Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 27;74(Pt 5):743–746. doi: 10.1107/S2056989018006229

Crystal structure of di­fluorido­{2-[(4-hy­droxy­phen­yl)diazen­yl]-3,5-di­methyl­pyrrolido}boron

Huixiao Feng a,b, Zhenming Yin a,b,*
PMCID: PMC5947500  PMID: 29850104

The asymmetric unit contains two independent mol­ecules, which are linked by an O—H⋯O hydrogen bond. The dimers are further assembled into one-dimensional ladder like structure through O—H⋯F hydrogen bonds and stabilized by π–π inter­actions. The ladders are further linked by C—H⋯π contacts.

Keywords: azo­pyrrole, borondifluoride complex, crystal structure, hydrogen bond

Abstract

The asymmetric unit of the title azo­pyrrole-BF2 complex, C12H12BF2N3O, contains two independent mol­ecules, which are linked by an O—H⋯O hydrogen bond. The dimers are further assembled into a one-dimensional ladder-like structure through O—H⋯F hydrogen bonds and stabilized by π–π inter­actions. The ladders are further linked by C—H⋯π contacts.

Chemical context  

Recently, some unique pyrrole-BF2-based dyes have emerged as alternatives to 4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacene (BODIPY) dyes because of their easy synthesis, lower symmetry and longer wavelengt absorption. Li et al. (2009) have synthesized a series of azo­pyrroles and their di­fluoro­boron complexes, which possess promising absorption properties. The potentials of a few BF2–azo­pyrrole complexes as sensitizers for dye-sensitized solar cells (DSSCs) have been evaluated (Mikroyannidis, Royd et al., 2010). In the me­antime, some BF2–azo­pyrrole complexes have been used for the fabrication of bulk heterojunction solar cells (Mikroyannidis, Kabanakis et al., 2010). A 2-(di­methyl­amino­phenyl­azo)-5-ethyl-pyrrole boron difluoride complex has been used as an OFF–ON–OFF-type three-stage binary pH switch (Lee et al., 2012). Previously, we have reported the crystal structures of some azo­pyrrole compounds (Yin et al., 2008; Li et al., 2011). In an extension of this research, we report herein on the crystal structure of di­fluorido­{2-[(4-hy­droxy­phen­yl)diazen­yl]-3,5-di­methyl­pyrrolido}boron.graphic file with name e-74-00743-scheme1.jpg

Structural commentary  

The asymmetric unit contains two independent mol­ecules, which show slight differences in some bond lengths [e.g. O1—C10 and O2—C22 = 1.358 (3) and 1.382 (3) Å, respectively; Table 1] and torsion angles [N2—N3—C7—C12 and N5—N6—C19—C20 are −171.1 (2) and 177.9 (2)°, respectively]. The r.m.s. deviation for fitting two molecules = 0.055 Å. The two mol­ecules are linked by the O1—H1⋯O2 hydrogen bond (Fig. 1, Table 2). The torsion angles between benzene rings and neighboring pyrrole rings in the N1- and N4-containing mol­ecules are 9.43 (12) and 1.34 (12)°, respectively. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an azo N atom. The B—N bond distances vary from 1.537 (3) to 1.618 (3) Å (Table 1). The B—Npyrrole bonds are shorter than the B—Nazo bonds. The two N—N bonds each adopt a trans conformation and at 1.318 (3) and 1.312 (3) Å are much longer than that in the structure of the free azo­pyrrole ligand (Yin et al., 2008). In addition, the C1—C4, C2—C3, C13—C16 and C14—C15 bonds are lengthened, while the C3—C4 and C15—C16 bonds are shortened compared to the normal bond lengths in pyrrole. This indicates that the azo­pyrrole moiety of the title compound must be in the hydrazone form (Chen et al., 2014).

Table 1. Selected bond lengths (Å).

F1—B1 1.369 (3) F3—B2 1.368 (3)
F2—B1 1.401 (3) F4—B2 1.380 (3)
O1—C10 1.358 (3) O2—C22 1.382 (3)
N1—C1 1.377 (3) N4—C13 1.380 (3)
N1—C2 1.356 (3) N4—C14 1.353 (3)
N1—B1 1.537 (3) N4—B2 1.545 (3)
N2—N3 1.318 (3) N5—N6 1.312 (3)
N2—C1 1.343 (3) N5—C13 1.338 (3)
N3—C7 1.406 (3) N6—C19 1.416 (3)
N3—B1 1.613 (3) N6—B2 1.618 (3)
C1—C4 1.411 (3) C13—C16 1.415 (3)
C2—C3 1.405 (3) C14—C15 1.408 (3)
C3—C4 1.389 (3) C15—C16 1.389 (3)

Figure 1.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. The O—H⋯O hydrogen bond is shown as a dashed line.

Table 2. Hydrogen-bond geometry (Å, °).

Cg2 and Cg6 are the centroids of the N4/C13–C16 and N1/C1–C4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.98 2.797 (2) 178
O2—H2⋯F2i 0.82 2.06 2.812 (2) 152
C3—H3⋯Cg1ii 0.93 2.62 3.501 (2) 158
C15—H15⋯Cg2iii 0.93 2.63 3.506 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features and Hirshfeld analysis  

The two conformers also show supra­molecular differences. One of the conformers only has a hydrogen bond between its hydroxyl group and that of the other conformer mol­ecule (Fig. 1), whereas the hydroxyl group in the other conformer is also involved in inter­molecular O—H⋯F inter­actions (Fig. 2, Table 2), forming a one-dimensional ladder-like structure along [100]. In the ladder structure, the mol­ecules are arranged in a parallel manner through π–π inter­actions [Cg1⋯Cg4(x − 1, y, z) = 3.544 (1) Å, Cg2⋯Cg3(1 + x, y, z) = 3.617 (1) Å and Cg3⋯Cg4(1 + x, y, z) = 3.664 (13) Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C4, C7–C12 and C19–C24 rings, respectively]. The ladders assemble into a layer structure through C—H⋯π contacts (Table 2).

Figure 2.

Figure 2

Part of the crystal packing showing mol­ecules linked by O—H⋯O and O—H⋯F hydrogen bonds, π–π inter­actions and C—H⋯π contacts.

The Hirshfeld surfaces of the two conformers were generated using CrystalExplorer (Turner et al., 2017). Fig. 3 clearly shows that the two conformers are involved in different supra­molecular inter­actions.

Figure 3.

Figure 3

Hirshfeld surfaces of the two conformers mapped over d norm in the range −0.614 to 1.350 a.u. The inter­molecular contacts can be seen in red regions.

Database survey  

A search in the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for azo­pyrrole boron difluoride compounds returned two entries, 2,5-bis­(4-di­methyl­amino­phenyl­azo)pyrrole boron difluoride (Li et al., 2009) and 2-(di­methyl­amino­phenyl­azo)-5-ethyl-pyrrole boron difluoride (Lee et al., 2012). In both, the boron atoms have same coordination as in the title compound. The N—N bonds also adopt trans conformations and their lengths [1.322 (2) and 1.310 (1) Å] are comparable to those in the title compound.

Synthesis and crystallization  

To a solution of 2-(4-hy­droxy­lphenyl­azo)-3,5-dimethyl-1-H-pyrrole (2 mmol, 0.43g) and tri­ethyl­amine (6 mL) in dry di­chloro­methane (15 mL) was slowly added boron trifluoride ethyl ether (2 mL). The resulting solution was stirred for 40 min, and then saturated potassium carbonate solution was added and stirred for 30 minutes. The resulting solution was extracted with ethyl acetate (10 mL × 3) and evaporated under vacuum to dryness. The residue was purified by column chromatography, eluting with ethyl acetate and petroleum ether (v/v = 1:14), to give a dark-green product, m.p. = 405 K. Yield 65%. 1H NMR (400 MHz, DMSO-d 6): δ 10.118 (s, 1H, –OH), 7.548–7.526 (d, 2H, J = 8.8Hz, Ar–CH), 6.920–6.897(d, 2H, J = 9.2Hz, Ar–CH), 6.342 (s, 1H, pyrrole–CH), 2.371(s, 3H, –CH3), 2.314 (s, 3H, –CH3). Suitable crystals for X-ray diffraction analysis were obtained by the slow evaporation of an CHCl3/CH3OH solution of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. OH H atoms were located from difference-Fourier maps and refined freely. Other H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined using a riding model, with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

Crystal data
Chemical formula C12H12BF2N3O
M r 263.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.8080 (4), 24.8217 (18), 14.4744 (9)
β (°) 100.489 (6)
V3) 2405.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.25 × 0.22 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.680, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11903, 4228, 3277
R int 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.116, 1.06
No. of reflections 4228
No. of parameters 349
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006229/ex2007sup1.cif

e-74-00743-sup1.cif (287.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006229/ex2007Isup2.hkl

e-74-00743-Isup2.hkl (232KB, hkl)

CCDC reference: 1839158

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C12H12BF2N3O F(000) = 1088
Mr = 263.06 Dx = 1.453 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.8080 (4) Å Cell parameters from 3432 reflections
b = 24.8217 (18) Å θ = 4.1–28.6°
c = 14.4744 (9) Å µ = 0.12 mm1
β = 100.489 (6)° T = 100 K
V = 2405.1 (3) Å3 Block, dark green
Z = 8 0.25 × 0.22 × 0.2 mm

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2 diffractometer 4228 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 3277 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.043
Detector resolution: 5.2740 pixels mm-1 θmax = 25.0°, θmin = 3.2°
ω scans h = −7→8
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −29→29
Tmin = 0.680, Tmax = 1.000 l = −17→15
11903 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.6938P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4228 reflections Δρmax = 0.25 e Å3
349 parameters Δρmin = −0.26 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.31342 (18) 0.53429 (5) 0.89956 (9) 0.0210 (3)
F2 1.46735 (18) 0.45513 (5) 0.87853 (8) 0.0205 (3)
O1 0.5707 (2) 0.40021 (7) 0.61520 (11) 0.0272 (4)
H1 0.5225 0.3893 0.6596 0.041*
N1 1.5952 (3) 0.53806 (7) 0.81633 (12) 0.0156 (4)
N2 1.3878 (3) 0.52607 (8) 0.67448 (13) 0.0178 (4)
N3 1.2967 (3) 0.50217 (7) 0.73622 (13) 0.0162 (4)
C1 1.5603 (3) 0.54666 (9) 0.72074 (15) 0.0162 (5)
C2 1.7710 (3) 0.56211 (9) 0.85288 (16) 0.0166 (5)
C3 1.8484 (3) 0.58566 (9) 0.77884 (16) 0.0182 (5)
H3 1.9686 0.6043 0.7852 0.022*
C4 1.7176 (3) 0.57669 (9) 0.69470 (16) 0.0180 (5)
C5 1.8540 (3) 0.56219 (10) 0.95504 (15) 0.0211 (5)
H5A 1.8228 0.5958 0.9820 0.032*
H5B 1.9964 0.5578 0.9645 0.032*
H5C 1.7965 0.5331 0.9848 0.032*
C6 1.7354 (4) 0.59469 (11) 0.59812 (16) 0.0257 (6)
H6A 1.6381 0.5762 0.5528 0.038*
H6B 1.8669 0.5866 0.5869 0.038*
H6C 1.7125 0.6328 0.5926 0.038*
C7 1.1152 (3) 0.47520 (9) 0.70490 (15) 0.0163 (5)
C8 1.0407 (3) 0.46718 (9) 0.60966 (16) 0.0198 (5)
H8 1.1142 0.4786 0.5650 0.024*
C9 0.8590 (3) 0.44247 (10) 0.58158 (16) 0.0223 (5)
H9 0.8086 0.4380 0.5179 0.027*
C10 0.7495 (3) 0.42404 (9) 0.64779 (16) 0.0190 (5)
C11 0.8254 (3) 0.43105 (9) 0.74289 (16) 0.0179 (5)
H11 0.7541 0.4185 0.7876 0.021*
C12 1.0063 (3) 0.45662 (9) 0.77097 (15) 0.0170 (5)
H12 1.0560 0.4615 0.8346 0.020*
B1 1.4183 (4) 0.50677 (11) 0.84252 (18) 0.0174 (6)
F3 −0.50768 (19) 0.27493 (6) 0.54470 (9) 0.0247 (3)
F4 −0.33107 (18) 0.19699 (6) 0.55925 (9) 0.0237 (3)
O2 0.3980 (2) 0.36293 (7) 0.76431 (11) 0.0226 (4)
H2 0.4090 0.3820 0.8112 0.034*
N4 −0.6118 (3) 0.20404 (8) 0.64279 (13) 0.0172 (4)
N5 −0.4053 (3) 0.23598 (8) 0.77401 (13) 0.0176 (4)
N6 −0.3216 (3) 0.25089 (8) 0.70328 (12) 0.0167 (4)
C13 −0.5729 (3) 0.20907 (9) 0.73934 (15) 0.0168 (5)
C14 −0.7850 (3) 0.17649 (9) 0.61832 (16) 0.0188 (5)
C15 −0.8566 (3) 0.16381 (9) 0.70106 (16) 0.0198 (5)
H15 −0.9737 0.1451 0.7036 0.024*
C16 −0.7251 (3) 0.18365 (9) 0.77825 (16) 0.0193 (5)
C17 −0.8717 (3) 0.16370 (11) 0.51897 (17) 0.0261 (6)
H17A −0.9208 0.1961 0.4867 0.039*
H17B −0.9797 0.1386 0.5171 0.039*
H17C −0.7707 0.1481 0.4889 0.039*
C18 −0.7344 (4) 0.17973 (10) 0.88049 (16) 0.0254 (6)
H18A −0.6142 0.1943 0.9169 0.038*
H18B −0.7476 0.1426 0.8971 0.038*
H18C −0.8474 0.1997 0.8931 0.038*
C19 −0.1401 (3) 0.28017 (9) 0.72225 (15) 0.0155 (5)
C20 −0.0500 (3) 0.29409 (9) 0.64649 (16) 0.0186 (5)
H20 −0.1105 0.2848 0.5857 0.022*
C21 0.1291 (3) 0.32173 (9) 0.66166 (16) 0.0182 (5)
H21 0.1898 0.3308 0.6112 0.022*
C22 0.2179 (3) 0.33579 (9) 0.75205 (16) 0.0170 (5)
C23 0.1294 (3) 0.32146 (9) 0.82758 (16) 0.0183 (5)
H23 0.1907 0.3306 0.8883 0.022*
C24 −0.0496 (3) 0.29372 (9) 0.81286 (15) 0.0180 (5)
H24 −0.1090 0.2842 0.8635 0.022*
B2 −0.4440 (4) 0.23212 (11) 0.60191 (18) 0.0192 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0209 (7) 0.0223 (8) 0.0214 (7) −0.0015 (6) 0.0079 (5) −0.0030 (6)
F2 0.0227 (7) 0.0171 (7) 0.0211 (7) −0.0029 (6) 0.0027 (5) 0.0025 (6)
O1 0.0236 (9) 0.0309 (11) 0.0260 (9) −0.0135 (8) 0.0014 (7) 0.0018 (8)
N1 0.0156 (9) 0.0132 (10) 0.0185 (10) 0.0009 (8) 0.0048 (7) −0.0001 (8)
N2 0.0182 (10) 0.0144 (10) 0.0221 (10) −0.0002 (8) 0.0070 (8) 0.0008 (8)
N3 0.0148 (9) 0.0148 (10) 0.0195 (10) −0.0007 (8) 0.0047 (8) 0.0007 (8)
C1 0.0174 (11) 0.0136 (12) 0.0176 (12) 0.0017 (10) 0.0031 (9) 0.0001 (10)
C2 0.0141 (11) 0.0117 (12) 0.0243 (12) 0.0026 (9) 0.0040 (9) −0.0012 (10)
C3 0.0148 (11) 0.0128 (12) 0.0277 (13) −0.0022 (9) 0.0058 (9) −0.0003 (10)
C4 0.0182 (12) 0.0129 (12) 0.0248 (12) 0.0002 (10) 0.0087 (9) 0.0005 (10)
C5 0.0204 (12) 0.0209 (13) 0.0218 (12) −0.0014 (10) 0.0037 (9) 0.0011 (10)
C6 0.0244 (13) 0.0275 (15) 0.0262 (13) −0.0037 (11) 0.0073 (10) 0.0049 (11)
C7 0.0163 (11) 0.0117 (12) 0.0207 (12) −0.0006 (9) 0.0033 (9) 0.0013 (10)
C8 0.0220 (12) 0.0185 (13) 0.0198 (12) −0.0030 (10) 0.0061 (9) 0.0021 (10)
C9 0.0265 (13) 0.0220 (14) 0.0169 (12) −0.0048 (11) 0.0002 (9) −0.0001 (10)
C10 0.0146 (11) 0.0152 (13) 0.0263 (13) −0.0016 (10) 0.0009 (9) 0.0007 (10)
C11 0.0161 (11) 0.0167 (12) 0.0219 (12) 0.0019 (10) 0.0066 (9) 0.0032 (10)
C12 0.0187 (12) 0.0155 (12) 0.0168 (11) −0.0004 (10) 0.0032 (9) −0.0006 (10)
B1 0.0169 (13) 0.0168 (14) 0.0185 (13) −0.0009 (11) 0.0031 (10) 0.0016 (11)
F3 0.0265 (7) 0.0242 (8) 0.0230 (7) −0.0026 (6) 0.0035 (6) 0.0065 (6)
F4 0.0227 (7) 0.0267 (8) 0.0234 (7) −0.0033 (6) 0.0089 (6) −0.0067 (6)
O2 0.0197 (8) 0.0208 (10) 0.0278 (9) −0.0056 (7) 0.0056 (7) −0.0043 (8)
N4 0.0170 (10) 0.0160 (11) 0.0190 (10) −0.0010 (8) 0.0049 (8) 0.0002 (8)
N5 0.0191 (10) 0.0141 (10) 0.0211 (10) 0.0006 (8) 0.0073 (8) −0.0002 (8)
N6 0.0181 (10) 0.0139 (10) 0.0193 (10) −0.0016 (8) 0.0064 (8) 0.0009 (8)
C13 0.0171 (12) 0.0132 (12) 0.0210 (12) 0.0021 (10) 0.0063 (9) 0.0006 (10)
C14 0.0159 (11) 0.0142 (12) 0.0266 (13) 0.0009 (10) 0.0047 (9) 0.0010 (10)
C15 0.0143 (11) 0.0153 (12) 0.0309 (13) −0.0009 (10) 0.0065 (10) 0.0020 (11)
C16 0.0208 (12) 0.0137 (12) 0.0250 (12) 0.0029 (10) 0.0084 (10) 0.0030 (10)
C17 0.0200 (12) 0.0292 (15) 0.0280 (14) −0.0039 (11) 0.0018 (10) 0.0011 (12)
C18 0.0283 (13) 0.0231 (14) 0.0275 (13) 0.0005 (11) 0.0123 (10) 0.0035 (11)
C19 0.0148 (11) 0.0101 (12) 0.0220 (12) −0.0003 (9) 0.0046 (9) 0.0000 (10)
C20 0.0225 (12) 0.0171 (13) 0.0162 (11) −0.0015 (10) 0.0039 (9) −0.0007 (10)
C21 0.0197 (12) 0.0147 (12) 0.0223 (12) 0.0007 (10) 0.0094 (9) 0.0025 (10)
C22 0.0145 (11) 0.0130 (12) 0.0237 (12) 0.0001 (9) 0.0039 (9) −0.0003 (10)
C23 0.0196 (12) 0.0146 (12) 0.0191 (12) 0.0001 (10) −0.0004 (9) −0.0028 (10)
C24 0.0194 (12) 0.0169 (13) 0.0193 (12) 0.0005 (10) 0.0079 (9) 0.0018 (10)
B2 0.0203 (13) 0.0203 (15) 0.0178 (13) −0.0031 (12) 0.0059 (10) 0.0004 (12)

Geometric parameters (Å, º)

F1—B1 1.369 (3) F3—B2 1.368 (3)
F2—B1 1.401 (3) F4—B2 1.380 (3)
O1—H1 0.8200 O2—H2 0.8200
O1—C10 1.358 (3) O2—C22 1.382 (3)
N1—C1 1.377 (3) N4—C13 1.380 (3)
N1—C2 1.356 (3) N4—C14 1.353 (3)
N1—B1 1.537 (3) N4—B2 1.545 (3)
N2—N3 1.318 (3) N5—N6 1.312 (3)
N2—C1 1.343 (3) N5—C13 1.338 (3)
N3—C7 1.406 (3) N6—C19 1.416 (3)
N3—B1 1.613 (3) N6—B2 1.618 (3)
C1—C4 1.411 (3) C13—C16 1.415 (3)
C2—C3 1.405 (3) C14—C15 1.408 (3)
C2—C5 1.484 (3) C14—C17 1.486 (3)
C3—H3 0.9300 C15—H15 0.9300
C3—C4 1.389 (3) C15—C16 1.389 (3)
C4—C6 1.493 (3) C16—C18 1.496 (3)
C5—H5A 0.9600 C17—H17A 0.9600
C5—H5B 0.9600 C17—H17B 0.9600
C5—H5C 0.9600 C17—H17C 0.9600
C6—H6A 0.9600 C18—H18A 0.9600
C6—H6B 0.9600 C18—H18B 0.9600
C6—H6C 0.9600 C18—H18C 0.9600
C7—C8 1.394 (3) C19—C20 1.394 (3)
C7—C12 1.391 (3) C19—C24 1.385 (3)
C8—H8 0.9300 C20—H20 0.9300
C8—C9 1.375 (3) C20—C21 1.382 (3)
C9—H9 0.9300 C21—H21 0.9300
C9—C10 1.394 (3) C21—C22 1.382 (3)
C10—C11 1.390 (3) C22—C23 1.387 (3)
C11—H11 0.9300 C23—H23 0.9300
C11—C12 1.380 (3) C23—C24 1.382 (3)
C12—H12 0.9300 C24—H24 0.9300
C10—O1—H1 109.5 C22—O2—H2 109.5
C1—N1—B1 109.05 (17) C13—N4—B2 109.16 (18)
C2—N1—C1 107.60 (18) C14—N4—C13 107.95 (18)
C2—N1—B1 143.30 (19) C14—N4—B2 142.88 (19)
N3—N2—C1 108.06 (18) N6—N5—C13 108.05 (18)
N2—N3—C7 119.34 (18) N5—N6—C19 118.74 (18)
N2—N3—B1 113.07 (17) N5—N6—B2 113.64 (17)
C7—N3—B1 127.56 (18) C19—N6—B2 127.62 (18)
N1—C1—C4 110.47 (18) N4—C13—C16 110.09 (19)
N2—C1—N1 114.66 (19) N5—C13—N4 114.72 (19)
N2—C1—C4 134.9 (2) N5—C13—C16 135.2 (2)
N1—C2—C3 108.23 (19) N4—C14—C15 108.08 (19)
N1—C2—C5 122.6 (2) N4—C14—C17 122.4 (2)
C3—C2—C5 129.2 (2) C15—C14—C17 129.6 (2)
C2—C3—H3 125.3 C14—C15—H15 125.3
C4—C3—C2 109.40 (19) C16—C15—C14 109.4 (2)
C4—C3—H3 125.3 C16—C15—H15 125.3
C1—C4—C6 127.1 (2) C13—C16—C18 126.1 (2)
C3—C4—C1 104.30 (19) C15—C16—C13 104.4 (2)
C3—C4—C6 128.6 (2) C15—C16—C18 129.5 (2)
C2—C5—H5A 109.5 C14—C17—H17A 109.5
C2—C5—H5B 109.5 C14—C17—H17B 109.5
C2—C5—H5C 109.5 C14—C17—H17C 109.5
H5A—C5—H5B 109.5 H17A—C17—H17B 109.5
H5A—C5—H5C 109.5 H17A—C17—H17C 109.5
H5B—C5—H5C 109.5 H17B—C17—H17C 109.5
C4—C6—H6A 109.5 C16—C18—H18A 109.5
C4—C6—H6B 109.5 C16—C18—H18B 109.5
C4—C6—H6C 109.5 C16—C18—H18C 109.5
H6A—C6—H6B 109.5 H18A—C18—H18B 109.5
H6A—C6—H6C 109.5 H18A—C18—H18C 109.5
H6B—C6—H6C 109.5 H18B—C18—H18C 109.5
C8—C7—N3 121.8 (2) C20—C19—N6 117.90 (19)
C12—C7—N3 118.89 (19) C24—C19—N6 122.0 (2)
C12—C7—C8 119.3 (2) C24—C19—C20 120.1 (2)
C7—C8—H8 119.9 C19—C20—H20 120.0
C9—C8—C7 120.1 (2) C21—C20—C19 120.0 (2)
C9—C8—H8 119.9 C21—C20—H20 120.0
C8—C9—H9 119.7 C20—C21—H21 120.1
C8—C9—C10 120.6 (2) C20—C21—C22 119.8 (2)
C10—C9—H9 119.7 C22—C21—H21 120.1
O1—C10—C9 117.5 (2) O2—C22—C21 118.0 (2)
O1—C10—C11 123.1 (2) O2—C22—C23 121.8 (2)
C11—C10—C9 119.4 (2) C21—C22—C23 120.2 (2)
C10—C11—H11 120.0 C22—C23—H23 119.9
C12—C11—C10 120.0 (2) C24—C23—C22 120.2 (2)
C12—C11—H11 120.0 C24—C23—H23 119.9
C7—C12—H12 119.7 C19—C24—H24 120.2
C11—C12—C7 120.6 (2) C23—C24—C19 119.7 (2)
C11—C12—H12 119.7 C23—C24—H24 120.2
F1—B1—F2 110.33 (19) F3—B2—F4 111.15 (19)
F1—B1—N1 114.5 (2) F3—B2—N4 114.04 (19)
F1—B1—N3 112.16 (18) F3—B2—N6 112.3 (2)
F2—B1—N1 114.19 (18) F4—B2—N4 113.4 (2)
F2—B1—N3 109.65 (19) F4—B2—N6 110.52 (18)
N1—B1—N3 95.14 (17) N4—B2—N6 94.42 (16)
O1—C10—C11—C12 −178.6 (2) O2—C22—C23—C24 −179.2 (2)
N1—C1—C4—C3 0.1 (3) N4—C13—C16—C15 −0.5 (3)
N1—C1—C4—C6 −179.5 (2) N4—C13—C16—C18 179.0 (2)
N1—C2—C3—C4 0.7 (3) N4—C14—C15—C16 −0.2 (3)
N2—N3—C7—C8 8.1 (3) N5—N6—C19—C20 177.9 (2)
N2—N3—C7—C12 −171.1 (2) N5—N6—C19—C24 −0.4 (3)
N2—N3—B1—F1 117.8 (2) N5—N6—B2—F3 118.5 (2)
N2—N3—B1—F2 −119.2 (2) N5—N6—B2—F4 −116.8 (2)
N2—N3—B1—N1 −1.2 (2) N5—N6—B2—N4 0.2 (2)
N2—C1—C4—C3 178.7 (3) N5—C13—C16—C15 179.5 (2)
N2—C1—C4—C6 −0.8 (4) N5—C13—C16—C18 −1.0 (4)
N3—N2—C1—N1 −0.3 (3) N6—N5—C13—N4 0.2 (3)
N3—N2—C1—C4 −178.9 (2) N6—N5—C13—C16 −179.8 (3)
N3—C7—C8—C9 −177.5 (2) N6—C19—C20—C21 −178.7 (2)
N3—C7—C12—C11 178.5 (2) N6—C19—C24—C23 178.8 (2)
C1—N1—C2—C3 −0.6 (2) C13—N4—C14—C15 −0.1 (3)
C1—N1—C2—C5 178.5 (2) C13—N4—C14—C17 −179.9 (2)
C1—N1—B1—F1 −116.2 (2) C13—N4—B2—F3 −116.9 (2)
C1—N1—B1—F2 115.2 (2) C13—N4—B2—F4 114.5 (2)
C1—N1—B1—N3 1.0 (2) C13—N4—B2—N6 −0.1 (2)
C1—N2—N3—C7 −177.34 (19) C13—N5—N6—C19 −179.84 (19)
C1—N2—N3—B1 1.0 (2) C13—N5—N6—B2 −0.3 (2)
C2—N1—C1—N2 −178.58 (19) C14—N4—C13—N5 −179.60 (19)
C2—N1—C1—C4 0.4 (3) C14—N4—C13—C16 0.4 (3)
C2—N1—B1—F1 60.6 (4) C14—N4—B2—F3 62.3 (4)
C2—N1—B1—F2 −68.0 (4) C14—N4—B2—F4 −66.2 (4)
C2—N1—B1—N3 177.8 (3) C14—N4—B2—N6 179.2 (3)
C2—C3—C4—C1 −0.4 (3) C14—C15—C16—C13 0.5 (3)
C2—C3—C4—C6 179.1 (2) C14—C15—C16—C18 −179.0 (2)
C5—C2—C3—C4 −178.4 (2) C17—C14—C15—C16 179.6 (2)
C7—N3—B1—F1 −64.0 (3) C19—N6—B2—F3 −62.0 (3)
C7—N3—B1—F2 59.0 (3) C19—N6—B2—F4 62.7 (3)
C7—N3—B1—N1 176.9 (2) C19—N6—B2—N4 179.7 (2)
C7—C8—C9—C10 −1.6 (4) C19—C20—C21—C22 −0.4 (3)
C8—C7—C12—C11 −0.7 (3) C20—C19—C24—C23 0.5 (3)
C8—C9—C10—O1 179.7 (2) C20—C21—C22—O2 179.4 (2)
C8—C9—C10—C11 0.3 (4) C20—C21—C22—C23 1.1 (3)
C9—C10—C11—C12 0.8 (3) C21—C22—C23—C24 −1.0 (3)
C10—C11—C12—C7 −0.5 (3) C22—C23—C24—C19 0.1 (3)
C12—C7—C8—C9 1.8 (4) C24—C19—C20—C21 −0.4 (3)
B1—N1—C1—N2 −0.6 (3) B2—N4—C13—N5 −0.1 (3)
B1—N1—C1—C4 178.34 (19) B2—N4—C13—C16 179.92 (19)
B1—N1—C2—C3 −177.4 (3) B2—N4—C14—C15 −179.3 (3)
B1—N1—C2—C5 1.7 (4) B2—N4—C14—C17 0.9 (5)
B1—N3—C7—C8 −170.0 (2) B2—N6—C19—C20 −1.6 (3)
B1—N3—C7—C12 10.8 (3) B2—N6—C19—C24 −179.8 (2)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg6 are the centroids of the N4/C13–C16 and N1/C1–C4 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.98 2.797 (2) 178
O2—H2···F2i 0.82 2.06 2.812 (2) 152
C3—H3···Cg1ii 0.93 2.62 3.501 (2) 158
C15—H15···Cg2iii 0.93 2.63 3.506 (2) 157

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2.

Funding Statement

This work was funded by National Natural Science Foundation of China (No. 21172174) grant .

References

  1. Chen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94–99.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286–6289. [DOI] [PubMed]
  5. Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237–5243. [DOI] [PubMed]
  6. Li, B., Zhang, G., Sun, S. & Yin, Z. (2011). Acta Cryst. E67, o247. [DOI] [PMC free article] [PubMed]
  7. Mikroyannidis, J. A., Kabanakis, A. N. D. V., Tsagkournos, D. V. P., Balraju, P. & Sharma, G. D. (2010). J. Mater. Chem. 20, 6464–6471.
  8. Mikroyannidis, J. A., Roy, M. S. & Sharma, G. D. (2010). J. Power Sources, 195, 5391–5398.
  9. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  13. Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957–959.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006229/ex2007sup1.cif

e-74-00743-sup1.cif (287.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006229/ex2007Isup2.hkl

e-74-00743-Isup2.hkl (232KB, hkl)

CCDC reference: 1839158

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES