (C13H11N4O4S2 +·C6H4NO5S), (III) are reported. Salt (I) arose from an unexpected reaction of 2-hydrazinylbenzo­thia­zole with the acetone solvent in the presence of 3-nitro­benzene­sulfonyl chloride, whereas (II) and (III) were recovered from the equivalent reaction carried out in methanol. The crystal of (I) features ion pairs linked by pairs of N—H⋯Os (s = sulfonate) hydrogen bonds; adjacent cations inter­act by way of short π–π stacking inter­actions between the thia­zole rings [centroid–centroid separation = 3.4274 (18) Å]. In (II), which crystallizes with two neutral mol­ecules in the asymmetric unit, the mol­ecules are linked by N—H⋯N and N—H⋯On (n = nitro) hydrogen bonds to generate [Inline graphic1Inline graphic] chains, which are cross-linked by C—H⋯O and π–π stacking inter­actions. The crystal of (III) features centrosymmetric tetra­mers (two cations and two anions) linked by cooperative N—H⋯O hydrogen bonds; C—H⋯O and π–π inter­actions occur between tetra­mers.

Chemical context  

Heteroaromatic benzo­thia­zole derivatives are well-studied compounds, due in the main to their various and useful biological activities (for a review, see Gulati et al., 2017), but also to their fluorescent and optical properties (e.g. Liu et al., 2018). Hydrazonyl derivatives, 2-Ar—CH=N—NH-benzo­thia­zoles, formed from 2-hydrazinylbenzo­thia­zole and ArCHO have attracted attention: for example, Katava et al. (2017) have reported anti­tumor activities and Behera & Manivannan (2017) studied their use as sensors. Less attention has been paid generally to 2-(ArSO2NHNH)-benzo­thia­zoles, although anti­microbial activities have been briefly reported (Rao et al., 2005; Hipparagi et al., 2007).

We have initiated a study of the syntheses, structures and biological activities of 2-(ArSO2NHNH)-benzo­thia­zoles and we now describe the structures of three products of the reactions of 2-hydrazinylbenzo­thia­zole with 3-nitro­benzene­sulfonyl chloride in different solvents, viz. 2-[2-(propan-2-yl­idene)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benz­enesulfonate (I), 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (II) and 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zol-3-ium 3-nitro­benzene­sulfonate (III).graphic file with name e-74-00673-scheme1.jpg

Structural commentary  

Compound (I) crystallizes in space group P Inline graphic with one C10H12N3S+ cation (protonated at N1) and one C6H4NO5S sulfonate anion in the asymmetric unit (Fig. 1). Evidently, the starting hydrazone has reacted with the acetone solvent (Day & Whiting, 1970) to generate an N-propyl­idine group; at the same time, the sulfonyl chloride has been hydrolysed to sulfonic acid and a mol­ecular salt has crystallized after proton transfer from the sulfonic acid to the N atom of the thia­zole ring. The cation is close to planar; the dihedral angle between the benzo­thia­zole ring system (r.m.s. deviation = 0.005 Å) and the N2/N3/C8/C9/C10 grouping (r.m.s. deviation = 0.004 Å) is 7.89 (10)°; the C7—N2—N3—C8 torsion angle is −172.8 (2)°. The C8—N3 bond length of 1.278 (4) Å is fully consistent with double-bond character. In the anion, the nitro group is twisted by 26.7 (4)° with respect to the benzene ring. As expected, the S—O bond lengths of the sulfonate group are almost the same, indicating the usual delocalization of the negative charge and the same situation is found in compound (III) described below.

Figure 1.

Figure 1

The asymmetric unit of (I) showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

Compound (II) represents the expected condensation product of the starting hydrazone and sulfonyl chloride and crystallizes with two neutral C13H10N4O4S mol­ecules in the asymmetric unit (Fig. 2) in space group P Inline graphic. In the first (S1) mol­ecule, the dihedral angle between the benzo­thia­zole ring system (r.m.s. deviation = 0.013 Å) and the C8 benzene ring is 32.59 (4)°; the nitro group is twisted by 0.68 (7)° from the C8 benzene ring. The C7—N2—N3—S2 torsion angle is −99.88 (12) and the H2—N2—N3—H3 torsion angle is −54 (2)°. The bond-angle sum at N2 is 359.9°, indicative of sp 2 hybridization, whereas the corresponding value for N3 of 341.1° points towards substantial sp 3 hybrid character. The C7—N2 bond length of 1.3529 (16) Å is short for a nominal single bond, presumably indicative of conjugation of the N2 nominal lone pair of electrons with the adjacent ring system. In the second (S3) mol­ecule, the corresponding geometrical data are 0.008 Å (r.m.s. deviation for S3 ring system), 30.01 (3)° (S3/C21 rings), 3.46 (13)° (nitro group and C21 ring), −103.53 (12)° (C20—N6—N7—S4), −50.3 (18)° (H6—N6—N7—H7), 359.9° (bond-angle sum at N6), 341.7° (bond-angle sum at N7) and 1.3549 (16) Å (C20—N6 bond length). All-in-all, the S1 and S3 mol­ecules have similar conformations as indicated by the r.m.s. overlay fit of 0.221 Å for their non-hydrogen atoms.

Figure 2.

Figure 2

The asymmetric unit of (II) showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

Compound (III), which was recovered from the same reaction as (II), represents the same condensation product, which has gone on to further react with a hydrolysed sulfonyl chloride species to form a mol­ecular salt (proton transfer to N1). Once again, the space group is P Inline graphic and one cation and one anion (Fig. 3) make up the asymmetric unit. The benzo­thia­zole ring system (r.m.s. deviation = 0.005 Å) subtends a dihedral angle of 57.54 (3)° with the C8 benzene ring and the nitro group is twisted from its attached ring by 4.8 (3)°. The C7—N2—N3—S2 and H2—N2—N3—H3 torsion angles are −110.54 (12) and −48.5 (19)°, respectively. The bond-angle sums at N2 and N3 are 359.0 and 339.1°, respectively, and the same conclusions re hybridization states for these atoms as in (II) may be drawn. This is backed up by the shortened C7—N2 bond length of 1.3317 (17) Å in (III) compared to (II). presumably because resonance is enhanced by the positive charge on N1. In the anion, the nitro group is twisted from its attached ring by 17.7 (2)°.

Figure 3.

Figure 3

The asymmetric unit of (III) showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

Supra­molecular features  

In the crystal of (I), the cation and the anion are linked by a pair of N—H⋯O hydrogen bonds (Table 1), which generate an Inline graphic(8) loop. The ion pairs are connected by various weak C—H⋯O inter­actions, with the acceptor O atoms being parts of the sulfonate and nitro groups. No C—H⋯π inter­actions could be identified in the crystal of (I) but aromatic π–π stacking inter­actions are seen, with the shortest centroid–centroid separation of 3.4274 (18) Å (slippage = 0.729 Å) occurring between inversion-related pairs of thia­zole rings (Fig. 4); atom N2 of the hydrazone group lies above the benzene ring (Cg⋯N2 = 3.385 Å) and possibly provides some additional stabilization. Taken together, the directional inter­molecular inter­actions in (I) generate a three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (4) 1.87 (4) 2.721 (3) 167 (3)
N2—H2⋯O2 0.82 (4) 1.96 (4) 2.773 (3) 169 (3)
C3—H3⋯O2i 0.95 2.51 3.415 (4) 160
C4—H4⋯O4ii 0.95 2.55 3.292 (4) 135
C10—H10B⋯O4iii 0.98 2.54 3.297 (5) 134
C15—H15⋯O3iv 0.95 2.50 3.315 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

Detail of the extended structure of (I) showing π–π stacking between inversion-related thia­zole rings and possible secondary N⋯π inter­actions. Symmetry code: (i) −x, 1 − y, 1 − z.

The dominant inter­molecular inter­actions in (II) are N—H⋯N and N—H⋯O hydrogen bonds (Table 2); the first of these (N2—H2⋯N5 and N6—H6⋯N1) occur in the arbitrarily chosen asymmetric unit to link the mol­ecules into dimers that ‘slot together’: the dihedral angle between the benzo­thia­zole planes in the two mol­ecules is 36.06 (4)° and the pendant benzene sulfonyl groups project to the same side of the ensemble. The N—H⋯On (n = nitro) links connect the dimers into infinite [Inline graphic1Inline graphic] chains (Fig. 5). A number of weak C—H⋯O inter­actions are also observed, which serve to cross-link the chains. Several π–π stacking contacts occur in the crystal of (II), with the shortest [centroid–centroid separation = 3.5186 (7)Å] occurring between the C8–C13 and C14–C19 rings. Finally, a short N8—O7⋯π (π = centroid of the C21–C26 benzene ring) contact is observed with N⋯π = 3.2497 (12) Å and N—O⋯π = 86.24 (8)°.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N5 0.816 (18) 2.033 (18) 2.8447 (15) 172.7 (16)
N3—H3⋯O3i 0.848 (17) 2.129 (18) 2.9427 (15) 160.8 (15)
N6—H6⋯N1 0.820 (18) 2.050 (18) 2.8601 (15) 169.2 (17)
N7—H7⋯O7ii 0.871 (17) 2.123 (18) 2.9472 (15) 157.6 (15)
C15—H15⋯O3i 0.95 2.65 3.4888 (17) 147
C26—H26⋯O2 0.95 2.44 3.1774 (16) 134
C5—H5⋯O1iii 0.95 2.66 3.3218 (16) 127
C13—H13⋯O6 0.95 2.56 3.2731 (16) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

Fragment of a [Inline graphic1Inline graphic] hydrogen-bonded chain in (II) with the N—H⋯N and N—H⋯O bonds shown as blue and red double-dashed lines, respectively. All C-bonded hydrogen atoms have been omitted for clarity. Symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, −y, 1 − z.

The packing in (III) features a pair of cation-to-anion N—H⋯O links from N1 and N2 (Table 3), which is essentially the same motif as seen in (I). The N3—H3 grouping links to a symmetry-generated sulfonate O atom and a centrosymmetric tetra­mer (two cations and two anions) results (Fig. 6). A pair of weak C—H⋯O inter­actions helps to provide cohesion between tetra­mers in the crystal and π–π stacking is also observed, with the shortest centroid–centroid separation being 3.6743 (8) Å between the thia­zole and C1–C6 rings.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.841 (19) 1.888 (19) 2.7267 (15) 175.2 (17)
N2—H2⋯O5 0.826 (19) 1.92 (2) 2.7489 (16) 175.4 (18)
N3—H3⋯O7i 0.869 (18) 1.968 (19) 2.8058 (16) 161.6 (16)
C2—H2A⋯O7ii 0.95 2.55 3.2510 (18) 130
C9—H9⋯O8iii 0.95 2.58 3.487 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

An inversion-generated tetra­mer in the crystal of (III). Symmetry code: (i) 1 − x, 1 − y, −z.

Database survey  

A survey of of the Cambridge Structural Database (Groom et al., 2016: updated to March 2018) for benzo­thia­zole hydrazones revealed the prototype compound, benzo­thia­zol-2-yl-hydrazine (refcode: NAPKAR; Rajnikant et al., 2005) as well as three derivatives with various substituents attached to the benzene ring, viz. EVARID (Liu et al., 2011), LAPCAI (Fun et al., 2012a ) and LEFTEX (Fun et al., 2012b ). No hits for benzene­sulfonyl­hydrazino-benzo­thia­zoles were recorded.

Synthesis and crystallization  

To prepare (I), a mixture of 2-hydrazinylbenzo­thia­zole (1.00 mmol) and 3-nitro­benzene­sulfonyl chloride (1.00 mmol) in acetone (15 ml) was gently heated at 313–323 K for 30 minutes, then rotary evaporated and the residue was recrystallized by slow evaporation from methanol solution at room temperature; m.p. 444–445 K. ESI–HRMS (M + H). Calculated: 206.0752 for C10H12N3S, found: 206.0755. IR: 2930(br), 1621, 1530, 1350, 1241, 1151, 1028 cm−1

Compounds (II) and (III) arose from the same reaction: a solution of 2-hydrazinylbenzo­thia­zole (1.00 mmol) and 3-nitro­benzene­sulfonyl chloride (1.00 mmol) in methanol (15 ml) was gently heated at 313–323 K for 30 minutes, then rotary evaporated and the residue was recrystallized by slow evaporation from methanol solution at room temperature. A mixture of two distinct crystalline products, one yellow [compound (II)] and the other colourless [compound (III)], was isolated. These were separated by eye, and each product was futher recrystallized from methanol solution. (II); m.p. 442–444 K. ESI–HRMS (M − H). Calculated: 349.0222 for C13H9N4O2S2: found: 351.0220 ESI–HRMS (M + H). Calculated: 351.0065 for C13H11N4O2S2: found: 349.0062 IR; 2989 (br), 1531, 1457, 1341, 1306, 1167 cm−1. (III): m.p. 463–466 K. ESI–HRMS (M + H). Calculated: 351.0065 for C13H11N4O2S2: found: 349.0065 IR: 2870 (br), 1553, 1436, 1363, 1241, 1127, 1065 cm−1.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The N-bound hydrogen atoms were located in difference maps and their positions freely refined. The C-bound hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) or 1.5U eq(methyl carrier) was applied in all cases. The methyl groups in (I) were allowed to rotate, but not to tip, to best fit the electron density.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C10H12N3S+·C6H4NO5S C13H10N4O4S2 C13H11N4O4S2 +·C6H4NO5S
M r 408.45 350.37 553.54
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 100 100 100
a, b, c (Å) 7.5308 (4), 10.9167 (7), 12.4438 (8) 6.83537 (15), 13.5788 (3), 15.6907 (4) 10.0399 (5), 10.7585 (4), 11.3372 (6)
α, β, γ (°) 66.058 (6), 79.034 (5), 72.156 (5) 99.382 (2), 98.2324 (19), 91.9841 (19) 85.607 (4), 71.369 (5), 77.115 (4)
V3) 887.47 (10) 1419.55 (6) 1131.16 (10)
Z 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.34 0.40 0.39
Crystal size (mm) 0.06 × 0.05 × 0.01 0.15 × 0.10 × 0.03 0.23 × 0.18 × 0.04
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (FS_ABSCOR; Rigaku, 2013) Multi-scan (FS_ABSCOR; Rigaku, 2013) Multi-scan (FS_ABSCOR; Rigaku, 2013)
T min, T max 0.614, 1.000 0.861, 1.000 0.879, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11341, 3490, 3249 24032, 6465, 6033 19781, 5159, 4880
R int 0.036 0.018 0.017
(sin θ/λ)max−1) 0.617 0.649 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.184, 1.11 0.027, 0.072, 1.04 0.029, 0.076, 1.02
No. of reflections 3490 6465 5159
No. of parameters 250 427 334
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.32, −0.63 0.40, −0.38 0.39, −0.42

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018005595/sj5555sup1.cif

e-74-00673-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005595/sj5555Isup2.hkl

e-74-00673-Isup2.hkl (278.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018005595/sj5555IIsup3.hkl

e-74-00673-IIsup3.hkl (513.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018005595/sj5555IIIsup4.hkl

e-74-00673-IIIsup4.hkl (410.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555Isup5.cml

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555IIIsup7.cml

CCDC references: 1835988, 1835987, 1835986

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

supplementary crystallographic information

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Crystal data

C10H12N3S+·C6H4NO5S Z = 2
Mr = 408.45 F(000) = 424
Triclinic, P1 Dx = 1.528 Mg m3
a = 7.5308 (4) Å Mo Kα radiation, λ = 0.71075 Å
b = 10.9167 (7) Å Cell parameters from 6372 reflections
c = 12.4438 (8) Å θ = 2.8–30.4°
α = 66.058 (6)° µ = 0.34 mm1
β = 79.034 (5)° T = 100 K
γ = 72.156 (5)° Block, colourless
V = 887.47 (10) Å3 0.06 × 0.05 × 0.01 mm

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Data collection

Rigaku Mercury CCD diffractometer 3249 reflections with I > 2σ(I)
ω scans Rint = 0.036
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) θmax = 26.0°, θmin = 2.9°
Tmin = 0.614, Tmax = 1.000 h = −9→7
11341 measured reflections k = −13→13
3490 independent reflections l = −15→15

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1206P)2 + 0.8477P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3490 reflections Δρmax = 1.32 e Å3
250 parameters Δρmin = −0.63 e Å3
0 restraints

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2281 (4) 0.3162 (3) 0.5033 (3) 0.0203 (6)
C2 0.2122 (4) 0.1899 (3) 0.5087 (3) 0.0228 (6)
H2A 0.2284 0.1105 0.5798 0.027*
C3 0.1720 (4) 0.1837 (3) 0.4070 (3) 0.0262 (7)
H3 0.1611 0.0986 0.4083 0.031*
C4 0.1472 (4) 0.3006 (3) 0.3030 (3) 0.0248 (6)
H4 0.1204 0.2937 0.2344 0.030*
C5 0.1609 (4) 0.4267 (3) 0.2978 (3) 0.0231 (6)
H5 0.1419 0.5065 0.2270 0.028*
C6 0.2032 (4) 0.4330 (3) 0.3988 (3) 0.0191 (6)
C7 0.2606 (4) 0.5238 (3) 0.5207 (3) 0.0187 (6)
C8 0.3338 (4) 0.6563 (3) 0.7133 (3) 0.0228 (6)
C9 0.2989 (5) 0.8099 (3) 0.6481 (3) 0.0276 (7)
H9A 0.3122 0.8531 0.7004 0.041*
H9B 0.3897 0.8293 0.5795 0.041*
H9C 0.1719 0.8476 0.6217 0.041*
C10 0.3777 (5) 0.6021 (4) 0.8395 (3) 0.0298 (7)
H10A 0.3780 0.6793 0.8606 0.045*
H10B 0.2827 0.5556 0.8906 0.045*
H10C 0.5011 0.5359 0.8499 0.045*
N1 0.2209 (3) 0.5486 (3) 0.4133 (2) 0.0190 (5)
H1 0.188 (5) 0.633 (4) 0.364 (3) 0.023*
N2 0.2853 (3) 0.6164 (3) 0.5555 (2) 0.0197 (5)
H2 0.272 (5) 0.697 (4) 0.509 (3) 0.024*
N3 0.3282 (3) 0.5676 (3) 0.6723 (2) 0.0221 (5)
S1 0.27708 (10) 0.35384 (7) 0.61732 (6) 0.0196 (2)
C11 0.4451 (4) 0.9109 (3) 0.1794 (2) 0.0183 (6)
C12 0.5278 (4) 0.8235 (3) 0.1184 (2) 0.0195 (6)
H12 0.4602 0.7699 0.1067 0.023*
C13 0.7139 (4) 0.8170 (3) 0.0747 (3) 0.0223 (6)
C14 0.8145 (4) 0.8949 (3) 0.0890 (3) 0.0262 (7)
H14 0.9422 0.8861 0.0602 0.031*
C15 0.7274 (4) 0.9858 (3) 0.1455 (3) 0.0259 (7)
H15 0.7938 1.0430 0.1529 0.031*
C16 0.5418 (4) 0.9941 (3) 0.1918 (3) 0.0221 (6)
H16 0.4820 1.0560 0.2315 0.027*
S2 0.21789 (9) 0.91074 (7) 0.25157 (6) 0.0184 (2)
N4 0.8044 (4) 0.7214 (3) 0.0138 (2) 0.0302 (6)
O1 0.1647 (3) 0.8018 (2) 0.23498 (18) 0.0222 (5)
O2 0.2432 (3) 0.8753 (2) 0.37542 (18) 0.0238 (5)
O3 0.1002 (3) 1.0479 (2) 0.19792 (19) 0.0255 (5)
O4 0.7054 (4) 0.6912 (3) −0.0342 (2) 0.0360 (6)
O5 0.9750 (3) 0.6763 (3) 0.0148 (2) 0.0432 (7)

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0162 (13) 0.0222 (14) 0.0203 (14) −0.0039 (11) 0.0017 (11) −0.0077 (11)
C2 0.0213 (14) 0.0197 (14) 0.0270 (15) −0.0063 (11) 0.0015 (12) −0.0089 (12)
C3 0.0203 (14) 0.0263 (15) 0.0358 (17) −0.0088 (12) 0.0037 (13) −0.0158 (14)
C4 0.0183 (14) 0.0342 (16) 0.0259 (15) −0.0076 (12) 0.0028 (12) −0.0164 (13)
C5 0.0171 (13) 0.0290 (15) 0.0204 (14) −0.0085 (12) 0.0039 (11) −0.0069 (12)
C6 0.0122 (12) 0.0201 (13) 0.0227 (14) −0.0056 (10) 0.0048 (11) −0.0073 (11)
C7 0.0099 (12) 0.0218 (14) 0.0226 (14) −0.0058 (10) 0.0047 (10) −0.0078 (11)
C8 0.0135 (13) 0.0302 (16) 0.0254 (15) −0.0100 (12) 0.0056 (11) −0.0107 (13)
C9 0.0294 (16) 0.0281 (16) 0.0300 (16) −0.0103 (13) −0.0003 (13) −0.0140 (13)
C10 0.0295 (16) 0.0390 (18) 0.0248 (16) −0.0160 (14) 0.0026 (13) −0.0125 (14)
N1 0.0162 (11) 0.0178 (12) 0.0196 (12) −0.0062 (9) 0.0028 (9) −0.0042 (10)
N2 0.0188 (12) 0.0178 (12) 0.0214 (12) −0.0070 (10) 0.0009 (10) −0.0056 (10)
N3 0.0178 (12) 0.0264 (13) 0.0220 (12) −0.0088 (10) 0.0023 (10) −0.0084 (10)
S1 0.0197 (4) 0.0179 (4) 0.0193 (4) −0.0062 (3) −0.0008 (3) −0.0044 (3)
C11 0.0153 (13) 0.0199 (13) 0.0170 (13) −0.0062 (11) −0.0021 (10) −0.0026 (11)
C12 0.0202 (14) 0.0197 (13) 0.0168 (13) −0.0071 (11) −0.0021 (11) −0.0034 (11)
C13 0.0201 (14) 0.0241 (14) 0.0174 (13) −0.0032 (12) −0.0003 (11) −0.0045 (11)
C14 0.0156 (13) 0.0353 (17) 0.0207 (14) −0.0068 (12) −0.0018 (11) −0.0029 (12)
C15 0.0177 (14) 0.0363 (17) 0.0250 (15) −0.0141 (13) −0.0015 (12) −0.0077 (13)
C16 0.0217 (14) 0.0231 (14) 0.0213 (14) −0.0066 (12) −0.0024 (11) −0.0071 (12)
S2 0.0147 (4) 0.0195 (4) 0.0200 (4) −0.0077 (3) 0.0015 (3) −0.0051 (3)
N4 0.0333 (15) 0.0265 (14) 0.0196 (13) −0.0047 (12) 0.0065 (11) −0.0033 (11)
O1 0.0214 (10) 0.0224 (10) 0.0223 (10) −0.0098 (8) −0.0013 (8) −0.0049 (8)
O2 0.0250 (11) 0.0247 (11) 0.0221 (11) −0.0119 (9) 0.0029 (8) −0.0071 (8)
O3 0.0174 (10) 0.0240 (11) 0.0305 (12) −0.0078 (9) 0.0016 (9) −0.0052 (9)
O4 0.0485 (15) 0.0343 (13) 0.0270 (12) −0.0169 (11) 0.0107 (11) −0.0144 (10)
O5 0.0280 (13) 0.0419 (14) 0.0406 (15) 0.0041 (11) 0.0079 (11) −0.0105 (12)

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Geometric parameters (Å, º)

C1—C2 1.393 (4) C10—H10B 0.9800
C1—C6 1.397 (4) C10—H10C 0.9800
C1—S1 1.757 (3) N1—H1 0.86 (4)
C2—C3 1.388 (4) N2—N3 1.395 (3)
C2—H2A 0.9500 N2—H2 0.82 (4)
C3—C4 1.394 (5) C11—C12 1.386 (4)
C3—H3 0.9500 C11—C16 1.393 (4)
C4—C5 1.387 (4) C11—S2 1.775 (3)
C4—H4 0.9500 C12—C13 1.395 (4)
C5—C6 1.386 (4) C12—H12 0.9500
C5—H5 0.9500 C13—C14 1.377 (5)
C6—N1 1.393 (4) C13—N4 1.462 (4)
C7—N2 1.321 (4) C14—C15 1.379 (5)
C7—N1 1.327 (4) C14—H14 0.9500
C7—S1 1.734 (3) C15—C16 1.398 (4)
C8—N3 1.278 (4) C15—H15 0.9500
C8—C9 1.499 (4) C16—H16 0.9500
C8—C10 1.500 (4) S2—O3 1.440 (2)
C9—H9A 0.9800 S2—O1 1.463 (2)
C9—H9B 0.9800 S2—O2 1.464 (2)
C9—H9C 0.9800 N4—O4 1.226 (4)
C10—H10A 0.9800 N4—O5 1.227 (4)
C2—C1—C6 120.9 (3) C7—N1—C6 114.0 (2)
C2—C1—S1 127.7 (2) C7—N1—H1 120 (2)
C6—C1—S1 111.4 (2) C6—N1—H1 125 (2)
C3—C2—C1 117.9 (3) C7—N2—N3 115.8 (2)
C3—C2—H2A 121.0 C7—N2—H2 119 (2)
C1—C2—H2A 121.0 N3—N2—H2 125 (2)
C2—C3—C4 120.9 (3) C8—N3—N2 117.8 (3)
C2—C3—H3 119.6 C7—S1—C1 89.17 (14)
C4—C3—H3 119.6 C12—C11—C16 121.1 (3)
C5—C4—C3 121.3 (3) C12—C11—S2 120.3 (2)
C5—C4—H4 119.4 C16—C11—S2 118.5 (2)
C3—C4—H4 119.4 C11—C12—C13 117.6 (3)
C6—C5—C4 118.0 (3) C11—C12—H12 121.2
C6—C5—H5 121.0 C13—C12—H12 121.2
C4—C5—H5 121.0 C14—C13—C12 122.4 (3)
C5—C6—N1 127.4 (3) C14—C13—N4 119.5 (3)
C5—C6—C1 120.9 (3) C12—C13—N4 118.0 (3)
N1—C6—C1 111.6 (3) C13—C14—C15 119.1 (3)
N2—C7—N1 125.2 (3) C13—C14—H14 120.4
N2—C7—S1 121.0 (2) C15—C14—H14 120.4
N1—C7—S1 113.8 (2) C14—C15—C16 120.1 (3)
N3—C8—C9 126.5 (3) C14—C15—H15 119.9
N3—C8—C10 117.1 (3) C16—C15—H15 119.9
C9—C8—C10 116.5 (3) C11—C16—C15 119.5 (3)
C8—C9—H9A 109.5 C11—C16—H16 120.3
C8—C9—H9B 109.5 C15—C16—H16 120.3
H9A—C9—H9B 109.5 O3—S2—O1 114.29 (12)
C8—C9—H9C 109.5 O3—S2—O2 113.10 (13)
H9A—C9—H9C 109.5 O1—S2—O2 111.73 (12)
H9B—C9—H9C 109.5 O3—S2—C11 106.88 (13)
C8—C10—H10A 109.5 O1—S2—C11 105.44 (13)
C8—C10—H10B 109.5 O2—S2—C11 104.46 (12)
H10A—C10—H10B 109.5 O4—N4—O5 124.4 (3)
C8—C10—H10C 109.5 O4—N4—C13 118.1 (3)
H10A—C10—H10C 109.5 O5—N4—C13 117.5 (3)
H10B—C10—H10C 109.5
C6—C1—C2—C3 0.4 (4) C2—C1—S1—C7 −179.2 (3)
S1—C1—C2—C3 179.9 (2) C6—C1—S1—C7 0.4 (2)
C1—C2—C3—C4 −0.4 (4) C16—C11—C12—C13 3.0 (4)
C2—C3—C4—C5 −0.3 (4) S2—C11—C12—C13 −173.0 (2)
C3—C4—C5—C6 1.0 (4) C11—C12—C13—C14 −0.9 (4)
C4—C5—C6—N1 −179.0 (3) C11—C12—C13—N4 177.9 (2)
C4—C5—C6—C1 −1.0 (4) C12—C13—C14—C15 −1.9 (4)
C2—C1—C6—C5 0.4 (4) N4—C13—C14—C15 179.3 (3)
S1—C1—C6—C5 −179.2 (2) C13—C14—C15—C16 2.6 (4)
C2—C1—C6—N1 178.6 (2) C12—C11—C16—C15 −2.2 (4)
S1—C1—C6—N1 −0.9 (3) S2—C11—C16—C15 173.8 (2)
N2—C7—N1—C6 179.5 (2) C14—C15—C16—C11 −0.6 (4)
S1—C7—N1—C6 −0.9 (3) C12—C11—S2—O3 −118.7 (2)
C5—C6—N1—C7 179.3 (3) C16—C11—S2—O3 65.2 (2)
C1—C6—N1—C7 1.2 (3) C12—C11—S2—O1 3.3 (3)
N1—C7—N2—N3 −179.3 (2) C16—C11—S2—O1 −172.8 (2)
S1—C7—N2—N3 1.2 (3) C12—C11—S2—O2 121.2 (2)
C9—C8—N3—N2 −0.1 (4) C16—C11—S2—O2 −54.9 (2)
C10—C8—N3—N2 179.2 (2) C14—C13—N4—O4 −154.8 (3)
C7—N2—N3—C8 −172.8 (2) C12—C13—N4—O4 26.4 (4)
N2—C7—S1—C1 179.9 (2) C14—C13—N4—O5 25.7 (4)
N1—C7—S1—C1 0.3 (2) C12—C13—N4—O5 −153.2 (3)

2-[2-(Propan-2-ylidene)hydrazinyl]-1,3-benzothiazol-3-ium 3-nitrobenzenesulfonate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 (4) 1.87 (4) 2.721 (3) 167 (3)
N2—H2···O2 0.82 (4) 1.96 (4) 2.773 (3) 169 (3)
C3—H3···O2i 0.95 2.51 3.415 (4) 160
C4—H4···O4ii 0.95 2.55 3.292 (4) 135
C10—H10B···O4iii 0.98 2.54 3.297 (5) 134
C15—H15···O3iv 0.95 2.50 3.315 (4) 144

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Crystal data

C13H10N4O4S2 Z = 4
Mr = 350.37 F(000) = 720
Triclinic, P1 Dx = 1.639 Mg m3
a = 6.83537 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.5788 (3) Å Cell parameters from 18994 reflections
c = 15.6907 (4) Å θ = 2.7–27.5°
α = 99.382 (2)° µ = 0.40 mm1
β = 98.2324 (19)° T = 100 K
γ = 91.9841 (19)° Plate, yellow
V = 1419.55 (6) Å3 0.15 × 0.10 × 0.03 mm

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Data collection

Rigaku Mercury CCD diffractometer 6033 reflections with I > 2σ(I)
ω scans Rint = 0.018
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) θmax = 27.5°, θmin = 2.2°
Tmin = 0.861, Tmax = 1.000 h = −8→7
24032 measured reflections k = −17→17
6465 independent reflections l = −20→19

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.771P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6465 reflections Δρmax = 0.40 e Å3
427 parameters Δρmin = −0.38 e Å3
0 restraints

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43539 (18) 0.33184 (9) 0.47102 (8) 0.0141 (2)
C2 0.55062 (19) 0.27184 (10) 0.51978 (8) 0.0169 (2)
H3A 0.6190 0.2193 0.4915 0.020*
C3 0.5642 (2) 0.28988 (10) 0.61023 (9) 0.0202 (3)
H3B 0.6435 0.2497 0.6439 0.024*
C4 0.4627 (2) 0.36625 (11) 0.65225 (9) 0.0210 (3)
H4 0.4751 0.3779 0.7142 0.025*
C5 0.3439 (2) 0.42538 (10) 0.60476 (8) 0.0185 (3)
H5 0.2733 0.4767 0.6333 0.022*
C6 0.33125 (18) 0.40728 (9) 0.51429 (8) 0.0149 (2)
C7 0.28467 (18) 0.38771 (9) 0.35588 (8) 0.0139 (2)
C8 −0.12349 (18) 0.31751 (9) 0.11243 (8) 0.0140 (2)
C9 −0.13679 (18) 0.36196 (9) 0.03836 (8) 0.0147 (2)
H9 −0.1521 0.4317 0.0415 0.018*
C10 −0.12680 (18) 0.30065 (9) −0.04025 (8) 0.0151 (2)
C11 −0.10555 (19) 0.19861 (10) −0.04774 (9) 0.0177 (3)
H11 −0.1002 0.1586 −0.1029 0.021*
C12 −0.09235 (19) 0.15654 (10) 0.02733 (9) 0.0177 (3)
H12 −0.0772 0.0868 0.0238 0.021*
C13 −0.10106 (18) 0.21541 (9) 0.10793 (8) 0.0161 (2)
H13 −0.0918 0.1862 0.1593 0.019*
S1 0.19123 (5) 0.46708 (2) 0.43815 (2) 0.01478 (7)
S2 −0.14385 (4) 0.39379 (2) 0.21312 (2) 0.01401 (7)
N1 0.40625 (15) 0.32218 (8) 0.38016 (7) 0.0139 (2)
N2 0.23064 (17) 0.39617 (9) 0.27112 (7) 0.0172 (2)
H2 0.284 (3) 0.3656 (13) 0.2323 (11) 0.021*
N3 0.07391 (16) 0.45532 (8) 0.25127 (7) 0.0156 (2)
H3 0.101 (2) 0.4983 (13) 0.2204 (11) 0.019*
N4 −0.14030 (17) 0.34643 (8) −0.11915 (7) 0.0180 (2)
O1 −0.27389 (14) 0.47084 (7) 0.19593 (6) 0.01904 (19)
O2 −0.17746 (14) 0.32943 (7) 0.27375 (6) 0.01830 (19)
O3 −0.15792 (16) 0.43763 (7) −0.11068 (6) 0.0248 (2)
O4 −0.13227 (18) 0.29368 (8) −0.18884 (6) 0.0306 (2)
C14 0.38706 (17) 0.27186 (9) 0.04845 (8) 0.0135 (2)
C15 0.37430 (18) 0.35578 (10) 0.00746 (8) 0.0162 (2)
H15 0.3734 0.4208 0.0407 0.019*
C16 0.36290 (19) 0.34242 (10) −0.08280 (9) 0.0188 (3)
H16 0.3550 0.3990 −0.1114 0.023*
C17 0.3629 (2) 0.24711 (10) −0.13217 (9) 0.0203 (3)
H17 0.3535 0.2398 −0.1939 0.024*
C18 0.3765 (2) 0.16275 (10) −0.09252 (8) 0.0183 (3)
H18 0.3766 0.0979 −0.1261 0.022*
C19 0.38981 (18) 0.17643 (9) −0.00197 (8) 0.0146 (2)
C20 0.40680 (18) 0.18334 (9) 0.15515 (8) 0.0139 (2)
C21 0.15315 (19) 0.07929 (9) 0.36629 (8) 0.0163 (2)
C22 0.22077 (19) 0.04559 (10) 0.44344 (8) 0.0165 (2)
H22 0.2967 −0.0117 0.4438 0.020*
C23 0.17295 (19) 0.09898 (10) 0.51990 (8) 0.0175 (3)
C24 0.0642 (2) 0.18347 (10) 0.52236 (9) 0.0205 (3)
H24 0.0348 0.2185 0.5761 0.025*
C25 −0.0005 (2) 0.21522 (10) 0.44401 (10) 0.0211 (3)
H25 −0.0747 0.2731 0.4439 0.025*
C26 0.0421 (2) 0.16336 (10) 0.36575 (9) 0.0190 (3)
H26 −0.0042 0.1850 0.3122 0.023*
S3 0.40564 (5) 0.08651 (2) 0.06631 (2) 0.01512 (7)
S4 0.21030 (5) 0.01172 (2) 0.26734 (2) 0.01740 (8)
N5 0.39616 (15) 0.27357 (8) 0.13792 (7) 0.0136 (2)
N6 0.41743 (18) 0.16301 (8) 0.23735 (7) 0.0184 (2)
H6 0.430 (2) 0.2085 (13) 0.2795 (12) 0.022*
N7 0.42029 (17) 0.06345 (8) 0.24827 (7) 0.0170 (2)
H7 0.520 (3) 0.0496 (12) 0.2847 (11) 0.020*
N8 0.23973 (17) 0.06263 (9) 0.60183 (7) 0.0205 (2)
O5 0.26067 (17) −0.08604 (7) 0.28157 (6) 0.0248 (2)
O6 0.05911 (15) 0.02700 (8) 0.19880 (6) 0.0242 (2)
O7 0.32765 (15) −0.01577 (8) 0.59683 (7) 0.0260 (2)
O8 0.20339 (17) 0.10970 (9) 0.67020 (7) 0.0312 (2)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0141 (6) 0.0152 (6) 0.0123 (6) −0.0026 (4) 0.0022 (4) 0.0005 (4)
C2 0.0156 (6) 0.0167 (6) 0.0180 (6) 0.0007 (5) 0.0022 (5) 0.0023 (5)
C3 0.0207 (6) 0.0218 (7) 0.0186 (6) 0.0001 (5) 0.0000 (5) 0.0076 (5)
C4 0.0248 (7) 0.0256 (7) 0.0121 (6) −0.0011 (5) 0.0017 (5) 0.0035 (5)
C5 0.0211 (6) 0.0208 (6) 0.0131 (6) 0.0011 (5) 0.0044 (5) 0.0002 (5)
C6 0.0143 (6) 0.0166 (6) 0.0132 (6) −0.0002 (4) 0.0011 (4) 0.0019 (5)
C7 0.0145 (6) 0.0142 (6) 0.0124 (6) −0.0014 (4) 0.0039 (4) −0.0006 (4)
C8 0.0135 (5) 0.0154 (6) 0.0120 (6) 0.0018 (4) 0.0007 (4) 0.0005 (4)
C9 0.0150 (6) 0.0146 (6) 0.0139 (6) 0.0004 (4) 0.0014 (4) 0.0016 (5)
C10 0.0142 (6) 0.0177 (6) 0.0130 (6) −0.0006 (4) 0.0008 (4) 0.0025 (5)
C11 0.0160 (6) 0.0173 (6) 0.0175 (6) −0.0001 (5) 0.0012 (5) −0.0028 (5)
C12 0.0177 (6) 0.0131 (6) 0.0211 (6) 0.0012 (5) 0.0006 (5) 0.0011 (5)
C13 0.0152 (6) 0.0164 (6) 0.0166 (6) 0.0012 (5) 0.0001 (5) 0.0043 (5)
S1 0.01749 (15) 0.01571 (15) 0.01076 (14) 0.00315 (11) 0.00279 (11) 0.00015 (11)
S2 0.01745 (15) 0.01462 (14) 0.01033 (14) 0.00364 (11) 0.00230 (11) 0.00244 (11)
N1 0.0147 (5) 0.0151 (5) 0.0114 (5) −0.0002 (4) 0.0026 (4) 0.0005 (4)
N2 0.0186 (5) 0.0224 (6) 0.0106 (5) 0.0069 (4) 0.0035 (4) 0.0004 (4)
N3 0.0193 (5) 0.0144 (5) 0.0130 (5) 0.0019 (4) 0.0015 (4) 0.0030 (4)
N4 0.0196 (5) 0.0212 (6) 0.0126 (5) −0.0015 (4) 0.0015 (4) 0.0017 (4)
O1 0.0238 (5) 0.0196 (5) 0.0145 (4) 0.0093 (4) 0.0029 (4) 0.0032 (4)
O2 0.0222 (5) 0.0197 (5) 0.0144 (4) 0.0023 (4) 0.0039 (4) 0.0057 (4)
O3 0.0390 (6) 0.0192 (5) 0.0181 (5) 0.0015 (4) 0.0069 (4) 0.0060 (4)
O4 0.0487 (7) 0.0290 (6) 0.0116 (5) 0.0004 (5) 0.0035 (4) −0.0022 (4)
C14 0.0113 (5) 0.0162 (6) 0.0131 (6) 0.0016 (4) 0.0024 (4) 0.0018 (5)
C15 0.0151 (6) 0.0158 (6) 0.0176 (6) 0.0016 (4) 0.0020 (5) 0.0033 (5)
C16 0.0187 (6) 0.0206 (6) 0.0186 (6) 0.0025 (5) 0.0018 (5) 0.0087 (5)
C17 0.0223 (7) 0.0265 (7) 0.0126 (6) 0.0026 (5) 0.0014 (5) 0.0050 (5)
C18 0.0226 (6) 0.0187 (6) 0.0136 (6) 0.0038 (5) 0.0031 (5) 0.0015 (5)
C19 0.0152 (6) 0.0151 (6) 0.0138 (6) 0.0025 (4) 0.0019 (4) 0.0036 (5)
C20 0.0145 (6) 0.0146 (6) 0.0121 (6) 0.0007 (4) 0.0030 (4) 0.0003 (4)
C21 0.0192 (6) 0.0151 (6) 0.0147 (6) −0.0028 (5) 0.0037 (5) 0.0025 (5)
C22 0.0169 (6) 0.0154 (6) 0.0174 (6) −0.0023 (5) 0.0026 (5) 0.0040 (5)
C23 0.0175 (6) 0.0196 (6) 0.0156 (6) −0.0048 (5) 0.0026 (5) 0.0042 (5)
C24 0.0202 (6) 0.0195 (6) 0.0218 (7) −0.0041 (5) 0.0082 (5) 0.0000 (5)
C25 0.0202 (6) 0.0161 (6) 0.0290 (7) 0.0001 (5) 0.0080 (5) 0.0058 (5)
C26 0.0197 (6) 0.0175 (6) 0.0212 (7) −0.0008 (5) 0.0035 (5) 0.0078 (5)
S3 0.02245 (16) 0.01240 (14) 0.01072 (14) 0.00307 (11) 0.00390 (11) 0.00095 (11)
S4 0.02582 (17) 0.01316 (15) 0.01286 (15) −0.00091 (12) 0.00193 (12) 0.00245 (11)
N5 0.0158 (5) 0.0131 (5) 0.0118 (5) 0.0008 (4) 0.0029 (4) 0.0009 (4)
N6 0.0332 (6) 0.0112 (5) 0.0108 (5) −0.0002 (4) 0.0048 (4) 0.0009 (4)
N7 0.0238 (6) 0.0146 (5) 0.0135 (5) 0.0035 (4) 0.0034 (4) 0.0039 (4)
N8 0.0198 (5) 0.0257 (6) 0.0152 (5) −0.0052 (5) 0.0021 (4) 0.0030 (4)
O5 0.0423 (6) 0.0128 (4) 0.0197 (5) 0.0008 (4) 0.0056 (4) 0.0035 (4)
O6 0.0283 (5) 0.0252 (5) 0.0171 (5) −0.0024 (4) −0.0020 (4) 0.0038 (4)
O7 0.0274 (5) 0.0324 (6) 0.0192 (5) 0.0041 (4) 0.0015 (4) 0.0090 (4)
O8 0.0406 (6) 0.0368 (6) 0.0148 (5) −0.0036 (5) 0.0069 (4) −0.0009 (4)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Geometric parameters (Å, º)

C1—C2 1.3944 (18) C14—N5 1.3927 (16)
C1—N1 1.3947 (16) C14—C15 1.3963 (17)
C1—C6 1.4068 (17) C14—C19 1.4061 (17)
C2—C3 1.3894 (19) C15—C16 1.3887 (18)
C2—H3A 0.9500 C15—H15 0.9500
C3—C4 1.396 (2) C16—C17 1.3958 (19)
C3—H3B 0.9500 C16—H16 0.9500
C4—C5 1.3877 (19) C17—C18 1.3895 (19)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.3902 (17) C18—C19 1.3918 (18)
C5—H5 0.9500 C18—H18 0.9500
C6—S1 1.7450 (13) C19—S3 1.7473 (13)
C7—N1 1.3033 (16) C20—N5 1.2992 (16)
C7—N2 1.3529 (16) C20—N6 1.3549 (16)
C7—S1 1.7511 (12) C20—S3 1.7522 (12)
C8—C9 1.3876 (17) C21—C22 1.3869 (18)
C8—C13 1.3917 (17) C21—C26 1.3934 (18)
C8—S2 1.7685 (12) C21—S4 1.7717 (13)
C9—C10 1.3829 (17) C22—C23 1.3846 (18)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.3858 (18) C23—C24 1.3868 (19)
C10—N4 1.4661 (16) C23—N8 1.4693 (17)
C11—C12 1.3837 (19) C24—C25 1.387 (2)
C11—H11 0.9500 C24—H24 0.9500
C12—C13 1.3918 (18) C25—C26 1.387 (2)
C12—H12 0.9500 C25—H25 0.9500
C13—H13 0.9500 C26—H26 0.9500
S2—O2 1.4287 (9) S4—O5 1.4271 (10)
S2—O1 1.4301 (9) S4—O6 1.4272 (10)
S2—N3 1.6636 (11) S4—N7 1.6628 (12)
N2—N3 1.3912 (15) N6—N7 1.3906 (15)
N2—H2 0.816 (18) N6—H6 0.820 (18)
N3—H3 0.848 (17) N7—H7 0.871 (17)
N4—O4 1.2150 (15) N8—O8 1.2186 (16)
N4—O3 1.2358 (15) N8—O7 1.2374 (16)
C2—C1—N1 125.63 (11) N5—C14—C15 125.14 (11)
C2—C1—C6 119.30 (11) N5—C14—C19 115.21 (11)
N1—C1—C6 115.02 (11) C15—C14—C19 119.65 (11)
C3—C2—C1 119.12 (12) C16—C15—C14 118.75 (12)
C3—C2—H3A 120.4 C16—C15—H15 120.6
C1—C2—H3A 120.4 C14—C15—H15 120.6
C2—C3—C4 120.83 (12) C15—C16—C17 120.99 (12)
C2—C3—H3B 119.6 C15—C16—H16 119.5
C4—C3—H3B 119.6 C17—C16—H16 119.5
C5—C4—C3 120.91 (12) C18—C17—C16 121.09 (12)
C5—C4—H4 119.5 C18—C17—H17 119.5
C3—C4—H4 119.5 C16—C17—H17 119.5
C4—C5—C6 118.08 (12) C17—C18—C19 117.81 (12)
C4—C5—H5 121.0 C17—C18—H18 121.1
C6—C5—H5 121.0 C19—C18—H18 121.1
C5—C6—C1 121.74 (12) C18—C19—C14 121.70 (12)
C5—C6—S1 128.32 (10) C18—C19—S3 128.77 (10)
C1—C6—S1 109.93 (9) C14—C19—S3 109.51 (9)
N1—C7—N2 122.68 (11) N5—C20—N6 122.64 (11)
N1—C7—S1 117.31 (9) N5—C20—S3 116.93 (9)
N2—C7—S1 120.01 (10) N6—C20—S3 120.43 (9)
C9—C8—C13 121.44 (11) C22—C21—C26 121.43 (12)
C9—C8—S2 118.05 (9) C22—C21—S4 118.12 (10)
C13—C8—S2 120.47 (10) C26—C21—S4 120.45 (10)
C10—C9—C8 117.29 (11) C23—C22—C21 117.16 (12)
C10—C9—H9 121.4 C23—C22—H22 121.4
C8—C9—H9 121.4 C21—C22—H22 121.4
C9—C10—C11 123.15 (12) C22—C23—C24 123.27 (12)
C9—C10—N4 118.01 (11) C22—C23—N8 117.66 (12)
C11—C10—N4 118.84 (11) C24—C23—N8 119.07 (12)
C12—C11—C10 118.18 (12) C25—C24—C23 118.01 (13)
C12—C11—H11 120.9 C25—C24—H24 121.0
C10—C11—H11 120.9 C23—C24—H24 121.0
C11—C12—C13 120.65 (12) C26—C25—C24 120.68 (13)
C11—C12—H12 119.7 C26—C25—H25 119.7
C13—C12—H12 119.7 C24—C25—H25 119.7
C8—C13—C12 119.28 (12) C25—C26—C21 119.45 (12)
C8—C13—H13 120.4 C25—C26—H26 120.3
C12—C13—H13 120.4 C21—C26—H26 120.3
C6—S1—C7 88.04 (6) C19—S3—C20 88.30 (6)
O2—S2—O1 121.70 (6) O5—S4—O6 121.88 (6)
O2—S2—N3 106.58 (6) O5—S4—N7 103.87 (6)
O1—S2—N3 103.87 (6) O6—S4—N7 106.93 (6)
O2—S2—C8 107.73 (6) O5—S4—C21 108.35 (6)
O1—S2—C8 108.20 (6) O6—S4—C21 107.54 (6)
N3—S2—C8 108.09 (6) N7—S4—C21 107.49 (6)
C7—N1—C1 109.69 (10) C20—N5—C14 110.05 (10)
C7—N2—N3 117.74 (11) C20—N6—N7 118.05 (11)
C7—N2—H2 121.7 (12) C20—N6—H6 120.6 (12)
N3—N2—H2 120.5 (12) N7—N6—H6 121.2 (12)
N2—N3—S2 115.55 (9) N6—N7—S4 116.35 (9)
N2—N3—H3 113.4 (11) N6—N7—H7 114.9 (11)
S2—N3—H3 112.1 (11) S4—N7—H7 110.4 (11)
O4—N4—O3 123.45 (12) O8—N8—O7 123.72 (12)
O4—N4—C10 118.93 (11) O8—N8—C23 118.84 (12)
O3—N4—C10 117.61 (10) O7—N8—C23 117.43 (11)
N1—C1—C2—C3 −179.34 (12) N5—C14—C15—C16 −178.92 (12)
C6—C1—C2—C3 −1.78 (18) C19—C14—C15—C16 0.54 (18)
C1—C2—C3—C4 0.6 (2) C14—C15—C16—C17 0.38 (19)
C2—C3—C4—C5 0.7 (2) C15—C16—C17—C18 −0.7 (2)
C3—C4—C5—C6 −0.9 (2) C16—C17—C18—C19 0.1 (2)
C4—C5—C6—C1 −0.28 (19) C17—C18—C19—C14 0.88 (19)
C4—C5—C6—S1 178.53 (10) C17—C18—C19—S3 179.20 (10)
C2—C1—C6—C5 1.64 (19) N5—C14—C19—C18 178.32 (11)
N1—C1—C6—C5 179.45 (11) C15—C14—C19—C18 −1.20 (19)
C2—C1—C6—S1 −177.37 (10) N5—C14—C19—S3 −0.30 (14)
N1—C1—C6—S1 0.44 (14) C15—C14—C19—S3 −179.81 (9)
C13—C8—C9—C10 −0.02 (18) C26—C21—C22—C23 0.08 (19)
S2—C8—C9—C10 −178.02 (9) S4—C21—C22—C23 −179.45 (9)
C8—C9—C10—C11 0.36 (19) C21—C22—C23—C24 −0.62 (19)
C8—C9—C10—N4 −179.90 (11) C21—C22—C23—N8 178.59 (11)
C9—C10—C11—C12 −0.48 (19) C22—C23—C24—C25 0.4 (2)
N4—C10—C11—C12 179.79 (11) N8—C23—C24—C25 −178.77 (11)
C10—C11—C12—C13 0.25 (19) C23—C24—C25—C26 0.3 (2)
C9—C8—C13—C12 −0.19 (19) C24—C25—C26—C21 −0.8 (2)
S2—C8—C13—C12 177.77 (10) C22—C21—C26—C25 0.63 (19)
C11—C12—C13—C8 0.07 (19) S4—C21—C26—C25 −179.85 (10)
C5—C6—S1—C7 −179.42 (13) C18—C19—S3—C20 −178.41 (13)
C1—C6—S1—C7 −0.50 (9) C14—C19—S3—C20 0.08 (9)
N1—C7—S1—C6 0.52 (10) N5—C20—S3—C19 0.17 (10)
N2—C7—S1—C6 −179.24 (11) N6—C20—S3—C19 179.86 (11)
C9—C8—S2—O2 165.20 (10) C22—C21—S4—O5 19.55 (12)
C13—C8—S2—O2 −12.82 (12) C26—C21—S4—O5 −159.98 (11)
C9—C8—S2—O1 31.90 (12) C22—C21—S4—O6 153.05 (10)
C13—C8—S2—O1 −146.12 (10) C26—C21—S4—O6 −26.48 (12)
C9—C8—S2—N3 −79.99 (11) C22—C21—S4—N7 −92.13 (11)
C13—C8—S2—N3 101.99 (11) C26—C21—S4—N7 88.34 (11)
N2—C7—N1—C1 179.39 (11) N6—C20—N5—C14 179.96 (12)
S1—C7—N1—C1 −0.35 (13) S3—C20—N5—C14 −0.36 (14)
C2—C1—N1—C7 177.58 (12) C15—C14—N5—C20 179.91 (12)
C6—C1—N1—C7 −0.07 (15) C19—C14—N5—C20 0.42 (15)
N1—C7—N2—N3 168.50 (11) N5—C20—N6—N7 177.46 (11)
S1—C7—N2—N3 −11.75 (16) S3—C20—N6—N7 −2.20 (17)
C7—N2—N3—S2 −99.88 (12) C20—N6—N7—S4 −103.52 (12)
O2—S2—N3—N2 52.10 (10) O5—S4—N7—N6 −176.11 (9)
O1—S2—N3—N2 −178.24 (9) O6—S4—N7—N6 53.82 (10)
C8—S2—N3—N2 −63.47 (10) C21—S4—N7—N6 −61.41 (10)
C9—C10—N4—O4 −179.83 (12) C22—C23—N8—O8 178.31 (12)
C11—C10—N4—O4 −0.08 (18) C24—C23—N8—O8 −2.44 (18)
C9—C10—N4—O3 0.70 (17) C22—C23—N8—O7 −2.85 (17)
C11—C10—N4—O3 −179.55 (12) C24—C23—N8—O7 176.39 (12)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N5 0.816 (18) 2.033 (18) 2.8447 (15) 172.7 (16)
N3—H3···O3i 0.848 (17) 2.129 (18) 2.9427 (15) 160.8 (15)
N6—H6···N1 0.820 (18) 2.050 (18) 2.8601 (15) 169.2 (17)
N7—H7···O7ii 0.871 (17) 2.123 (18) 2.9472 (15) 157.6 (15)
C15—H15···O3i 0.95 2.65 3.4888 (17) 147
C26—H26···O2 0.95 2.44 3.1774 (16) 134
C5—H5···O1iii 0.95 2.66 3.3218 (16) 127
C13—H13···O6 0.95 2.56 3.2731 (16) 133

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1.

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Crystal data

C13H11N4O4S2+·C6H4NO5S Z = 2
Mr = 553.54 F(000) = 568
Triclinic, P1 Dx = 1.625 Mg m3
a = 10.0399 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7585 (4) Å Cell parameters from 14254 reflections
c = 11.3372 (6) Å θ = 2.0–27.5°
α = 85.607 (4)° µ = 0.39 mm1
β = 71.369 (5)° T = 100 K
γ = 77.115 (4)° Plate, colourless
V = 1131.16 (10) Å3 0.23 × 0.18 × 0.04 mm

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Data collection

Rigaku Mercury CCD diffractometer 4880 reflections with I > 2σ(I)
ω scans Rint = 0.017
Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) θmax = 27.6°, θmin = 2.2°
Tmin = 0.879, Tmax = 1.000 h = −13→11
19781 measured reflections k = −14→13
5159 independent reflections l = −14→14

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.8265P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
5159 reflections Δρmax = 0.39 e Å3
334 parameters Δρmin = −0.42 e Å3
0 restraints

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.07390 (14) 0.16015 (12) −0.12063 (12) 0.0159 (3)
C2 1.21341 (15) 0.10073 (13) −0.18674 (14) 0.0198 (3)
H2A 1.2930 0.1380 −0.1940 0.024*
C3 1.23134 (15) −0.01528 (13) −0.24169 (14) 0.0211 (3)
H3A 1.3252 −0.0581 −0.2878 0.025*
C4 1.11437 (15) −0.07065 (13) −0.23068 (13) 0.0197 (3)
H4 1.1304 −0.1505 −0.2689 0.024*
C5 0.97546 (15) −0.01107 (13) −0.16489 (13) 0.0177 (3)
H5 0.8958 −0.0484 −0.1574 0.021*
C6 0.95732 (14) 0.10512 (12) −0.11042 (12) 0.0151 (2)
C7 0.84167 (14) 0.28675 (12) −0.00034 (12) 0.0151 (2)
C8 0.55707 (14) 0.47110 (13) 0.32289 (12) 0.0167 (3)
C9 0.53199 (16) 0.36315 (14) 0.39425 (13) 0.0211 (3)
H9 0.6099 0.3004 0.4059 0.025*
C10 0.39098 (18) 0.34797 (15) 0.44861 (14) 0.0269 (3)
H10 0.3725 0.2748 0.4983 0.032*
C11 0.27802 (17) 0.43861 (17) 0.43063 (14) 0.0285 (3)
H11 0.1816 0.4289 0.4679 0.034*
C12 0.30799 (16) 0.54390 (16) 0.35725 (13) 0.0255 (3)
C13 0.44587 (15) 0.56403 (14) 0.30272 (13) 0.0209 (3)
H13 0.4637 0.6378 0.2538 0.025*
S1 1.01665 (3) 0.30546 (3) −0.04133 (3) 0.01753 (8)
S2 0.73513 (3) 0.49153 (3) 0.25131 (3) 0.01507 (8)
N1 0.82742 (12) 0.17982 (11) −0.04048 (10) 0.0154 (2)
H1 0.746 (2) 0.1638 (16) −0.0270 (16) 0.018*
N2 0.73035 (13) 0.37297 (11) 0.06510 (11) 0.0176 (2)
H2 0.646 (2) 0.3709 (17) 0.0737 (16) 0.021*
N3 0.76169 (12) 0.48236 (11) 0.09996 (11) 0.0166 (2)
H3 0.7208 (19) 0.5525 (17) 0.0710 (16) 0.020*
N4 0.18823 (15) 0.63839 (18) 0.33454 (13) 0.0396 (4)
O1 0.82921 (11) 0.38488 (9) 0.28530 (10) 0.0220 (2)
O2 0.74518 (11) 0.61876 (9) 0.26804 (9) 0.0195 (2)
O3 0.21622 (15) 0.73477 (17) 0.27552 (14) 0.0584 (5)
O4 0.06728 (14) 0.61654 (19) 0.37558 (15) 0.0589 (5)
C14 0.31611 (14) 0.18627 (13) 0.18875 (13) 0.0164 (3)
C15 0.36568 (15) 0.07109 (13) 0.23976 (13) 0.0197 (3)
H15 0.4570 0.0192 0.1998 0.024*
C16 0.27603 (16) 0.03482 (14) 0.35187 (14) 0.0218 (3)
C17 0.14253 (15) 0.10749 (14) 0.41347 (13) 0.0219 (3)
H17 0.0849 0.0799 0.4907 0.026*
C18 0.09530 (15) 0.22141 (14) 0.35952 (14) 0.0212 (3)
H18 0.0036 0.2727 0.3995 0.025*
C19 0.18114 (15) 0.26111 (13) 0.24729 (13) 0.0194 (3)
H19 0.1480 0.3392 0.2103 0.023*
S3 0.42650 (3) 0.24195 (3) 0.04827 (3) 0.01634 (8)
N5 0.32639 (15) −0.08700 (13) 0.40760 (13) 0.0315 (3)
O5 0.45472 (11) 0.36044 (9) 0.08076 (10) 0.0225 (2)
O6 0.55538 (10) 0.14188 (9) 0.00769 (9) 0.0200 (2)
O7 0.34166 (11) 0.26546 (10) −0.03675 (10) 0.0224 (2)
O8 0.23692 (14) −0.13450 (12) 0.48774 (11) 0.0393 (3)
O9 0.45499 (14) −0.13511 (13) 0.37160 (14) 0.0493 (4)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0170 (6) 0.0135 (6) 0.0176 (6) −0.0045 (5) −0.0045 (5) −0.0013 (5)
C2 0.0157 (6) 0.0183 (6) 0.0247 (7) −0.0044 (5) −0.0044 (5) −0.0016 (5)
C3 0.0179 (7) 0.0176 (6) 0.0247 (7) −0.0003 (5) −0.0041 (5) −0.0034 (5)
C4 0.0241 (7) 0.0141 (6) 0.0214 (7) −0.0027 (5) −0.0081 (5) −0.0031 (5)
C5 0.0202 (6) 0.0163 (6) 0.0195 (6) −0.0065 (5) −0.0082 (5) −0.0002 (5)
C6 0.0149 (6) 0.0156 (6) 0.0149 (6) −0.0037 (5) −0.0048 (5) 0.0008 (5)
C7 0.0146 (6) 0.0172 (6) 0.0142 (6) −0.0054 (5) −0.0040 (5) 0.0006 (5)
C8 0.0162 (6) 0.0195 (6) 0.0141 (6) −0.0047 (5) −0.0032 (5) −0.0019 (5)
C9 0.0269 (7) 0.0191 (7) 0.0171 (6) −0.0079 (5) −0.0041 (5) −0.0012 (5)
C10 0.0321 (8) 0.0294 (8) 0.0193 (7) −0.0163 (6) −0.0011 (6) −0.0025 (6)
C11 0.0225 (7) 0.0459 (9) 0.0186 (7) −0.0158 (7) −0.0005 (6) −0.0091 (6)
C12 0.0178 (7) 0.0423 (9) 0.0155 (6) −0.0017 (6) −0.0056 (5) −0.0059 (6)
C13 0.0193 (7) 0.0270 (7) 0.0143 (6) −0.0020 (5) −0.0042 (5) −0.0004 (5)
S1 0.01279 (15) 0.01565 (15) 0.02306 (17) −0.00532 (12) −0.00137 (12) −0.00507 (12)
S2 0.01461 (15) 0.01342 (15) 0.01680 (16) −0.00269 (11) −0.00443 (12) −0.00064 (11)
N1 0.0128 (5) 0.0175 (5) 0.0167 (5) −0.0055 (4) −0.0039 (4) −0.0018 (4)
N2 0.0124 (5) 0.0190 (6) 0.0214 (6) −0.0053 (4) −0.0025 (4) −0.0063 (4)
N3 0.0174 (5) 0.0146 (5) 0.0174 (5) −0.0046 (4) −0.0036 (4) −0.0021 (4)
N4 0.0208 (7) 0.0723 (12) 0.0192 (7) 0.0057 (7) −0.0070 (5) −0.0037 (7)
O1 0.0195 (5) 0.0190 (5) 0.0278 (5) −0.0004 (4) −0.0105 (4) 0.0006 (4)
O2 0.0224 (5) 0.0160 (5) 0.0196 (5) −0.0059 (4) −0.0044 (4) −0.0021 (4)
O3 0.0337 (7) 0.0828 (12) 0.0411 (8) 0.0156 (7) −0.0114 (6) 0.0212 (8)
O4 0.0166 (6) 0.1043 (14) 0.0500 (9) −0.0015 (7) −0.0084 (6) −0.0081 (9)
C14 0.0150 (6) 0.0186 (6) 0.0185 (6) −0.0065 (5) −0.0071 (5) 0.0009 (5)
C15 0.0154 (6) 0.0201 (7) 0.0225 (7) −0.0030 (5) −0.0053 (5) 0.0020 (5)
C16 0.0209 (7) 0.0207 (7) 0.0222 (7) −0.0030 (5) −0.0066 (5) 0.0050 (5)
C17 0.0199 (7) 0.0261 (7) 0.0187 (7) −0.0061 (6) −0.0037 (5) −0.0005 (5)
C18 0.0161 (6) 0.0239 (7) 0.0228 (7) −0.0015 (5) −0.0056 (5) −0.0054 (5)
C19 0.0197 (7) 0.0174 (6) 0.0233 (7) −0.0034 (5) −0.0099 (5) −0.0010 (5)
S3 0.01426 (15) 0.01613 (16) 0.02054 (17) −0.00592 (12) −0.00693 (12) 0.00324 (12)
N5 0.0284 (7) 0.0281 (7) 0.0269 (7) 0.0010 (5) −0.0006 (5) 0.0102 (5)
O5 0.0195 (5) 0.0176 (5) 0.0322 (6) −0.0076 (4) −0.0083 (4) 0.0000 (4)
O6 0.0152 (5) 0.0189 (5) 0.0253 (5) −0.0058 (4) −0.0043 (4) 0.0014 (4)
O7 0.0230 (5) 0.0253 (5) 0.0236 (5) −0.0090 (4) −0.0126 (4) 0.0066 (4)
O8 0.0388 (7) 0.0325 (6) 0.0298 (6) −0.0029 (5) 0.0058 (5) 0.0143 (5)
O9 0.0287 (7) 0.0444 (8) 0.0511 (8) 0.0100 (6) 0.0022 (6) 0.0252 (6)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Geometric parameters (Å, º)

C1—C2 1.3913 (19) S2—O2 1.4260 (10)
C1—C6 1.3950 (18) S2—O1 1.4279 (10)
C1—S1 1.7513 (13) S2—N3 1.6574 (12)
C2—C3 1.3876 (19) N1—H1 0.841 (19)
C2—H2A 0.9500 N2—N3 1.3985 (16)
C3—C4 1.399 (2) N2—H2 0.826 (19)
C3—H3A 0.9500 N3—H3 0.869 (18)
C4—C5 1.386 (2) N4—O4 1.223 (2)
C4—H4 0.9500 N4—O3 1.227 (2)
C5—C6 1.3863 (18) C14—C15 1.3844 (19)
C5—H5 0.9500 C14—C19 1.3949 (19)
C6—N1 1.3946 (17) C14—S3 1.7736 (14)
C7—N1 1.3215 (17) C15—C16 1.3884 (19)
C7—N2 1.3317 (17) C15—H15 0.9500
C7—S1 1.7218 (13) C16—C17 1.383 (2)
C8—C9 1.3867 (19) C16—N5 1.4677 (18)
C8—C13 1.3887 (19) C17—C18 1.383 (2)
C8—S2 1.7674 (14) C17—H17 0.9500
C9—C10 1.393 (2) C18—C19 1.387 (2)
C9—H9 0.9500 C18—H18 0.9500
C10—C11 1.379 (2) C19—H19 0.9500
C10—H10 0.9500 S3—O7 1.4526 (10)
C11—C12 1.383 (2) S3—O6 1.4558 (10)
C11—H11 0.9500 S3—O5 1.4630 (10)
C12—C13 1.383 (2) N5—O9 1.2244 (18)
C12—N4 1.469 (2) N5—O8 1.2270 (17)
C13—H13 0.9500
C2—C1—C6 121.20 (12) O2—S2—C8 110.40 (6)
C2—C1—S1 128.05 (10) O1—S2—C8 107.66 (6)
C6—C1—S1 110.75 (10) N3—S2—C8 104.82 (6)
C3—C2—C1 117.18 (13) C7—N1—C6 113.48 (11)
C3—C2—H2A 121.4 C7—N1—H1 120.7 (12)
C1—C2—H2A 121.4 C6—N1—H1 125.7 (12)
C2—C3—C4 121.52 (13) C7—N2—N3 116.58 (11)
C2—C3—H3A 119.2 C7—N2—H2 123.0 (12)
C4—C3—H3A 119.2 N3—N2—H2 119.4 (12)
C5—C4—C3 121.15 (13) N2—N3—S2 114.02 (9)
C5—C4—H4 119.4 N2—N3—H3 113.4 (12)
C3—C4—H4 119.4 S2—N3—H3 111.7 (12)
C6—C5—C4 117.39 (12) O4—N4—O3 124.11 (16)
C6—C5—H5 121.3 O4—N4—C12 118.27 (17)
C4—C5—H5 121.3 O3—N4—C12 117.62 (15)
C5—C6—N1 126.36 (12) C15—C14—C19 121.07 (13)
C5—C6—C1 121.56 (12) C15—C14—S3 119.86 (11)
N1—C6—C1 112.08 (12) C19—C14—S3 119.06 (10)
N1—C7—N2 122.94 (12) C14—C15—C16 117.05 (13)
N1—C7—S1 114.10 (10) C14—C15—H15 121.5
N2—C7—S1 122.96 (10) C16—C15—H15 121.5
C9—C8—C13 121.98 (13) C17—C16—C15 123.45 (13)
C9—C8—S2 119.96 (11) C17—C16—N5 118.58 (13)
C13—C8—S2 118.04 (11) C15—C16—N5 117.97 (13)
C8—C9—C10 119.11 (14) C18—C17—C16 118.15 (13)
C8—C9—H9 120.4 C18—C17—H17 120.9
C10—C9—H9 120.4 C16—C17—H17 120.9
C11—C10—C9 120.37 (14) C17—C18—C19 120.32 (13)
C11—C10—H10 119.8 C17—C18—H18 119.8
C9—C10—H10 119.8 C19—C18—H18 119.8
C10—C11—C12 118.62 (14) C18—C19—C14 119.95 (13)
C10—C11—H11 120.7 C18—C19—H19 120.0
C12—C11—H11 120.7 C14—C19—H19 120.0
C13—C12—C11 123.14 (15) O7—S3—O6 113.88 (6)
C13—C12—N4 118.14 (15) O7—S3—O5 111.37 (6)
C11—C12—N4 118.71 (14) O6—S3—O5 113.23 (6)
C12—C13—C8 116.76 (14) O7—S3—C14 105.96 (6)
C12—C13—H13 121.6 O6—S3—C14 106.14 (6)
C8—C13—H13 121.6 O5—S3—C14 105.46 (6)
C7—S1—C1 89.58 (6) O9—N5—O8 123.89 (14)
O2—S2—O1 120.92 (6) O9—N5—C16 118.16 (13)
O2—S2—N3 104.08 (6) O8—N5—C16 117.95 (13)
O1—S2—N3 107.77 (6)
C6—C1—C2—C3 −0.1 (2) C5—C6—N1—C7 −179.60 (13)
S1—C1—C2—C3 179.86 (11) C1—C6—N1—C7 0.83 (16)
C1—C2—C3—C4 −0.3 (2) N1—C7—N2—N3 −179.22 (12)
C2—C3—C4—C5 0.4 (2) S1—C7—N2—N3 0.16 (17)
C3—C4—C5—C6 −0.1 (2) C7—N2—N3—S2 −110.54 (12)
C4—C5—C6—N1 −179.80 (13) O2—S2—N3—N2 −168.76 (9)
C4—C5—C6—C1 −0.3 (2) O1—S2—N3—N2 61.70 (11)
C2—C1—C6—C5 0.4 (2) C8—S2—N3—N2 −52.78 (11)
S1—C1—C6—C5 −179.57 (10) C13—C12—N4—O4 175.11 (15)
C2—C1—C6—N1 179.98 (12) C11—C12—N4—O4 −4.1 (2)
S1—C1—C6—N1 0.03 (14) C13—C12—N4—O3 −5.0 (2)
C13—C8—C9—C10 −0.8 (2) C11—C12—N4—O3 175.70 (16)
S2—C8—C9—C10 −179.19 (11) C19—C14—C15—C16 −0.8 (2)
C8—C9—C10—C11 0.6 (2) S3—C14—C15—C16 177.97 (11)
C9—C10—C11—C12 0.3 (2) C14—C15—C16—C17 −0.2 (2)
C10—C11—C12—C13 −1.2 (2) C14—C15—C16—N5 179.96 (13)
C10—C11—C12—N4 177.97 (14) C15—C16—C17—C18 0.9 (2)
C11—C12—C13—C8 1.1 (2) N5—C16—C17—C18 −179.26 (14)
N4—C12—C13—C8 −178.12 (13) C16—C17—C18—C19 −0.6 (2)
C9—C8—C13—C12 −0.1 (2) C17—C18—C19—C14 −0.4 (2)
S2—C8—C13—C12 178.39 (11) C15—C14—C19—C18 1.1 (2)
N1—C7—S1—C1 1.13 (11) S3—C14—C19—C18 −177.70 (11)
N2—C7—S1—C1 −178.31 (12) C15—C14—S3—O7 125.09 (11)
C2—C1—S1—C7 179.43 (14) C19—C14—S3—O7 −56.11 (12)
C6—C1—S1—C7 −0.62 (10) C15—C14—S3—O6 3.69 (13)
C9—C8—S2—O2 −135.32 (11) C19—C14—S3—O6 −177.51 (10)
C13—C8—S2—O2 46.19 (13) C15—C14—S3—O5 −116.72 (12)
C9—C8—S2—O1 −1.39 (13) C19—C14—S3—O5 62.08 (12)
C13—C8—S2—O1 −179.89 (11) C17—C16—N5—O9 −162.03 (16)
C9—C8—S2—N3 113.16 (12) C15—C16—N5—O9 17.8 (2)
C13—C8—S2—N3 −65.33 (12) C17—C16—N5—O8 17.9 (2)
N2—C7—N1—C6 178.09 (12) C15—C16—N5—O8 −162.28 (15)
S1—C7—N1—C6 −1.34 (15)

2-[2-(3-Nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazol-3-ium; 3-nitrobenzenesulfonate (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6 0.841 (19) 1.888 (19) 2.7267 (15) 175.2 (17)
N2—H2···O5 0.826 (19) 1.92 (2) 2.7489 (16) 175.4 (18)
N3—H3···O7i 0.869 (18) 1.968 (19) 2.8058 (16) 161.6 (16)
C2—H2A···O7ii 0.95 2.55 3.2510 (18) 130
C9—H9···O8iii 0.95 2.58 3.487 (2) 161

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y, −z+1.

Funding Statement

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico grant to M.V.N. de Souza and J.L. Wardell.

References

  1. Behera, N. & Manivannan, V. (2017). ChemistrySelect, 2, 11048–11054.
  2. Day, A. C. & Whiting, M. C. (1970). Org. Synth. 50, 3–5.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fun, H.-K., Ooi, C. W., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012a). Acta Cryst. E68, o691–o692. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Quah, C. K., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012b). Acta Cryst. E68, o2459. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gulati, S., Wakode, S., Kaur, A. & Anand, K. (2017). World J. Pharm. Pharm Sci. 6, 1842–1869.
  8. Hipparagi, S. M., Majumder, U. K., Parikshit, B., Geethavani, M. & Kumar, V. S. (2007). Orient. J. Chem. 23, 65–66.
  9. Katava, R., Pavelić, S. K., Harej, A., Hrenar, T. & Pavlović, G. (2017). Struct. Chem. 28, 709–721.
  10. Liu, C. T., Wang, F., Xiao, T., Chi, B., Wu, Y. H., Zhu, D.-R. & Chen, X. Q. (2018). Sens. Actuators B Chem. 256, 55–62.
  11. Liu, X.-F., Yu, X.-Y. & Jiang, S.-L. (2011). Acta Cryst. E67, o1641.
  12. Rajnikant, Dinesh, Kamni, Deshmukh, M. B., Jagpat, S. S. & Desai, S. R. (2005). J. Chem. Cryst. 35, 293–296.
  13. Rao, D. S., Jayachandran, E., Sreenivasa, G. M. & Shivakumar, B. (2005). Orient. J. Chem. 21, 113–116.
  14. Rigaku (2012). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
  15. Rigaku (2013). FS_ABSCOR. Rigaku Corporation, Tokyo, Japan.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018005595/sj5555sup1.cif

e-74-00673-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005595/sj5555Isup2.hkl

e-74-00673-Isup2.hkl (278.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018005595/sj5555IIsup3.hkl

e-74-00673-IIsup3.hkl (513.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018005595/sj5555IIIsup4.hkl

e-74-00673-IIIsup4.hkl (410.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555Isup5.cml

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989018005595/sj5555IIIsup7.cml

CCDC references: 1835988, 1835987, 1835986

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES