Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 24;74(Pt 5):695–697. doi: 10.1107/S2056989018005923

Crystal structure of bis­(aceto­nitrile-κN)(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2 N,N′)platinum(II) bis­(tetra­fluorido­borate) packing as head-to-head dimers

Chris Joseph a, Vladimir N Nesterov b, Bradley W Smucker a,*
PMCID: PMC5947490  PMID: 29850094

The bulky tert-butyl groups of the dbbpy ligand do not preclude the formation of head-to-head dimers in the crystal structure of bis­(aceto­nitrile)(4,4′-di-tert-butyl-2,2′-bi­pyridine)­platinum(II) tetra­fluorido­borate.

Keywords: supra­molecular, platinum(II), crystal structure

Abstract

The crystal structure of a platinum(II) supra­molecular building block, [Pt(dbbpy)(NCCH3)2](BF4)2 (dbbpy = 4,4′-di-tert-butyl-2,2′-bi­pyridine, C18H24N2) is an example of a rare head-to-head dimer, even with the bulky tert-butyl groups of the bi­pyridine. This packing motif still enables significant π–π inter­actions between two pyridyl groups, and may result from the close proximity of the tetra­fluorido­borate ions to the platinum(II) complexes, resulting in intra­molecular H⋯F distances between 2.156 and 2.573 Å.

Chemical context  

The title compound is soluble in a diverse range of solvents and possesses exchangeable aceto­nitrile ligands for facile incorporation of novel ligands to develop new and diverse behaviors of platinum(II) complexes. The solubility and apt geometry of the (dbbpy)platinum(II) complex make it a desirable building block for coordination-driven self-assembly of homo-metallic (Zhang, et al., 2017) and hetero-metallic (Bera et al., 2001) supra­molecular complexes. This platinum(II) di­imine can also be combined with di­thiol­ene ligands to study methyl­ation kinetics (Stace, et al., 2016), generate charge-transfer materials (Smucker, et al., 2003), or make model complexes for examining photophysical properties (Laza­rides, et al., 2011; Yang et al., 2014).graphic file with name e-74-00695-scheme1.jpg

Structural commentary  

The platinum–nitro­gen distances for the bipyridyl N1 and N2 of the +2 cation are 1.994 (4) and 1.995 (4) Å, respectively, with a bond angle of 80.5 (2)°. These are shorter than those affected by the stronger trans-influence of chloride in two structures of the neutral (dbbpy)PtCl2 mol­ecule: one with Pt—N distances of 2.013 (2) and 2.011 (2) Å and a 79.79 (6)° N—Pt—N angle (Day, 2009), and the other having Pt—N distances of 2.010 (12) and 2.019 (10) Å and a 78.7 (5)° N—Pt—N angle (Achar & Catalano, 1997). The Pt—N distances of the title compound are longer than those having the weaker trans-influence of water in the +2 cation of [(dbbpy)Pt(OH2)2](OTf)2 (Singh et al., 2008), which exhibits Pt—N distances of 1.966 (5) and 1.974 (5) Å and the resulting wider bond angle of 81.1 (2)° for N—Pt—N. The trans-influence of the ligand is, indeed, on par with that of the related mono-cation [(dbbpy)Pt(NCCH3)(Ph)] [BAr’4], containing a Pt—N distance of 2.000 (4) Å, located trans to the aceto­nitrile, while the phenyl ligand causes an elongation to 2.092 (4) Å for the other Pt—N bond (McKeown, et al., 2011).

Supra­molecular features  

Most platinum(II) compounds containing the bulky dbbpy ligand pack as head-to-tail dimers, such as the aforementioned (dbbpy)PtCl2 (Day, 2009; Achar & Catalano, 1997), [(dbbpy)Pt(OH2)2](OTf)2 (Singh et al., 2008), [(dbbpy)Pt(NCCH3)(Ph)][BAr′4] (Ar′ = 3,5-bis(tri­fluoro­methyl)phenyl; McKeown et al., 2011), and (dbbpy)Pt(dmid) (dmid = 1,3-di­thiole-2-one-4,5-di­thiol­ate; Smucker et al., 2003). The cations in the title compound, however, pack as head-to-head dimers (Figs. 1 and 2). In these dimers, the mol­ecules are offset (translation by half a mol­ecule)and slightly canted [the planes composed of all non-H atoms except the tert-butly groups for the (dbbpy)Pt(NCCH3)2 cation and its corresponding dimer (−x, y, Inline graphic − z) are at an angle of 10.82°], both of which accommodate the bulky tert-butyl groups of the dbbpy ligands. The intra­molecular Pt—Pt distance is quite long at 4.5123 (3) Å, yet the pyridyl rings of the dbbpy are positioned for π–π inter­actions with distances between 3.616 (5) Å (N1⋯N1i) and 4.032 (7) Å (C4⋯C4i) [symmetry code: (i) −x, y, Inline graphic − z] occurring between the two rings (Fig. 2). This atypical head-to-head packing may be partly explained through the favorable non-polar inter­actions between the tert-butyl groups. Another viable explanation comes through the inter­molecular inter­actions between fluorine atoms of the BF4 ions and the hydrogen atoms on the pyridine and aceto­nitrile ligands on multiple cations. Indeed, all eight fluorine atoms of the two unique BF4 anions are in close proximity to hydrogen atoms on the cation with inter­molecular H⋯F distances between 2.16 and 2.57 Å (Fig. 1 and Table 1). Changing the anion in related bis­(aceto­nitrile)(di­imine) platinum(II) cations seems to have a significant influence, as observed in the structures of 2,2′-bi­pyridine in [(bpy)Pt(NCCH3)2](OTf)2 (Field et al., 2003) or 1,10-phenanthroline in [(phen)Pt(NCCh3)2](ClO4)2 (Ha, 2010), which do not form dimers as the positions of the triflate or perchlorate anions minimize the close proximity of the two platinum-containing cations.

Figure 1.

Figure 1

Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the head-to-head dimer with selected H⋯F inter­molecular distances (Å) between a BF4 anion and aceto­nitrile mol­ecules on adjacent mol­ecules.

Figure 2.

Figure 2

Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the slightly canted head-to-head dimer with selected intra­molecular distances shown.

Table 1. Inter­molecular H⋯F distances (Å) between all eight fluorine atoms of the two BF4 anions.

F1⋯H1A 2.16 F5iii⋯H7A iv 2.30
F1⋯H20B 2.43 F5iii⋯H4A iv 2.35
F2⋯H9A ii 2.43 F6iii⋯H20C i 2.28
F3⋯H9A ii 2.57 F7iii⋯H20A 2.34
F4⋯H2A 2.43 (4) F8iii⋯H22C 2.34

Symmetry codes: (i) −x, y, Inline graphic − z; (ii) x, 1 − y, Inline graphic + z; (iii) Inline graphic − x, Inline graphic + y, z; (iv) x, 1 + y, z.

Synthesis  

The synthesis of the title compound used a method which replaced the chloride from Pt(dbbpy)Cl2 (Tzeng et al., 2001) with aceto­nitrile using excess AgBF4 by following the general syntheses of (dbbpy)Pt(SO3CF3)2 (Hill et al., 1996) and [Pt(NCCH3)4](BF4)2 (de Renzi et al., 1976).

[Pt(dbbpy)(NCCH3)2](BF4)2 A solution containing 25 mL of aceto­nitrile, 200.7 mg (0.2500 mmol) of Pt(dbbpy)Cl2, and 164 mg (0.8425 mmol) of AgBF4 was refluxed under stirring until a yellow solution formed. The solution was isolated, via cannula, from the AgCl precipitate and condensed under reduced pressure until ∼5 mL of orange solution remained. This was combined with 25 ml of Et2O and the resulting precipitate was washed with 3 × 20 mL Et2O to give 206.9 mg (83.8% yield) of product. UV–vis λmax (∊ Lmol−1cm−1): 211 (4.6 × 104), 249 (4.2 × 104), 306 (2.0 × 104), 319 (2.4 × 104) and 346 (6.0 × 103) nm.

Yellow crystals of the title compound were grown from liquid diffusion of hexa­nes into a dilute acetone solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were attached to C atoms and ideally positioned (C—H = 0.95–0.98 Å) and refined as riding with U iso(H) = 1.2U eq(CH) or U iso(H) = 1.2U eq(CH3).

Table 2. Experimental details.

Crystal data
Chemical formula [Pt(C18H24N2)(C2H3N)2](BF4)2
M r 719.21
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 100
a, b, c (Å) 16.3409 (10), 13.0447 (8), 25.1105 (16)
V3) 5352.6 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.32
Crystal size (mm) 0.14 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.515, 0.682
No. of measured, independent and observed [I > 2σ(I)] reflections 61655, 5919, 4823
R int 0.048
(sin θ/λ)max−1) 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.113, 1.01
No. of reflections 5919
No. of parameters 342
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −1.56

Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018005923/jj2198sup1.cif

e-74-00695-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005923/jj2198Isup2.hkl

e-74-00695-Isup2.hkl (289.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005923/jj2198Isup3.mol

CCDC reference: 1837532

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

X-ray data were collected at the University of North Texas using a Bruker APEXII CCD diffractometer.

supplementary crystallographic information

Crystal data

[Pt(C18H24N2)(C2H3N)2](BF4)2 F(000) = 2800
Mr = 719.21 Dx = 1.785 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 9946 reflections
a = 16.3409 (10) Å θ = 2.2–27.1°
b = 13.0447 (8) Å µ = 5.32 mm1
c = 25.1105 (16) Å T = 100 K
V = 5352.6 (6) Å3 Plate, yellow
Z = 8 0.14 × 0.14 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 5919 independent reflections
Radiation source: fine-focus sealed tube 4823 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
ω scans θmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −20→20
Tmin = 0.515, Tmax = 0.682 k = −16→16
61655 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.080P)2 + 5.P] where P = (Fo2 + 2Fc2)/3
5919 reflections (Δ/σ)max = 0.001
342 parameters Δρmax = 1.39 e Å3
0 restraints Δρmin = −1.55 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.098683 (11) 0.487050 (15) 0.187162 (8) 0.02001 (9)
N1 0.1092 (2) 0.3711 (3) 0.23845 (16) 0.0200 (8)
C1 0.1088 (3) 0.3805 (4) 0.29169 (19) 0.0230 (10)
H1A 0.1042 0.4469 0.3070 0.028*
N2 0.1029 (2) 0.3703 (3) 0.13593 (17) 0.0227 (9)
C2 0.1149 (3) 0.2965 (4) 0.3246 (2) 0.0261 (11)
H2A 0.1140 0.3054 0.3622 0.031*
N3 0.1005 (2) 0.5974 (3) 0.24244 (18) 0.0247 (9)
C3 0.1223 (3) 0.1981 (4) 0.30320 (17) 0.0188 (9)
N4 0.0870 (2) 0.5961 (3) 0.13214 (18) 0.0261 (9)
C4 0.1233 (3) 0.1908 (3) 0.24737 (17) 0.0203 (9)
H4A 0.1280 0.1254 0.2310 0.024*
C5 0.1174 (3) 0.2771 (4) 0.21635 (17) 0.0197 (9)
C6 0.1182 (3) 0.2775 (4) 0.15764 (18) 0.0214 (10)
C7 0.1341 (3) 0.1931 (3) 0.12624 (17) 0.0197 (9)
H7A 0.1449 0.1288 0.1425 0.024*
C8 0.1346 (3) 0.2010 (4) 0.07074 (18) 0.0235 (10)
C9 0.1159 (3) 0.2968 (4) 0.0501 (2) 0.0282 (11)
H9A 0.1142 0.3057 0.0125 0.034*
C10 0.0999 (3) 0.3787 (4) 0.08242 (19) 0.0281 (12)
H10A 0.0864 0.4429 0.0669 0.034*
C11 0.1265 (3) 0.1023 (4) 0.33750 (18) 0.0224 (10)
C12 0.2078 (3) 0.0461 (4) 0.32623 (19) 0.0261 (10)
H12A 0.2115 0.0299 0.2882 0.039*
H12B 0.2099 −0.0174 0.3470 0.039*
H12C 0.2538 0.0903 0.3364 0.039*
C13 0.0557 (3) 0.0306 (4) 0.3229 (2) 0.0274 (11)
H13A 0.0624 0.0069 0.2861 0.041*
H13B 0.0038 0.0675 0.3263 0.041*
H13C 0.0557 −0.0285 0.3470 0.041*
C14 0.1207 (3) 0.1287 (4) 0.39695 (19) 0.0315 (12)
H14A 0.0716 0.1698 0.4034 0.047*
H14B 0.1693 0.1677 0.4076 0.047*
H14C 0.1177 0.0653 0.4178 0.047*
C15 0.1569 (3) 0.1088 (4) 0.03663 (18) 0.0249 (10)
C16 0.0911 (4) 0.0262 (4) 0.0438 (2) 0.0344 (13)
H16A 0.0875 0.0072 0.0815 0.052*
H16B 0.1057 −0.0344 0.0227 0.052*
H16C 0.0382 0.0528 0.0317 0.052*
C17 0.2397 (3) 0.0657 (5) 0.0539 (2) 0.0389 (13)
H17A 0.2383 0.0504 0.0921 0.058*
H17B 0.2826 0.1163 0.0468 0.058*
H17C 0.2512 0.0027 0.0340 0.058*
C18 0.1638 (4) 0.1369 (4) −0.02260 (19) 0.0379 (14)
H18A 0.1101 0.1584 −0.0359 0.057*
H18B 0.1826 0.0771 −0.0428 0.057*
H18C 0.2029 0.1932 −0.0269 0.057*
C19 0.1018 (3) 0.6625 (4) 0.2714 (2) 0.0249 (11)
C20 0.1019 (3) 0.7449 (5) 0.3107 (2) 0.0320 (13)
H20A 0.1448 0.7945 0.3019 0.048*
H20B 0.1124 0.7162 0.3461 0.048*
H20C 0.0486 0.7793 0.3106 0.048*
C21 0.0799 (3) 0.6560 (4) 0.1006 (2) 0.0282 (11)
C22 0.0702 (4) 0.7321 (4) 0.0583 (2) 0.0435 (15)
H22B 0.0863 0.7018 0.0241 0.065*
H22C 0.1049 0.7916 0.0659 0.065*
H22A 0.0129 0.7538 0.0565 0.065*
F5 0.3387 (3) 0.4742 (3) 0.18538 (12) 0.0439 (9)
F1 0.0964 (2) 0.5412 (3) 0.37735 (13) 0.0444 (9)
F6 0.4162 (2) 0.3323 (3) 0.18232 (14) 0.0466 (9)
F7 0.2907 (2) 0.3270 (3) 0.22056 (14) 0.0499 (9)
F8 0.3013 (2) 0.3445 (3) 0.13080 (14) 0.0481 (9)
F2 0.0499 (2) 0.5587 (3) 0.46122 (13) 0.0498 (9)
F3 0.1841 (2) 0.5745 (3) 0.44502 (13) 0.0519 (10)
F4 0.1237 (3) 0.4179 (3) 0.43888 (16) 0.0742 (14)
B1 0.1145 (5) 0.5186 (6) 0.4330 (2) 0.0345 (16)
B2 0.3361 (4) 0.3695 (5) 0.1792 (2) 0.0293 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02479 (13) 0.01503 (13) 0.02021 (13) −0.00068 (6) −0.00068 (7) 0.00112 (6)
N1 0.025 (2) 0.018 (2) 0.018 (2) −0.0017 (15) −0.0023 (15) −0.0012 (15)
C1 0.034 (3) 0.018 (2) 0.017 (2) −0.0026 (19) −0.0004 (19) −0.0040 (19)
N2 0.031 (2) 0.016 (2) 0.022 (2) −0.0061 (15) −0.0026 (16) 0.0006 (16)
C2 0.037 (3) 0.023 (3) 0.019 (2) −0.001 (2) −0.003 (2) −0.002 (2)
N3 0.026 (2) 0.021 (2) 0.028 (2) 0.0024 (15) −0.0013 (16) 0.0027 (18)
C3 0.021 (2) 0.018 (2) 0.018 (2) −0.0039 (18) 0.0009 (18) 0.0024 (17)
N4 0.030 (2) 0.018 (2) 0.031 (2) 0.0031 (16) −0.0006 (17) −0.0011 (18)
C4 0.023 (2) 0.022 (2) 0.016 (2) −0.0032 (18) −0.0004 (18) −0.0033 (18)
C5 0.022 (2) 0.019 (2) 0.018 (2) −0.0040 (17) 0.0009 (18) −0.0023 (17)
C6 0.022 (2) 0.022 (2) 0.020 (2) −0.0055 (18) −0.0032 (18) 0.0021 (18)
C7 0.023 (2) 0.017 (2) 0.019 (2) −0.0040 (18) −0.0039 (18) 0.0020 (17)
C8 0.030 (3) 0.020 (2) 0.021 (2) −0.0075 (19) −0.002 (2) 0.0024 (18)
C9 0.044 (3) 0.027 (3) 0.013 (2) −0.003 (2) −0.003 (2) 0.0052 (19)
C10 0.043 (3) 0.023 (3) 0.018 (3) −0.005 (2) −0.008 (2) 0.0033 (19)
C11 0.029 (2) 0.022 (2) 0.017 (2) 0.002 (2) −0.0029 (19) 0.0013 (18)
C12 0.029 (3) 0.024 (2) 0.026 (2) 0.007 (2) 0.003 (2) 0.009 (2)
C13 0.031 (3) 0.022 (2) 0.029 (3) −0.006 (2) 0.001 (2) 0.007 (2)
C14 0.046 (3) 0.027 (3) 0.021 (3) 0.000 (2) 0.000 (2) 0.009 (2)
C15 0.034 (3) 0.025 (2) 0.016 (2) −0.003 (2) −0.0014 (19) −0.0013 (19)
C16 0.049 (4) 0.024 (3) 0.030 (3) 0.001 (2) −0.003 (2) −0.007 (2)
C17 0.037 (3) 0.051 (4) 0.028 (3) 0.006 (3) 0.006 (2) 0.006 (3)
C18 0.066 (4) 0.035 (3) 0.013 (2) 0.006 (3) −0.002 (2) −0.003 (2)
C19 0.029 (3) 0.023 (3) 0.023 (3) 0.0030 (19) 0.002 (2) −0.002 (2)
C20 0.041 (3) 0.022 (3) 0.032 (3) 0.001 (2) 0.000 (2) −0.006 (2)
C21 0.032 (3) 0.023 (3) 0.029 (3) 0.008 (2) 0.005 (2) 0.005 (2)
C22 0.057 (4) 0.032 (3) 0.041 (4) 0.009 (3) −0.006 (3) 0.022 (3)
F5 0.056 (2) 0.033 (2) 0.042 (2) 0.0095 (17) 0.0005 (15) 0.0018 (15)
F1 0.054 (2) 0.052 (2) 0.0273 (18) 0.0104 (16) −0.0050 (14) −0.0065 (17)
F6 0.0295 (17) 0.041 (2) 0.070 (3) 0.0038 (15) 0.0019 (15) −0.0015 (17)
F7 0.0379 (19) 0.060 (2) 0.052 (2) −0.0054 (16) 0.0043 (16) 0.0274 (19)
F8 0.049 (2) 0.049 (2) 0.046 (2) −0.0100 (17) −0.0084 (16) −0.0111 (16)
F2 0.051 (2) 0.064 (3) 0.0348 (19) −0.0122 (19) 0.0087 (16) −0.0163 (17)
F3 0.046 (2) 0.074 (3) 0.0358 (19) −0.0100 (19) 0.0048 (15) −0.0153 (18)
F4 0.132 (4) 0.035 (2) 0.056 (3) 0.012 (2) −0.024 (3) −0.004 (2)
B1 0.035 (3) 0.046 (4) 0.023 (3) 0.014 (3) −0.009 (3) −0.026 (3)
B2 0.023 (3) 0.022 (3) 0.043 (4) −0.005 (2) 0.003 (2) 0.005 (2)

Geometric parameters (Å, º)

Pt1—N4 1.992 (4) C13—H13B 0.9800
Pt1—N1 1.994 (4) C13—H13C 0.9800
Pt1—N2 1.995 (4) C14—H14A 0.9800
Pt1—N3 2.000 (5) C14—H14B 0.9800
N1—C1 1.343 (6) C14—H14C 0.9800
N1—C5 1.353 (6) C15—C17 1.528 (7)
C1—C2 1.377 (7) C15—C16 1.533 (7)
C1—H1A 0.9500 C15—C18 1.536 (6)
N2—C10 1.349 (6) C16—H16A 0.9800
N2—C6 1.350 (6) C16—H16B 0.9800
C2—C3 1.396 (7) C16—H16C 0.9800
C2—H2A 0.9500 C17—H17A 0.9800
N3—C19 1.118 (7) C17—H17B 0.9800
C3—C4 1.405 (6) C17—H17C 0.9800
C3—C11 1.520 (6) C18—H18A 0.9800
N4—C21 1.119 (7) C18—H18B 0.9800
C4—C5 1.372 (6) C18—H18C 0.9800
C4—H4A 0.9500 C19—C20 1.460 (7)
C5—C6 1.474 (6) C20—H20A 0.9800
C6—C7 1.379 (6) C20—H20B 0.9800
C7—C8 1.398 (6) C20—H20C 0.9800
C7—H7A 0.9500 C21—C22 1.462 (7)
C8—C9 1.386 (7) C22—H22B 0.9800
C8—C15 1.521 (7) C22—H22C 0.9800
C9—C10 1.368 (8) C22—H22A 0.9800
C9—H9A 0.9500 F5—B2 1.375 (7)
C10—H10A 0.9500 F1—B1 1.459 (7)
C11—C13 1.532 (7) F6—B2 1.398 (7)
C11—C14 1.535 (6) F7—B2 1.392 (6)
C11—C12 1.544 (7) F8—B2 1.381 (7)
C12—H12A 0.9800 F2—B1 1.374 (7)
C12—H12B 0.9800 F3—B1 1.385 (8)
C12—H12C 0.9800 F4—B1 1.330 (8)
C13—H13A 0.9800
N4—Pt1—N1 176.23 (16) C11—C13—H13C 109.5
N4—Pt1—N2 95.81 (18) H13A—C13—H13C 109.5
N1—Pt1—N2 80.47 (18) H13B—C13—H13C 109.5
N4—Pt1—N3 88.22 (19) C11—C14—H14A 109.5
N1—Pt1—N3 95.53 (18) C11—C14—H14B 109.5
N2—Pt1—N3 175.27 (16) H14A—C14—H14B 109.5
C1—N1—C5 119.5 (4) C11—C14—H14C 109.5
C1—N1—Pt1 125.0 (3) H14A—C14—H14C 109.5
C5—N1—Pt1 115.6 (3) H14B—C14—H14C 109.5
N1—C1—C2 121.7 (5) C8—C15—C17 110.1 (4)
N1—C1—H1A 119.2 C8—C15—C16 108.8 (4)
C2—C1—H1A 119.2 C17—C15—C16 109.2 (4)
C10—N2—C6 118.8 (4) C8—C15—C18 112.0 (4)
C10—N2—Pt1 125.4 (4) C17—C15—C18 107.4 (4)
C6—N2—Pt1 115.5 (3) C16—C15—C18 109.4 (4)
C1—C2—C3 120.4 (5) C15—C16—H16A 109.5
C1—C2—H2A 119.8 C15—C16—H16B 109.5
C3—C2—H2A 119.8 H16A—C16—H16B 109.5
C19—N3—Pt1 176.6 (4) C15—C16—H16C 109.5
C2—C3—C4 116.7 (4) H16A—C16—H16C 109.5
C2—C3—C11 122.8 (4) H16B—C16—H16C 109.5
C4—C3—C11 120.6 (4) C15—C17—H17A 109.5
C21—N4—Pt1 178.7 (5) C15—C17—H17B 109.5
C5—C4—C3 120.6 (4) H17A—C17—H17B 109.5
C5—C4—H4A 119.7 C15—C17—H17C 109.5
C3—C4—H4A 119.7 H17A—C17—H17C 109.5
N1—C5—C4 121.2 (4) H17B—C17—H17C 109.5
N1—C5—C6 114.0 (4) C15—C18—H18A 109.5
C4—C5—C6 124.8 (4) C15—C18—H18B 109.5
N2—C6—C7 121.3 (4) H18A—C18—H18B 109.5
N2—C6—C5 114.0 (4) C15—C18—H18C 109.5
C7—C6—C5 124.7 (4) H18A—C18—H18C 109.5
C6—C7—C8 120.8 (4) H18B—C18—H18C 109.5
C6—C7—H7A 119.6 N3—C19—C20 177.7 (6)
C8—C7—H7A 119.6 C19—C20—H20A 109.5
C9—C8—C7 116.0 (4) C19—C20—H20B 109.5
C9—C8—C15 123.7 (4) H20A—C20—H20B 109.5
C7—C8—C15 120.3 (4) C19—C20—H20C 109.5
C10—C9—C8 121.6 (5) H20A—C20—H20C 109.5
C10—C9—H9A 119.2 H20B—C20—H20C 109.5
C8—C9—H9A 119.2 N4—C21—C22 178.4 (6)
N2—C10—C9 121.4 (5) C21—C22—H22B 109.5
N2—C10—H10A 119.3 C21—C22—H22C 109.5
C9—C10—H10A 119.3 H22B—C22—H22C 109.5
C3—C11—C13 109.4 (4) C21—C22—H22A 109.5
C3—C11—C14 111.3 (4) H22B—C22—H22A 109.5
C13—C11—C14 108.9 (4) H22C—C22—H22A 109.5
C3—C11—C12 109.0 (4) F4—B1—F2 113.9 (7)
C13—C11—C12 108.5 (4) F4—B1—F3 113.8 (5)
C14—C11—C12 109.7 (4) F2—B1—F3 108.6 (4)
C11—C12—H12A 109.5 F4—B1—F1 109.1 (5)
C11—C12—H12B 109.5 F2—B1—F1 105.1 (5)
H12A—C12—H12B 109.5 F3—B1—F1 105.6 (6)
C11—C12—H12C 109.5 F5—B2—F8 110.2 (5)
H12A—C12—H12C 109.5 F5—B2—F7 109.1 (5)
H12B—C12—H12C 109.5 F8—B2—F7 110.0 (4)
C11—C13—H13A 109.5 F5—B2—F6 108.0 (5)
C11—C13—H13B 109.5 F8—B2—F6 110.7 (5)
H13A—C13—H13B 109.5 F7—B2—F6 108.7 (5)

Funding Statement

This work was funded by Welch Foundation grant AD-0007 to the Chemistry Department at Austin College for Undergraduate Research.

References

  1. Achar, S. & Catalano, V. J. (1997). Polyhedron, 16, 1555–1561.
  2. Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562–2563.
  3. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Day, M. W. (2009). CSD Communication, CCDC 246943.
  6. Field, J. S., Haines, R. J. & Summerton, G. C. J. (2003). J. Coord. Chem. 56, 1149–1155.
  7. Ha, K. (2010). Acta Cryst. E66, m389. [DOI] [PMC free article] [PubMed]
  8. Hill, G. S., Rendina, L. M. & Puddephatt, R. J. (1996). J. Chem. Soc. Dalton Trans. pp. 1809–1813.
  9. Lazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350–364. [DOI] [PubMed]
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. McKeown, B. A., Gonzalez, H. E., Friedfeld, M. R., Gunnoe, T. B., Cundari, T. R. & Sabat, M. (2011). J. Am. Chem. Soc. 133, 19131–19152. [DOI] [PubMed]
  12. Renzi, A. de, Panunzi, A., Vitagliano, A. & Paiaro, G. (1976). J. Chem. Soc. Chem. Commun. pp. 47.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Singh, A., Anandhi, U., Cinellu, M. A. & Sharp, P. R. (2008). Dalton Trans. pp. 2314–2327. [DOI] [PubMed]
  15. Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714–4723. [DOI] [PubMed]
  16. Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98–104.
  17. Tzeng, B.-C., Chan, S.-C., Chan, M. C. W., Che, C.-M., Cheung, K.-K. & Peng, S.-M. (2001). Inorg. Chem. 40, 6699–6704. [DOI] [PubMed]
  18. Yang, J., Kersi, D. K., Giles, L. J., Stein, B. W., Feng, C., Tichnell, C. R., Shultz, D. A. & Kirk, M. L. (2014). Inorg. Chem. 53, 4791–4793. [DOI] [PubMed]
  19. Zhang, Y., Fulong, C. R. P., Hauke, C. E., Crawley, M. R., Friedman, A. E. & Cook, T. R. (2017). Chem. Eur. J. 23, 4532–4536. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018005923/jj2198sup1.cif

e-74-00695-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018005923/jj2198Isup2.hkl

e-74-00695-Isup2.hkl (289.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018005923/jj2198Isup3.mol

CCDC reference: 1837532

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES