Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 19;74(Pt 5):682–686. doi: 10.1107/S2056989018005832

Crystal structure, Hirshfeld surface analysis and anti­oxidant capacity of 2,2′-{(1E,1′E)-[1,2-phenyl­enebis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­(5-benz­yloxy)phenol

Nadir Ghichi a,*, Ali Benboudiaf a, Yacine DJebli b, Chawki Bensouici c, Hocine Merazig a
PMCID: PMC5947487  PMID: 29850091

The title Schiff base compound was synthesized via the condensation reaction of 1,2-di­amine­benzene with 4-benz­yloxy-2-hy­droxy­benzaldehyde. The mol­ecule is V-shaped and possesses mirror symmetry; the mirror bis­ects the central benzene ring. There are two intra­molecular O—H⋯N hydrogen bonds present forming S(6) ring motifs.

Keywords: crystal structure, Schiff base, anti­oxidant capacity, CUPRAC, hydrogen bonding, C—H⋯π inter­actions, Hirshfeld surface analysis

Abstract

The whole mol­ecule of the title Schiff base compound, C34H28N2O4, is generated by mirror symmetry, with the mirror bis­ecting the central benzene ring. It was synthesized via the condensation reaction of 1,2-di­amine­benzene with 4-benz­yloxy-2-hy­droxy­benzaldehyde. The mol­ecule is V-shaped and there are two intra­molecular O—H⋯N hydrogen bonds present forming S(6) ring motifs. The configuration about the C=N imine bonds is E. The central benzene ring makes dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring and the outer benz­yloxy ring, respectively. The latter two rings are inclined to each other by 84.4 (2)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers lying parallel to the ab plane. The Hirshfeld surface analysis and the two-dimensional fingerprint plots confirm the predominance of these inter­actions in the crystal structure. The anti­oxidant capacity of the compound was determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.

Chemical context  

Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu et al., 2015, 2016), anti-inflammatory (Alam et al., 2012), anti­anxiety, anti­depressant (Jubie et al., 2011), anti-tumour, anti­bacterial, and fungicidal properties (Refat et al., 2008; Kannan & Ramesh, 2006). Bis-bidentate Schiff base ligands have been studied extensively and used as building blocks in metallo-supra­molecular chemistry (Birkedal & Pattison, 2006; Shahverdizadeh & Tiekink, 2011; Chu & Huang, 2007; Yoshida & Ichikawa, 1997; Kruger et al., 2001). The common structural feature of these compounds is the presence of an azomethine group, linked by a η methyl­ene bridge, which can act as a hydrogen-bond acceptor. In view of this inter­est we have synthesized the title compound, (I), and report herein on its crystal structure. The 1H NMR NMR spectrum reveals the presence of an imino group (N=CH) in the range δ = 8.5–8.7 p.p.m. The anti­oxidant capacity of the compound was determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.graphic file with name e-74-00682-scheme1.jpg

Structural commentary  

The mol­ecular structure of compound (I) is illustrated in Fig. 1. The asymmetric unit consists of half a mol­ecule, with the whole mol­ecule being generated by mirror symmetry. The mirror bis­ects the central benzene ring, viz. bonds C1—C1i and C3—C3i [symmetry code: (i) −x, y, z]. In the mol­ecule there are two intra­molecular O—H⋯N hydrogen bonds present (Table 1), which form S(6) ring motifs as shown in Fig. 1. The configuration of the C4=N1 imine bonds is E and the C4=N1 bond length is 1.278 (6) Å. The C3—N1=C4 bond angles are less than 120° [118.9 (4)°], and the imine group has a C3—N1—C4—C5 torsion angle of −176.8 (4)°. The mol­ecule is V-shaped and the two arms are non-planar; the central benzene ring forms dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring (C5-C10) and the outer benz­yloxy ring (C12–C17), respectively. The latter two rings are almost normal to each other, with a dihedral angle of 84.4 (2)°.

Figure 1.

Figure 1

View of the mol­ecular structure of compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the mirror symmetry code: (i) −x, y, z. The intra­molecular O—H⋯N hydrogen bonds (see Table 1) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C5–C10 phenol ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.82 1.90 2.622 (5) 147
C2—H2⋯Cg2i 0.93 2.88 3.499 (5) 125
C13—H13⋯Cg2ii 0.93 2.60 3.493 (5) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal of (I), mol­ecules are linked by C—H⋯π inter­actions (Table 1), forming layers parallel to the (001) plane, as illustrated in Fig. 2.

Figure 2.

Figure 2

Crystal packing of compound (I) viewed along the c axis, with the O—H⋯N intra­molecular hydrogen bonds and the C—H⋯π inter­actions (see Table 1) illustrated as dashed lines.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface of compound (I) mapped over d norm is given in Fig. 3, and the fingerprint plots are given in Fig. 4. They reveal that the principal inter­molecular inter­actions are H⋯H at 45.7% (Fig. 4 b) and H⋯C/C⋯H at 34.6% (Fig. 4 c), followed by the H⋯O/O⋯H inter­actions at 13.6% (Fig. 4 d).

Figure 3.

Figure 3

View of the Hirshfeld surface of (I) mapped over d norm.

Figure 4.

Figure 4

The two-dimensional fingerprint plots of (I): (a) all inter­actions; (b) H⋯H; (c) H⋯C/C⋯H; (d) H⋯O/O⋯H.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, last update February 2018; Groom et al., 2016) for similar compounds yielded four hits. These compounds (see Fig. 5) include 5,5′-dihy­droxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­ene)]diphenol ethanol solvate (II) (CSD refcode HUVXUT; Soroceanu et al., 2013), 5,5′-dimeth­oxy-2,2′-[4,5-dimethyl-o-phenyl­enebis(nitrilo­methyl­idyne)]diphenol (III) (KUSJIS; Kargar et al., 2010), 1,2-bis­{[(2-hy­droxy-4-meth­oxy­phen­yl)(phen­yl)methyl­ene]amino}­benzene (IV) (SOXCIS; Lippe et al., 2009) and 5,5′-dimeth­oxy-2,2′-1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol (V) (XIFREK; Eltayeb et al., 2007). In all four compounds there are two intra­molecular O—H⋯N hydrogen bonds present forming S(6) ring motifs.

Figure 5.

Figure 5

Similar compounds to that of the title compound, (I), in the CSD; see Section 4, Database survey.

In (II) the phenol rings are inclined to the central benzene ring by 53.9 (3) and 4.0 (2)° and to each other by 49.9 (2)°. In (III) the corresponding dihedral angles are 48.12 (8), 21.44 (8) and 47.70 (8)°, while in (V) the corresponding dihedral angles are 58.29 (12), 2.20 (12) and 57.60 (12)°. In compound (IV), that possesses twofold rotational symmetry with the twofold axis bis­ecting the central benzene ring, the phenol rings are inclined to the central benzene ring by 82.30 (5)° and to each other by 63.76 (5)°. In the title compound, which possesses mirror symmetry, the corresponding dihedral angles are 41.9 (2) and 68.9 (2)°.

A search of the CSD for metal complexes of compounds similar to compound (I) gave over 30 hits. The ligands always coordinate in a tetra­dentate manner. For example, there were 13 hits for transition metal complexes of compound (II). The majority involve square-planar coordinated metal atoms, such as in complexes (5,5′-dihy­droxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato)nickel(II) dihydrate (POFFOG; Fun et al., 2008) and (4,4′-{1,2-phenyl­enebis[(nitrilo-κN)methylyl­idene]}di­benzene-1,3-diolato-κO 3)copper(II) methanol solvate (DUQBEX; Niu et al., 2010). For compound (V), five hits were found; they include three sixfold-coord­inated tin complexes (DOSCOF, DOSDAS, DOSFOI; Muñoz-Flores et al., 2014) and two square-pyramidal manganese complexes (ODESEY, Ghaemi et al., 2016; XIYQOM, Eltayeb et al., 2008).

Anti­oxidant activity  

The anti­oxidant activity profile of the synthesized compound (I) was determined by utilizing the copper(II)–neocuprine [CuII-Nc] (CUPRAC) method (Apak et al., 2004). The CUPRAC method (Fig. 6) (cupric ion reducing anti­oxidant capacity) is based on the follow-up of the decrease in the increased absorbance of the neocuproene (Nc), copper (Cu+2)Nc2–Cu+2 complex. Indeed, in the presence of an anti­oxidant agent, the copper–neocuproene complex is reduced and this reaction is qu­anti­fied spectrophotometrically at a wavelength of 450 nm.

Figure 6.

Figure 6

Reduction of the chromogenic complex of Cu+2–Nc

According to the cupric ion reducing anti­oxidant capacity assay, the title compound displayed activity with variable potency in all tested concentrations, because the percentage (%) inhibition in the CUPRAC assay is good [A0.50 = 15.03 ± 1.50 for a 4 mg dosage, compared to the results for buthylated toluene (BHT) [A0.50 = 8.97 ± 3.94], used as a positive control (see Table 2). Note: In CUPRAC anti­oxidant activity, the values expressed are the mean ± s.u.s of three parallel measurements (p < 0.05).

Table 2. Cupric ion reducing anti­oxidant capacity of compound (I).

  Percentage (%) Inhibition
  12.5 µg 25 µg 50 µg 100 µg 200 µg 400 µg 800 µg A0.50 (μg ml−1)
Compound (I) 0.39±0.01 0.59±0.01 0.91±0.03 1.42±0.02 1.84±0.36 3.12±0.25 4.29±0.11 15.03±1.50
BHT 1.41±0.03 2.22±0.05 2.42±0.02 2.50±0.01 2.56±0.05 2.86±0.07 3.38±0.13 8.97±3.94

Synthesis and crystallization  

1,2-Di­amine­benzene (0.027 g) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (0.1141 g) in ethanol (15 ml) were refluxed for 1 h, then the solvent was evaporated in vacuo. The residue was recrystallized from ethanol, yielding yellow block-like crystals of the title compound on slow evaporation of the solvent. The purity of the compound was characterized by its NMR spectrum (250 MHz, CDCl3). The azomethine proton appears in the 8.5–8.7 p.p.m. range, while the imine bond is characterized in the 13C RMN spectrum with the imine C and OH signals in the range 162.23–163.34 p.p.m. 1H NMR: δ = 6.5–7.6 (m, 12H; H-ar), δ = 13.7 (s, 1H; OH), δ = 5.1 (s, 1H; CH2–O). 13C NMR: 70.15, 120.33, 127.30, 127.64, 128.26, 128.75, 142.32, 162.23, 163.33, 163.34.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinements it was positioned geometrically (O—H = 0.82 Å) and refined as riding with U iso(H) = 1.5U eq(O). The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C34H28N2O4
M r 528.58
Crystal system, space group Orthorhombic, C m c21
Temperature (K) 293
a, b, c (Å) 35.297 (3), 9.3902 (6), 8.3603 (5)
V3) 2771.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 4493, 2516, 1691
R int 0.042
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.158, 1.02
No. of reflections 2516
No. of parameters 185
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2011), SHELXT2017 (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al.2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989018005832/su5438sup1.cif

e-74-00682-sup1.cif (154.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005832/su5438Isup2.hkl

e-74-00682-Isup2.hkl (138.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005832/su5438Isup3.cml

CCDC reference: 1837095

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C34H28N2O4 F(000) = 1112
Mr = 528.58 Dx = 1.267 Mg m3
Orthorhombic, Cmc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2 Cell parameters from 1621 reflections
a = 35.297 (3) Å θ = 2.2–21.3°
b = 9.3902 (6) Å µ = 0.08 mm1
c = 8.3603 (5) Å T = 293 K
V = 2771.0 (3) Å3 Block, yellow
Z = 4 0.03 × 0.02 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.042
Detector resolution: 18.4 pixels mm-1 θmax = 27.5°, θmin = 3.7°
φ and ω scans h = −45→40
4493 measured reflections k = −12→5
2516 independent reflections l = −10→6
1691 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: mixed
wR(F2) = 0.158 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0817P)2] where P = (Fo2 + 2Fc2)/3
2516 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.29 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05052 (9) 0.2350 (3) 0.3234 (5) 0.0693 (13)
O2 0.15676 (8) 0.0288 (3) 0.5919 (4) 0.0546 (9)
N1 0.03881 (9) 0.5084 (4) 0.3640 (5) 0.0487 (10)
C1 0.01955 (13) 0.8879 (4) 0.2654 (7) 0.0639 (15)
C2 0.03890 (12) 0.7645 (4) 0.2985 (6) 0.0567 (14)
C3 0.01982 (11) 0.6379 (4) 0.3322 (5) 0.0481 (11)
C4 0.06841 (12) 0.5103 (4) 0.4519 (6) 0.0495 (14)
C5 0.09057 (11) 0.3828 (4) 0.4833 (5) 0.0454 (11)
C6 0.08042 (11) 0.2506 (4) 0.4207 (5) 0.0475 (11)
C7 0.10168 (11) 0.1285 (4) 0.4566 (5) 0.0488 (11)
C8 0.13349 (11) 0.1401 (4) 0.5523 (5) 0.0463 (12)
C9 0.14420 (12) 0.2710 (4) 0.6146 (6) 0.0560 (16)
C10 0.12269 (12) 0.3889 (4) 0.5813 (5) 0.0560 (16)
C11 0.14781 (12) −0.1086 (4) 0.5260 (6) 0.0547 (16)
C12 0.17886 (11) −0.2104 (4) 0.5695 (5) 0.0449 (11)
C13 0.17544 (12) −0.2993 (4) 0.6998 (6) 0.0543 (16)
C14 0.20330 (16) −0.3988 (4) 0.7345 (6) 0.0677 (17)
C15 0.23502 (14) −0.4070 (5) 0.6404 (7) 0.0700 (19)
C16 0.23920 (14) −0.3165 (6) 0.5124 (7) 0.0697 (17)
C17 0.21118 (13) −0.2190 (5) 0.4765 (6) 0.0617 (17)
H1 0.03276 0.97121 0.24301 0.0770*
H1O 0.04038 0.31254 0.30933 0.1040*
H2 0.06524 0.76529 0.29851 0.0680*
H4 0.0777 (10) 0.604 (4) 0.509 (5) 0.041 (9)*
H7 0.09442 0.04030 0.41635 0.0580*
H9 0.16571 0.27872 0.67824 0.0670*
H10 0.12968 0.47594 0.62529 0.0670*
H11A 0.12385 −0.14214 0.56862 0.0660*
H11B 0.14557 −0.10203 0.41061 0.0660*
H13 0.15420 −0.29259 0.76516 0.0650*
H14 0.20047 −0.45974 0.82141 0.0810*
H15 0.25371 −0.47378 0.66311 0.0840*
H16 0.26095 −0.32099 0.44979 0.0840*
H17 0.21407 −0.15860 0.38915 0.0740*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0640 (19) 0.0400 (16) 0.104 (3) 0.0056 (14) −0.0359 (19) −0.0063 (17)
O2 0.0595 (17) 0.0386 (14) 0.0658 (17) 0.0080 (12) −0.0166 (15) −0.0028 (14)
N1 0.0416 (17) 0.0335 (16) 0.071 (2) 0.0021 (14) 0.0019 (18) 0.0024 (15)
C1 0.063 (3) 0.0317 (19) 0.097 (3) −0.0042 (16) −0.001 (3) 0.003 (2)
C2 0.047 (2) 0.041 (2) 0.082 (3) −0.0048 (17) −0.002 (2) 0.000 (2)
C3 0.049 (2) 0.0322 (18) 0.063 (2) 0.0022 (16) 0.002 (2) −0.0028 (17)
C4 0.049 (2) 0.0345 (19) 0.065 (3) 0.0002 (17) 0.003 (2) −0.0024 (18)
C5 0.042 (2) 0.0373 (19) 0.057 (2) −0.0015 (16) 0.002 (2) −0.0033 (18)
C6 0.042 (2) 0.0364 (19) 0.064 (2) −0.0017 (16) −0.008 (2) −0.0015 (17)
C7 0.051 (2) 0.0365 (18) 0.059 (2) −0.0007 (16) −0.010 (2) −0.0041 (19)
C8 0.047 (2) 0.039 (2) 0.053 (2) 0.0063 (16) −0.0047 (19) 0.0005 (17)
C9 0.058 (3) 0.045 (2) 0.065 (3) −0.0010 (18) −0.017 (2) −0.003 (2)
C10 0.060 (3) 0.039 (2) 0.069 (3) −0.0035 (18) −0.011 (2) −0.006 (2)
C11 0.059 (3) 0.041 (2) 0.064 (3) 0.0043 (19) −0.013 (2) −0.0047 (19)
C12 0.043 (2) 0.0378 (19) 0.054 (2) 0.0001 (16) −0.0069 (18) −0.0056 (18)
C13 0.054 (3) 0.049 (2) 0.060 (3) 0.0042 (18) −0.004 (2) −0.001 (2)
C14 0.082 (3) 0.051 (3) 0.070 (3) 0.013 (2) −0.021 (3) 0.005 (2)
C15 0.060 (3) 0.055 (3) 0.095 (4) 0.020 (2) −0.023 (3) −0.028 (3)
C16 0.053 (3) 0.075 (3) 0.081 (3) 0.006 (2) 0.001 (3) −0.021 (3)
C17 0.062 (3) 0.057 (3) 0.066 (3) −0.005 (2) −0.002 (2) −0.001 (2)

Geometric parameters (Å, º)

O1—C6 1.341 (5) C12—C13 1.378 (6)
O2—C8 1.370 (5) C13—C14 1.387 (6)
O2—C11 1.438 (5) C14—C15 1.371 (8)
N1—C3 1.414 (5) C15—C16 1.374 (8)
N1—C4 1.278 (6) C16—C17 1.381 (7)
O1—H1O 0.8200 C1—H1 0.9300
C1—C1i 1.380 (6) C2—H2 0.9300
C1—C2 1.373 (6) C4—H4 1.05 (4)
C2—C3 1.395 (5) C7—H7 0.9300
C3—C3i 1.399 (5) C9—H9 0.9300
C4—C5 1.454 (5) C10—H10 0.9300
C5—C10 1.400 (6) C11—H11A 0.9700
C5—C6 1.394 (5) C11—H11B 0.9700
C6—C7 1.403 (5) C13—H13 0.9300
C7—C8 1.383 (6) C14—H14 0.9300
C8—C9 1.388 (6) C15—H15 0.9300
C9—C10 1.371 (6) C16—H16 0.9300
C11—C12 1.499 (6) C17—H17 0.9300
C12—C17 1.383 (6)
C8—O2—C11 117.4 (3) C12—C17—C16 120.5 (5)
C3—N1—C4 118.9 (4) C2—C1—H1 120.00
C6—O1—H1O 109.00 C1i—C1—H1 120.00
C1i—C1—C2 119.8 (4) C1—C2—H2 119.00
C1—C2—C3 121.3 (4) C3—C2—H2 119.00
N1—C3—C3i 118.3 (3) N1—C4—H4 122 (2)
C2—C3—C3i 118.9 (4) C5—C4—H4 116 (2)
N1—C3—C2 122.8 (4) C6—C7—H7 120.00
N1—C4—C5 122.2 (4) C8—C7—H7 120.00
C4—C5—C10 120.5 (4) C8—C9—H9 120.00
C6—C5—C10 117.7 (3) C10—C9—H9 120.00
C4—C5—C6 121.8 (4) C5—C10—H10 119.00
O1—C6—C7 117.5 (3) C9—C10—H10 119.00
C5—C6—C7 120.7 (4) O2—C11—H11A 110.00
O1—C6—C5 121.8 (3) O2—C11—H11B 110.00
C6—C7—C8 119.6 (4) C12—C11—H11A 110.00
O2—C8—C9 115.0 (4) C12—C11—H11B 110.00
C7—C8—C9 120.5 (4) H11A—C11—H11B 108.00
O2—C8—C7 124.5 (3) C12—C13—H13 120.00
C8—C9—C10 119.2 (4) C14—C13—H13 120.00
C5—C10—C9 122.3 (4) C13—C14—H14 120.00
O2—C11—C12 108.6 (3) C15—C14—H14 120.00
C11—C12—C13 120.9 (4) C14—C15—H15 120.00
C13—C12—C17 118.8 (4) C16—C15—H15 120.00
C11—C12—C17 120.3 (4) C15—C16—H16 120.00
C12—C13—C14 120.8 (4) C17—C16—H16 120.00
C13—C14—C15 119.8 (4) C12—C17—H17 120.00
C14—C15—C16 120.0 (5) C16—C17—H17 120.00
C15—C16—C17 120.2 (5)
C11—O2—C8—C7 1.5 (6) C4—C5—C10—C9 179.6 (4)
C11—O2—C8—C9 −177.8 (4) C6—C5—C10—C9 0.9 (6)
C8—O2—C11—C12 174.0 (3) O1—C6—C7—C8 177.9 (4)
C4—N1—C3—C2 41.3 (6) C5—C6—C7—C8 −1.4 (6)
C4—N1—C3—C3i −139.8 (4) C6—C7—C8—O2 −178.4 (4)
C3—N1—C4—C5 −176.8 (4) C6—C7—C8—C9 0.9 (6)
C1i—C1—C2—C3 0.1 (8) O2—C8—C9—C10 179.9 (4)
C2—C1—C1i—C2i 0.0 (9) C7—C8—C9—C10 0.5 (7)
C1—C2—C3—N1 178.9 (5) C8—C9—C10—C5 −1.4 (7)
C1—C2—C3—C3i −0.1 (7) O2—C11—C12—C13 96.8 (4)
N1—C3—C3i—N1i 0.0 (6) O2—C11—C12—C17 −84.8 (5)
N1—C3—C3i—C2i −179.0 (4) C11—C12—C13—C14 176.4 (4)
C2—C3—C3i—N1i 179.0 (4) C17—C12—C13—C14 −2.0 (6)
C2—C3—C3i—C2i 0.0 (6) C11—C12—C17—C16 −177.4 (4)
N1—C4—C5—C6 −0.9 (7) C13—C12—C17—C16 1.0 (7)
N1—C4—C5—C10 −179.5 (4) C12—C13—C14—C15 1.4 (7)
C4—C5—C6—O1 2.6 (6) C13—C14—C15—C16 0.2 (7)
C4—C5—C6—C7 −178.2 (4) C14—C15—C16—C17 −1.2 (8)
C10—C5—C6—O1 −178.8 (4) C15—C16—C17—C12 0.6 (8)
C10—C5—C6—C7 0.5 (6)

Symmetry code: (i) −x, y, z.

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C5–C10 phenol ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1 0.82 1.90 2.622 (5) 147
C2—H2···Cg2ii 0.93 2.88 3.499 (5) 125
C13—H13···Cg2iii 0.93 2.60 3.493 (5) 161

Symmetry codes: (ii) x, −y+1, z−1/2; (iii) x, −y, z+1/2.

Funding Statement

This work was funded by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique grant . University of Constantine1, Algeria grant .

References

  1. Alam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103–4108. [DOI] [PubMed]
  2. Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970–7981. [DOI] [PubMed]
  3. Birkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139–o141. [DOI] [PubMed]
  4. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.
  5. Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.
  6. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m670–m671. [DOI] [PMC free article] [PubMed]
  7. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094–o3095.
  8. Fun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, m1181–m1182. [DOI] [PMC free article] [PubMed]
  9. Ghaemi, A., Keyvani, B., Rayati, S., Zarei, S. & Notash, B. (2016). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 57, 1027–1030.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.
  12. Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195.
  13. Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109–112. [PubMed]
  14. Kannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103.
  15. Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728. [DOI] [PMC free article] [PubMed]
  16. Kruger, P. E., Martin, N. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Dalton Trans. pp. 1966–1970.
  17. Lippe, K., Gerlach, D., Kroke, E. & Wagler, J. (2009). Organometallics, 28, 621–629.
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Muñoz-Flores, B. M., Santillán, R., Farfán, N., Álvarez-Venicio, V., Jiménez-Pérez, V. M., Rodríguez, M., Morales-Saavedra, O. G., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2014). J. Organomet. Chem. 769, 64–71.
  21. Niu, M., Fan, S., Liu, K., Cao, Z. & Wang, D. (2010). Acta Cryst. E66, m77. [DOI] [PMC free article] [PubMed]
  22. Refat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898–906. [DOI] [PubMed]
  23. Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Soroceanu, A., Shova, S., Cazacu, M., Balan, I., Gorinchoy, N. & Turta, C. (2013). J. Chem. Crystallogr. 43, 310–318.
  28. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  29. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  30. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  31. Yoshida, N. & Ichikawa, K. (1997). Chem. Commun. pp. 1091–1092.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989018005832/su5438sup1.cif

e-74-00682-sup1.cif (154.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005832/su5438Isup2.hkl

e-74-00682-Isup2.hkl (138.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005832/su5438Isup3.cml

CCDC reference: 1837095

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES