Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 24;74(Pt 5):687–690. doi: 10.1107/S2056989018005959

6,6′-[(1E,1′E)-Oxybis(4,1-phenyl­ene)bis­(aza­nylyl­idene)bis­(methanylyl­idene)]bis­(2-methyl­phenol): supra­molecular assemblies in two dimensions mediated by weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions

Md Azharul Arafath a,b, Huey Chong Kwong a, Farook Adam a,*, Mohd R Razali a
PMCID: PMC5947488  PMID: 29850092

The title compound is a flexible Schiff base, as illustrated by its dihedral angles. The sp 2-hybridized character of the aza­nylyl­idene groups is confirmed by their bond lengths and bond angles. In the crystal, mol­ecules of the title compound are assembled into two-dimensional networks connected by weak C—H⋯O, C—H⋯N and C—H⋯π inter­molecular inter­actions.

Keywords: crystal structure, oxybis Schiff base, T= 100 K, inter­molecular inter­action

Abstract

The title compound, C28H24N2O3, is a flexible Schiff base, having a dihedral angle of 59.53 (5)° between the mean planes of two phenyl rings bounded in the centre by a single O atom. The dihedral angles between the mean planes of the phenyl rings bonded to the central O atom and the mean planes of the terminal methyl­phenol rings are 31.47 (6) and 36.03 (5)°, respectively. The sp 2-hybridized character of the azanylylidene groups is confirmed by their bond lengths and bond angles. In the crystal, mol­ecules are linked into centrosymmetric dimers by weak C—H⋯N inter­actions and connected into dimeric chains through weak C—H⋯O inter­actions. These chains are inter­connected into a two-dimensional network parallel to (1Inline graphic1) via weak C—H⋯π inter­actions.

Chemical context  

The oxybis Schiff base compound is an important group in chemistry. Bis-carbazones are formed by connecting via a ring or C—C bond to carbazone moieties having four coordinated sites. These tetra­dentate ligands can be used to entrap metal ions to form square-planer complexes (Alsop et al., 2005; Blower et al., 2003; Jasinski et al., 2003). The length of the C—C bond in the backbone of the compounds affects the stability of the complexes. The higher the number of C—C bonds (obtained via alkyl­ation or aryl­ation) allows the cavity within the ligand to fit the metal ion with a proper orientation (Blower et al., 2003). These tetra­dentate compounds and transition metal complexes have potential anti­cancer and anti­bacterial activity (Lobana et al., 2009). The bis compounds chelate to transition metal ions via coordination sites to form complexes that may also exhibit fluorescent properties that could be used as biosensors and chemosensors (Liu et al., 2011; Jiang & Guo, 2004).graphic file with name e-74-00687-scheme1.jpg

In view of the above mentioned properties and of our research inter­est in the synthesis of oxybis Schiff base compounds, we present in this study the crystal structure and supra­molecular features of the flexible Schiff base ligand 6,6′-{(1E,1′E)-[oxybis(4,1-phenyl­ene)bis­(aza­nyl­yl­idene)bis­(methan­ylyl­idene)]bis­(2-methyl­phenol}.

Structural commentary  

In the title oxybisbenzenyl compound (Fig. 1), the mean planes of the phenyl rings bonded to the central oxygen atom form a dihedral angle of 59.53 (5)°, and the mean planes of the C1–C6 and C21–C26 methyl­phenol rings are twisted similarly by 31.47 (6) and 36.03 (5)°, respectively, from the adjacent phenyl rings. The terminal methyl­phenol rings are almost parallel to each other, forming a dihedral angle of 2.46 (6)° between their mean planes. The C7=N1 and C20=N2 bond lengths of 1.2880 (14) Å and 1.2834 (13) Å, confirm the presence of the double bonds while the C8—N1 and C17—N2 bond lengths, 1.4156 (12) and 1.4154 (12) Å, respectively, confirm their single-bond character. The C7—N1—C8, C17—N2—C20, N1—C7—C6 and N2—C20—C21 angles are 121.11 (9), 119.51 (9), 121.63 (9) and 122.42 (9)°, respectively. These values are consistent with a sp 2-hybridized character for atoms C7, C20, N1 and N2 (Khalaji et al., 2012). Two intra­molecular N—H⋯O hydrogen bonds occur (Table 1).

Figure 1.

Figure 1

The title mol­ecule with the atom-labelling scheme and 50% probability displacement ellipsoids.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2 0.99 (2) 1.73 (2) 2.6441 (13) 151.0 (17)
O2—H1O2⋯N1 0.91 (2) 1.76 (2) 2.6011 (13) 151.4 (18)
C15—H15A⋯N1i 0.95 2.53 3.4211 (15) 156
C4—H4A⋯O1ii 0.95 2.72 3.6626 (14) 171
C27—H27ACg1iii 0.98 2.98 3.9242 (14) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked into centrosymmetric dimers by weak C15—H15A⋯N1 inter­actions forming an Inline graphic(18) ring motif (Fig. 2 a, Table 1). These dimers are linked into chains propagating along [111] by weak C4—H4A⋯O1 inter­actions (Fig. 2 b). At the same time, these dimeric chains are further connected into a two-dimensional network parallel to (121) via C—H⋯π inter­actions (Fig. 3, Table 1).

Figure 2.

Figure 2

(a) A view of a centrosymmetric dimer of C28H24N2O3 with weak inter­molecular C15—H15A⋯N1 inter­actions shown as cyan dotted lines. (b) A view of a dimeric chain with weak inter­molecular C4—H4A⋯O1 shown as megenta lines. Hydrogen atoms not involved in with these inter­actions are omitted for clarity.

Figure 3.

Figure 3

A view along (111) showing weak C—H⋯π (green dotted lines) supra­molecular inter­actions in the title compound.

Synthesis and crystallization  

To a sample of 2-hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) dissolved in 20.0 ml methanol was added 0.20 ml glacial acetic acid and the mixture was refluxed for 30 min. A solution of 4,4′-oxydianiline (0.50 g, 2.50 mmol) in 20.0 ml methanol was then added dropwise with stirring to the aldehyde solution. The resulting yellow solution was refluxed for 4 h (Fig. 4). A yellow-coloured precipitate formed. The precipitate was filtered and washed with 5.0 ml ethanol and 5.0 ml n-hexane. The recovered product was dissolved in acetone for recrystallization. Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of acetone.

Figure 4.

Figure 4

Reaction scheme for the synthesis of the title compound.

6,6′-{(1 E ,1′ E )-[Oxybis(4,1-phenyl­ene)bis­(aza­nylyl­idene)bis­(methanylyl­idene)]bis­(2-methyl­phenol}: m.p. 398–399 K; yield 96%. IR (KBr pellets υmax/cm−1): 3430 υ(OH), 2884 υ(CH3), 1612 υ(C=N), 1496 υ(C=C, aromatic), 1272 υ(C–H, aromatic), 1239 υ(C—O, ether), 1195 υ(C—O, phenol), 1081 υ(C—N). 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 13.581 [s (1.97 H), OH], δ 8.952 [s (2.00 H), HC=N], δ 7.504–6.888 [multiplet (13.86 H), aromatic], δ 2.221 [s (6.11 H), Ph—CH3H ppm. The 13C NMR (DMSO-d 6, Me4Si ppm): δ 163.21 (C=N), δ 158.60–118.32 (C-aromatic), δ 15.13 (CH3) ppm. Analysis calculated for C28H24N2O3 (FW: 436.51 g mol−1) C, 77.00; H, 5.50; N, 6.42; found: C, 77.05; H, 5.48; N, 6.40%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The phenolic hydrogen atoms were located in difference-Fourier maps and refined freely. All other H atoms attached calculated geometrically and refined using a riding model with C—H = 0.95–0.98 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C28H24N2O3
M r 436.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 10.2293 (4), 10.9623 (4), 11.3087 (4)
α, β, γ (°) 108.5568 (10), 96.7616 (10), 110.4087 (10)
V3) 1088.76 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.31 × 0.13
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.903, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 42726, 6513, 5433
R int 0.029
(sin θ/λ)max−1) 0.711
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.131, 1.03
No. of reflections 6513
No. of parameters 308
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018005959/jj2197sup1.cif

e-74-00687-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005959/jj2197Isup2.hkl

e-74-00687-Isup2.hkl (517.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005959/jj2197Isup3.cml

CCDC reference: 1435817

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C28H24N2O3 Z = 2
Mr = 436.49 F(000) = 460
Triclinic, P1 Dx = 1.331 Mg m3
a = 10.2293 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9623 (4) Å Cell parameters from 9984 reflections
c = 11.3087 (4) Å θ = 2.2–30.2°
α = 108.5568 (10)° µ = 0.09 mm1
β = 96.7616 (10)° T = 100 K
γ = 110.4087 (10)° Block, yellow
V = 1088.76 (7) Å3 0.35 × 0.31 × 0.13 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 6513 independent reflections
Radiation source: fine-focus sealed tube 5433 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −14→14
Tmin = 0.903, Tmax = 0.960 k = −15→15
42726 measured reflections l = −16→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.3053P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6513 reflections Δρmax = 0.38 e Å3
308 parameters Δρmin = −0.32 e Å3

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71062 10.322 11.055 11.397 108.521 96.732 110.436
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76527 (8) 0.48598 (7) 0.45322 (7) 0.01951 (16)
O2 1.54997 (8) 1.09474 (8) 0.70552 (7) 0.02197 (16)
O3 0.06378 (8) 0.07922 (8) 0.64561 (7) 0.02142 (16)
N1 1.29823 (9) 0.93739 (9) 0.71785 (9) 0.01841 (17)
N2 0.32630 (9) 0.26192 (9) 0.67203 (8) 0.01845 (17)
C1 1.57792 (11) 1.16561 (10) 0.83396 (10) 0.01812 (19)
C2 1.70943 (11) 1.28524 (11) 0.89546 (11) 0.0208 (2)
C3 1.73960 (11) 1.35727 (11) 1.02776 (11) 0.0237 (2)
H3A 1.8280 1.4382 1.0703 0.028*
C4 1.64482 (12) 1.31511 (11) 1.10050 (11) 0.0237 (2)
H4A 1.6693 1.3654 1.1912 0.028*
C5 1.51434 (11) 1.19879 (11) 1.03847 (10) 0.0218 (2)
H5A 1.4485 1.1701 1.0870 0.026*
C6 1.47866 (11) 1.12316 (10) 0.90474 (10) 0.01809 (19)
C7 1.33802 (11) 1.00598 (11) 0.84107 (10) 0.01925 (19)
H7A 1.2739 0.9794 0.8916 0.023*
C8 1.16198 (10) 0.82216 (10) 0.65723 (10) 0.01726 (19)
C9 1.09958 (11) 0.79317 (10) 0.52934 (10) 0.01908 (19)
H9A 1.1491 0.8497 0.4867 0.023*
C10 0.96575 (11) 0.68236 (10) 0.46405 (10) 0.01876 (19)
H10A 0.9225 0.6645 0.3778 0.023*
C11 0.89561 (10) 0.59785 (10) 0.52567 (9) 0.01665 (18)
C12 0.95985 (10) 0.62060 (10) 0.65062 (10) 0.01793 (19)
H12A 0.9136 0.5592 0.6905 0.022*
C13 1.09192 (10) 0.73371 (10) 0.71658 (10) 0.01777 (19)
H13A 1.1350 0.7511 0.8028 0.021*
C14 0.66246 (10) 0.43684 (10) 0.51590 (9) 0.01645 (18)
C15 0.57873 (10) 0.29247 (10) 0.46457 (10) 0.01831 (19)
H15A 0.5973 0.2321 0.3937 0.022*
C16 0.46798 (11) 0.23692 (10) 0.51734 (10) 0.01851 (19)
H16A 0.4099 0.1383 0.4817 0.022*
C17 0.44103 (10) 0.32475 (10) 0.62243 (9) 0.01667 (18)
C18 0.52465 (10) 0.47018 (10) 0.67105 (9) 0.01735 (19)
H18A 0.5059 0.5310 0.7414 0.021*
C19 0.63458 (10) 0.52671 (10) 0.61781 (9) 0.01706 (19)
H19A 0.6902 0.6257 0.6506 0.020*
C20 0.33650 (11) 0.31399 (11) 0.79342 (10) 0.01902 (19)
H20A 0.4225 0.3926 0.8481 0.023*
C21 0.22143 (10) 0.25721 (10) 0.85028 (9) 0.01744 (19)
C22 0.24188 (11) 0.31750 (11) 0.98398 (10) 0.0217 (2)
H22A 0.3289 0.3969 1.0353 0.026*
C23 0.13736 (12) 0.26316 (12) 1.04218 (11) 0.0247 (2)
H23A 0.1518 0.3047 1.1329 0.030*
C24 0.01010 (12) 0.14628 (12) 0.96590 (11) 0.0237 (2)
H24A −0.0613 0.1085 1.0064 0.028*
C25 −0.01556 (11) 0.08364 (11) 0.83349 (10) 0.0201 (2)
C26 0.09098 (11) 0.14035 (10) 0.77475 (9) 0.01703 (18)
C27 1.81029 (12) 1.33195 (13) 0.81651 (12) 0.0279 (2)
H27A 1.7559 1.3335 0.7401 0.042*
H27B 1.8558 1.2660 0.7894 0.042*
H27C 1.8849 1.4267 0.8686 0.042*
C28 −0.15322 (12) −0.04094 (12) 0.75086 (12) 0.0289 (2)
H28A −0.1306 −0.1120 0.6897 0.043*
H28B −0.2132 −0.0103 0.7032 0.043*
H28C −0.2056 −0.0817 0.8058 0.043*
H1O3 0.153 (2) 0.131 (2) 0.6250 (18) 0.052 (5)*
H1O2 1.458 (2) 1.027 (2) 0.6813 (19) 0.056 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0152 (3) 0.0190 (3) 0.0165 (3) 0.0016 (3) 0.0049 (3) 0.0028 (3)
O2 0.0198 (4) 0.0216 (4) 0.0199 (4) 0.0045 (3) 0.0050 (3) 0.0068 (3)
O3 0.0221 (4) 0.0196 (3) 0.0162 (3) 0.0042 (3) 0.0033 (3) 0.0043 (3)
N1 0.0148 (4) 0.0158 (4) 0.0220 (4) 0.0048 (3) 0.0036 (3) 0.0060 (3)
N2 0.0165 (4) 0.0193 (4) 0.0205 (4) 0.0071 (3) 0.0064 (3) 0.0086 (3)
C1 0.0165 (4) 0.0169 (4) 0.0213 (5) 0.0074 (4) 0.0037 (4) 0.0075 (4)
C2 0.0165 (4) 0.0184 (4) 0.0269 (5) 0.0066 (4) 0.0030 (4) 0.0097 (4)
C3 0.0169 (4) 0.0191 (5) 0.0290 (5) 0.0056 (4) −0.0009 (4) 0.0060 (4)
C4 0.0219 (5) 0.0230 (5) 0.0216 (5) 0.0105 (4) 0.0006 (4) 0.0032 (4)
C5 0.0197 (5) 0.0234 (5) 0.0217 (5) 0.0104 (4) 0.0045 (4) 0.0066 (4)
C6 0.0162 (4) 0.0169 (4) 0.0203 (5) 0.0069 (3) 0.0039 (4) 0.0062 (4)
C7 0.0153 (4) 0.0178 (4) 0.0239 (5) 0.0061 (4) 0.0059 (4) 0.0075 (4)
C8 0.0139 (4) 0.0155 (4) 0.0208 (5) 0.0056 (3) 0.0048 (3) 0.0053 (4)
C9 0.0192 (4) 0.0176 (4) 0.0200 (5) 0.0062 (4) 0.0068 (4) 0.0076 (4)
C10 0.0192 (4) 0.0191 (4) 0.0169 (4) 0.0075 (4) 0.0047 (4) 0.0060 (4)
C11 0.0137 (4) 0.0152 (4) 0.0180 (4) 0.0052 (3) 0.0043 (3) 0.0032 (3)
C12 0.0165 (4) 0.0178 (4) 0.0199 (5) 0.0067 (4) 0.0057 (4) 0.0077 (4)
C13 0.0163 (4) 0.0190 (4) 0.0183 (4) 0.0076 (4) 0.0042 (3) 0.0071 (4)
C14 0.0135 (4) 0.0183 (4) 0.0158 (4) 0.0053 (3) 0.0038 (3) 0.0057 (3)
C15 0.0175 (4) 0.0171 (4) 0.0171 (4) 0.0067 (4) 0.0042 (3) 0.0032 (4)
C16 0.0171 (4) 0.0156 (4) 0.0192 (4) 0.0046 (3) 0.0035 (3) 0.0048 (4)
C17 0.0136 (4) 0.0185 (4) 0.0165 (4) 0.0056 (3) 0.0031 (3) 0.0064 (3)
C18 0.0165 (4) 0.0175 (4) 0.0166 (4) 0.0069 (3) 0.0037 (3) 0.0049 (3)
C19 0.0151 (4) 0.0150 (4) 0.0172 (4) 0.0045 (3) 0.0027 (3) 0.0039 (3)
C20 0.0154 (4) 0.0183 (4) 0.0207 (5) 0.0052 (3) 0.0035 (3) 0.0066 (4)
C21 0.0166 (4) 0.0173 (4) 0.0173 (4) 0.0064 (3) 0.0039 (3) 0.0060 (4)
C22 0.0203 (5) 0.0204 (5) 0.0190 (5) 0.0053 (4) 0.0030 (4) 0.0048 (4)
C23 0.0264 (5) 0.0266 (5) 0.0183 (5) 0.0094 (4) 0.0069 (4) 0.0064 (4)
C24 0.0226 (5) 0.0252 (5) 0.0245 (5) 0.0083 (4) 0.0104 (4) 0.0113 (4)
C25 0.0177 (4) 0.0179 (4) 0.0228 (5) 0.0054 (4) 0.0046 (4) 0.0078 (4)
C26 0.0174 (4) 0.0156 (4) 0.0176 (4) 0.0071 (3) 0.0035 (3) 0.0058 (3)
C27 0.0200 (5) 0.0257 (5) 0.0348 (6) 0.0039 (4) 0.0055 (4) 0.0142 (5)
C28 0.0216 (5) 0.0248 (5) 0.0303 (6) 0.0009 (4) 0.0042 (4) 0.0089 (5)

Geometric parameters (Å, º)

O1—C11 1.3841 (11) C12—H12A 0.9500
O1—C14 1.3864 (11) C13—H13A 0.9500
O2—C1 1.3506 (13) C14—C15 1.3885 (13)
O2—H1O2 0.91 (2) C14—C19 1.3895 (13)
O3—C26 1.3456 (12) C15—C16 1.3855 (14)
O3—H1O3 0.988 (19) C15—H15A 0.9500
N1—C7 1.2880 (14) C16—C17 1.3962 (14)
N1—C8 1.4156 (12) C16—H16A 0.9500
N2—C20 1.2834 (13) C17—C18 1.3985 (13)
N2—C17 1.4154 (12) C18—C19 1.3864 (13)
C1—C2 1.4078 (14) C18—H18A 0.9500
C1—C6 1.4097 (14) C19—H19A 0.9500
C2—C3 1.3880 (16) C20—C21 1.4521 (14)
C2—C27 1.5045 (15) C20—H20A 0.9500
C3—C4 1.3956 (16) C21—C22 1.3998 (14)
C3—H3A 0.9500 C21—C26 1.4122 (13)
C4—C5 1.3866 (15) C22—C23 1.3792 (15)
C4—H4A 0.9500 C22—H22A 0.9500
C5—C6 1.4030 (14) C23—C24 1.3962 (15)
C5—H5A 0.9500 C23—H23A 0.9500
C6—C7 1.4549 (14) C24—C25 1.3819 (15)
C7—H7A 0.9500 C24—H24A 0.9500
C8—C13 1.3954 (14) C25—C26 1.4058 (14)
C8—C9 1.3960 (14) C25—C28 1.5027 (15)
C9—C10 1.3879 (14) C27—H27A 0.9800
C9—H9A 0.9500 C27—H27B 0.9800
C10—C11 1.3870 (14) C27—H27C 0.9800
C10—H10A 0.9500 C28—H28A 0.9800
C11—C12 1.3905 (14) C28—H28B 0.9800
C12—C13 1.3874 (13) C28—H28C 0.9800
C11—O1—C14 118.92 (7) C16—C15—H15A 120.2
C1—O2—H1O2 105.6 (12) C14—C15—H15A 120.2
C26—O3—H1O3 104.7 (11) C15—C16—C17 120.52 (9)
C7—N1—C8 121.11 (9) C15—C16—H16A 119.7
C20—N2—C17 119.51 (9) C17—C16—H16A 119.7
O2—C1—C2 117.80 (9) C16—C17—C18 118.95 (9)
O2—C1—C6 121.55 (9) C16—C17—N2 117.94 (9)
C2—C1—C6 120.64 (9) C18—C17—N2 123.08 (9)
C3—C2—C1 118.03 (10) C19—C18—C17 120.84 (9)
C3—C2—C27 122.46 (10) C19—C18—H18A 119.6
C1—C2—C27 119.49 (10) C17—C18—H18A 119.6
C2—C3—C4 122.38 (10) C18—C19—C14 119.21 (9)
C2—C3—H3A 118.8 C18—C19—H19A 120.4
C4—C3—H3A 118.8 C14—C19—H19A 120.4
C5—C4—C3 119.06 (10) N2—C20—C21 122.42 (9)
C5—C4—H4A 120.5 N2—C20—H20A 118.8
C3—C4—H4A 120.5 C21—C20—H20A 118.8
C4—C5—C6 120.60 (10) C22—C21—C26 119.10 (9)
C4—C5—H5A 119.7 C22—C21—C20 119.12 (9)
C6—C5—H5A 119.7 C26—C21—C20 121.75 (9)
C5—C6—C1 119.24 (9) C23—C22—C21 120.85 (10)
C5—C6—C7 119.47 (9) C23—C22—H22A 119.6
C1—C6—C7 121.25 (9) C21—C22—H22A 119.6
N1—C7—C6 121.63 (9) C22—C23—C24 119.09 (10)
N1—C7—H7A 119.2 C22—C23—H23A 120.5
C6—C7—H7A 119.2 C24—C23—H23A 120.5
C13—C8—C9 119.20 (9) C25—C24—C23 122.23 (10)
C13—C8—N1 123.39 (9) C25—C24—H24A 118.9
C9—C8—N1 117.33 (9) C23—C24—H24A 118.9
C10—C9—C8 120.50 (9) C24—C25—C26 118.34 (9)
C10—C9—H9A 119.7 C24—C25—C28 122.39 (10)
C8—C9—H9A 119.7 C26—C25—C28 119.27 (9)
C11—C10—C9 119.52 (9) O3—C26—C25 117.66 (9)
C11—C10—H10A 120.2 O3—C26—C21 121.97 (9)
C9—C10—H10A 120.2 C25—C26—C21 120.37 (9)
O1—C11—C10 116.44 (9) C2—C27—H27A 109.5
O1—C11—C12 122.74 (9) C2—C27—H27B 109.5
C10—C11—C12 120.67 (9) H27A—C27—H27B 109.5
C13—C12—C11 119.50 (9) C2—C27—H27C 109.5
C13—C12—H12A 120.2 H27A—C27—H27C 109.5
C11—C12—H12A 120.2 H27B—C27—H27C 109.5
C12—C13—C8 120.47 (9) C25—C28—H28A 109.5
C12—C13—H13A 119.8 C25—C28—H28B 109.5
C8—C13—H13A 119.8 H28A—C28—H28B 109.5
O1—C14—C15 116.46 (8) C25—C28—H28C 109.5
O1—C14—C19 122.52 (9) H28A—C28—H28C 109.5
C15—C14—C19 120.80 (9) H28B—C28—H28C 109.5
C16—C15—C14 119.63 (9)
O2—C1—C2—C3 −179.09 (9) C11—O1—C14—C15 −144.71 (9)
C6—C1—C2—C3 1.68 (14) C11—O1—C14—C19 40.71 (13)
O2—C1—C2—C27 2.00 (14) O1—C14—C15—C16 −176.07 (8)
C6—C1—C2—C27 −177.23 (9) C19—C14—C15—C16 −1.39 (15)
C1—C2—C3—C4 0.05 (16) C14—C15—C16—C17 −0.68 (15)
C27—C2—C3—C4 178.92 (10) C15—C16—C17—C18 1.97 (15)
C2—C3—C4—C5 −1.33 (16) C15—C16—C17—N2 179.91 (9)
C3—C4—C5—C6 0.88 (16) C20—N2—C17—C16 146.74 (10)
C4—C5—C6—C1 0.80 (15) C20—N2—C17—C18 −35.40 (14)
C4—C5—C6—C7 −176.86 (9) C16—C17—C18—C19 −1.23 (14)
O2—C1—C6—C5 178.69 (9) N2—C17—C18—C19 −179.06 (9)
C2—C1—C6—C5 −2.11 (14) C17—C18—C19—C14 −0.79 (14)
O2—C1—C6—C7 −3.69 (15) O1—C14—C19—C18 176.47 (9)
C2—C1—C6—C7 175.51 (9) C15—C14—C19—C18 2.12 (15)
C8—N1—C7—C6 179.01 (9) C17—N2—C20—C21 178.32 (9)
C5—C6—C7—N1 177.01 (9) N2—C20—C21—C22 178.44 (10)
C1—C6—C7—N1 −0.61 (15) N2—C20—C21—C26 0.19 (15)
C7—N1—C8—C13 −30.61 (15) C26—C21—C22—C23 0.78 (16)
C7—N1—C8—C9 152.59 (10) C20—C21—C22—C23 −177.52 (10)
C13—C8—C9—C10 3.47 (15) C21—C22—C23—C24 0.16 (17)
N1—C8—C9—C10 −179.59 (9) C22—C23—C24—C25 −0.62 (17)
C8—C9—C10—C11 −1.67 (15) C23—C24—C25—C26 0.10 (16)
C14—O1—C11—C10 −152.24 (9) C23—C24—C25—C28 −179.15 (11)
C14—O1—C11—C12 32.17 (13) C24—C25—C26—O3 −179.28 (9)
C9—C10—C11—O1 −177.53 (8) C28—C25—C26—O3 0.00 (14)
C9—C10—C11—C12 −1.84 (15) C24—C25—C26—C21 0.87 (15)
O1—C11—C12—C13 178.90 (9) C28—C25—C26—C21 −179.86 (9)
C10—C11—C12—C13 3.49 (15) C22—C21—C26—O3 178.85 (9)
C11—C12—C13—C8 −1.64 (15) C20—C21—C26—O3 −2.90 (15)
C9—C8—C13—C12 −1.80 (15) C22—C21—C26—C25 −1.30 (15)
N1—C8—C13—C12 −178.55 (9) C20—C21—C26—C25 176.95 (9)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C14–C19 ring.

D—H···A D—H H···A D···A D—H···A
O3—H1O3···N2 0.99 (2) 1.73 (2) 2.6441 (13) 151.0 (17)
O2—H1O2···N1 0.91 (2) 1.76 (2) 2.6011 (13) 151.4 (18)
C15—H15A···N1i 0.95 2.53 3.4211 (15) 156
C4—H4A···O1ii 0.95 2.72 3.6626 (14) 171
C27—H27A···Cg1iii 0.98 2.98 3.9242 (14) 162

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.

Funding Statement

This work was funded by Universiti Sains Malaysia grant 1001/PKIMIA/811269. Universiti Sains Malaysia grant to Md. Azharul Arafath. The World Academy of Sciences grant to Md. Azharul Arafath. Malaysian Government grant to Huey Chong Kwong.

References

  1. Alsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770–2780.
  2. Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.
  3. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.
  4. Jasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202–206.
  5. Jiang, P. & Guo, Z. (2004). Coord. Chem. Rev. 248, 205–229.
  6. Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.
  7. Liu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475–8490. [DOI] [PubMed]
  8. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018005959/jj2197sup1.cif

e-74-00687-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005959/jj2197Isup2.hkl

e-74-00687-Isup2.hkl (517.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005959/jj2197Isup3.cml

CCDC reference: 1435817

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES