Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 27;74(Pt 5):747–751. doi: 10.1107/S2056989018006242

Crystal structure and Hirshfeld surface analysis of 1-(2,4-di­chloro­benz­yl)-5-methyl-N-(thio­phene-2-sulfon­yl)-1H-pyrazole-3-carboxamide

Abdullah Aydin a,*, Mehmet Akkurt b, Zehra Tugce Gur c, Erden Banoğlu c
PMCID: PMC5947501  PMID: 29850105

In the crystal, pairs of mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming inversion dimers with graph-set notation Inline graphic(8) and Inline graphic(11), which are connected by C—H⋯O hydrogen-bonding inter­actions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H⋯π inter­actions and π–π stacking inter­actions between benzene and the thio­phene rings.

Keywords: crystal structure, dimer, 1H-pyrazole ring, thio­phene ring, disorder, hydrogen-bonding patterns

Abstract

In the title compound, C16H13Cl2N3O3S2, the thio­phene ring is disordered in a 0.762 (3):0.238 (3) ratio by an approximate 180° rotation of the ring around the S—C bond linking the ring to the sulfonyl unit. The di­chloro­benzene group is also disordered over two sets of sites with the same occupancy ratio. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl and C—H⋯N hydrogen bonds, forming rings with graph-set notation S(5). In the crystal, pairs of mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming inversion dimers with graph-set notation R 2 2(8) and R 1 2(11), which are connected by C—H⋯O hydrogen-bonding inter­actions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H⋯π inter­actions and π–π stacking inter­actions between benzene and thio­phene rings, with centroid-to-centroid distances of 3.865 (2), 3.867 (7) and 3.853 (2) Å. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

Chemical context  

The pyrazole core structure has been widely used as a common heterocyclic scaffold in medicinal chemistry to produce novel drug candidates with a great variety of pharmacological activities including anti-inflammatory, anti­platelet, anti­cancer, anti­mycobacterial, anti­depressant and anti­convulsant properties (Küçükgüzel & Şenkardeş, 2015; Çalışkan et al., 2013; Ding et al., 2009; Baraldi et al., 2004; Palaska et al., 2008). Among them, pyrazole-carboxamide derivatives have been shown to exhibit anti­mycobacterial, anti­fungal and anti­viral activities (Sun & Zhou, 2015; Yan et al., 2018; Comber et al., 1992). In the course of our ongoing research into bioactive pyrazole derivatives (Banoğlu et al., 2005; Şüküroğlu et al., 2005; Ergün et al., 2010; Çalışkan et al., 2011; Levent et al., 2013; Cankara Pirol et al., 2014), we have relied on the aforementioned biological properties of pyrazole-carboxamides and designed novel pyrazole-3-carboxamide derivatives for their potential anti­microbial activity. In this work, we report the crystallographic characterization and Hirshfeld surface analysis of one of these compounds bearing the 2,4-di­chloro­benzyl substituent at one of the pyrazole nitro­gen atoms.graphic file with name e-74-00747-scheme1.jpg

Structural commentary  

In the mol­ecule of the title compound (Fig. 1), the dihedral angles between the planes of the pyrazole ring A (N2/N3/C6–C8), the major and minor components B (S1/C1–C4) and B′ (S1A/C1/C2/C3A/C4) of the disordered thio­phene ring, and the disordered benzene ring C (C11–C16) and C′ (C11A–C16A) are A/B = 67.62 (16)°, A/B′ = 68.1 (5)°, B/B′ = 3.3 (5)°, A/C = 70.09 (16)°, B/C = 83.06 (19)° and B′/C = 80.2 (5)°, A/C′ = 78.4 (4)°, B/C′ = 77.3 (4)° and B′/C′ = 74.2 (6)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl and C—H⋯N hydrogen bonds (Table 1), forming rings with graph-set notation S(5).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The minor components of the disordered thio­phene and di­chloro­benzene groups have been omitted.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the major component (S1/C1–C4) of the disordered thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (3) 2.27 (3) 3.029 (3) 150 (3)
C7—H7⋯O3ii 0.93 2.59 3.437 (3) 152
C10—H10B⋯O1iii 0.97 2.52 3.141 (3) 122
C12—H12⋯N3 0.93 2.61 3.224 (3) 124
C12—H12⋯O2i 0.93 2.51 3.348 (3) 150
C15—H15⋯Cg1iv 0.93 2.97 3.893 (3) 174
C15A—H15ACg1iv 0.93 2.95 3.836 (8) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, pairs of mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds (Table 1; Figs. 2 and 3), forming inversion dimers with graph-set notation Inline graphic(8) and Inline graphic(11), which are connected by C—H⋯O hydrogen-bonding inter­actions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H⋯π inter­actions (Table 1) and π–π stacking inter­actions between the benzene and thio­phene rings, with centroid-to-centroid distances of 3.865 (2) Å for Cg1⋯Cg1v, 3.867 (7) Å for Cg2⋯Cg2v and 3.853 (2) Å for Cg4⋯Cg4vi where Cg1, Cg2 and Cg4 are the centroids of the thio­phene ring B, the thio­phene ring B′ and the benzene ring C [symmetry codes: (v) 2 − x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, −z].

Figure 2.

Figure 2

Crystal structure of the title compound viewed along the a axis. Dashed lines show hydrogen-bonding inter­actions. The minor components of the disordered groups have been omitted.

Figure 3.

Figure 3

Crystal structure of the title compound viewed along the b axis. Dashed lines show hydrogen-bonding inter­actions. The minor components of the disordered groups have been omitted.

Hirshfeld surface analysis  

A Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title compound was carried out to investigate the location of atoms with potential to form hydrogen bonds and the qu­anti­tative ratio of these inter­actions. CrystalExplorer17.5 (Turner et al., 2017) was used to generate the Hirshfeld surface and two-dimensional fingerprint plots (Parkin et al., 2007; Rohl et al., 2008), using the atomic coordinates of the major disorder component of the disordered atoms (Figs. 4 and 5). The electrostatic potentials were calculated using TONTO (Spackman et al., 2009) integrated into CrystalExplorer, wherein the respective experimental structure was used as the input to TONTO. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level of theory.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm.

Figure 5.

Figure 5

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H, (d) Cl⋯H, (e) Cl⋯Cl and (f) C⋯C inter­actions. The outline of the full fingerprint plots is shown in grey. d i is the closest inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact.

The inter­molecular distance information on the surface can be condensed into a two-dimensional histogram of d e and d i, which is a unique identifier for mol­ecules in a crystal structure, and is known as a fingerprint plot. Instead of plotting d e and d i on the Hirshfeld surface, contact distances are normalized in CrystalExplorer using the van der Waals radius of the appropriate inter­nal (r i vdw) and external (r e vdw) atom of the surface:

d norm= (d ir i vdw)/r i vdw + (d er e vdw)/re vdw.

The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimentional d norm surfaces mapped over a fixed colour scale of −1.9033 (red) to 1.1934 (blue). In the fingerprint plots (Rohl et al., 2008), shown in Fig. 5, the points indicated by b, c, d and e correspond to H⋯H, C⋯H, Cl⋯H, Cl⋯Cl and C⋯C inter­actions with relative contributions of 28.4, 7.0, 6.8, 6.5 and 5.7%, respectively. These types of inter­actions add up to 54.4% of the inter­molecular contacts of the Hirshfeld surface area. The remaining contributions (8.3%) correspond to C⋯Cl (1.3%), N⋯C (1.3%) and other less important inter­actions (<1%). C⋯C contacts correspond to inter­molecular π–π inter­actions. The occurrence of non-high inter­action rates can be attributed to the fact that the small disordered portion of the mol­ecule is not considered.

Database survey  

All bond lengths and angles are within normal ranges and are similar to those reported for related mol­ecules such as trans-rac-[1-oxo-2-phenethyl-3-(2-thien­yl)-1,2,3,4-tetra­hydro­iso­quin­olin-4-yl]methyl 4-methyl­benzene­sulfonate (Akkurt et al., 2008), 2-benzene­sulfonamido­benzoic acid (Asiri et al., 2009), propyl 2-(4-methyl­benzene­sulfonamido)­benzoate (Mustafa, Khan et al., 2012), 2-{4-[acet­yl(eth­yl)amino]­benzene­sulfon­am­ido}­benzoic acid (Mustafa, Muhmood et al., 2012), 2-(5-bromo­pyridin-3-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole (Fun et al., 2011a ) and 2-(biphenyl-4-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl) thio­phen-2-yl]-1,3,4-oxa­diazole (Fun et al., 2011b ).

Synthesis and crystallization  

To a solution of methyl 1-(2,4-di­chloro­benz­yl)-5-methyl-1H-pyrazole-3-carboxyl­ate (200 mg, 0.70 mmol, 1 equiv.) in di­chloro­methane (DCM) were added 2-thio­phene­sulfonamide (126 mg, 0. 77 mmol, 1.1 equiv.), 1-ethyl-3-(3-di­methyl­amino-prop­yl)carbodi­imide (EDC; 148 mg, 0.77 mmol, 1.1 equiv.) and 4-dimethyl-amino­pyridine (DMAP; 17.8 mg, 0.14 mmol, 0.2 equiv.), and the resulting mixture was stirred overnight at room temperature. Upon completion of the reaction, the reaction mixture was partitioned between DCM and water. The collected organic layer was dried over anhydrous Na2SO4, filtered and evaporated to give the crude compound, which was purified with automated-flash chromatography (120.6 mg, 39.95%). The obtained product was recrystallized from hexane and ethyl acetate (4:1), m.p. 464.8–465.3 K. 1H NMR (CDCl3): δ 2.24 (3H, s), 5.33 (2H, s), 6.64 (2H, m), 7.12 (1H, m), 7.21 (1H, dd, J = 8.4, 2.1 Hz), 7.45 (1H, d, J = 2.1 Hz), 7.69 (1H, dd, J = 5.1, 1.2 Hz), 7.97 (1H, dd, J = 3.9, 1.2 Hz), 9.29 (1H, bs); 13C NMR (CDCl3): 11.2, 50.5, 107.6, 127.3, 127.9, 129.1, 129.6, 131.7, 132.9, 133.8, 134.8, 135.1, 139.2, 142.0, 143.5, 158.4. HRMS m/z calculated for C16H13Cl2N3O3S2 [M + H]+ 429.9854; found: 429.9857.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms bound to carbon atoms were positioned geometrically and treated as riding with C—H = 0.93-0.97 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. A rotating model was used for the methyl group. The nitro­gen-bound H atom (H1N) was located in a difference-Fourier map and refined with the constraint N1—H1N = 0.84 (3) Å and U iso(H) = 1.2U eq(N). The thio­phene ring is rotationally disordered by approximately 180° over two positions, the ratio of refined occupancies being 0.762 (3):0.238 (3). The di­chloro­benzene group of the title compound is also disordered over two sets of sites with the same occupancy ratio. The disordered dicholoro­benzene groups (C: C11–C16 and C′: C11A–C16A) were refined as rigid hexa­gons with bond lengths of 1.39 Å. The displacement ellipsoids for the corresponding carbon atoms in the disordered dicholoro­benzene groups were constrained by using the EADP command. Six outliers (633, Inline graphic30, Inline graphic30, 515, 5Inline graphic1, 520) were omitted in the final cycles of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C16H13Cl2N3O3S2
M r 430.31
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.2706 (4), 8.7726 (4), 13.6433 (7)
α, β, γ (°) 76.091 (2), 74.610 (2), 87.970 (2)
V3) 925.98 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.99 × 0.68 × 0.52
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.60, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 19595, 4598, 4134
R int 0.024
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.155, 1.03
No. of reflections 4598
No. of parameters 216
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.20, −0.82

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018006242/rz5232sup1.cif

e-74-00747-sup1.cif (587.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006242/rz5232Isup3.hkl

e-74-00747-Isup3.hkl (366.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006242/rz5232Isup4.cml

Checkcif Report. DOI: 10.1107/S2056989018006242/rz5232sup4.pdf

e-74-00747-sup4.pdf (147.5KB, pdf)

CCDC reference: 1839201

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization)

supplementary crystallographic information

Crystal data

C16H13Cl2N3O3S2 Z = 2
Mr = 430.31 F(000) = 440
Triclinic, P1 Dx = 1.543 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2706 (4) Å Cell parameters from 9888 reflections
b = 8.7726 (4) Å θ = 2.4–28.3°
c = 13.6433 (7) Å µ = 0.60 mm1
α = 76.091 (2)° T = 296 K
β = 74.610 (2)° Prism, translucent light white
γ = 87.970 (2)° 0.99 × 0.68 × 0.52 mm
V = 925.98 (8) Å3

Data collection

Bruker APEXII CCD diffractometer 4598 independent reflections
Radiation source: sealed tube 4134 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→11
Tmin = 0.60, Tmax = 0.75 k = −11→11
19595 measured reflections l = −17→18

Refinement

Refinement on F2 14 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.082P)2 + 0.8819P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4598 reflections Δρmax = 1.20 e Å3
216 parameters Δρmin = −0.82 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.0018 (3) 0.5302 (5) 0.6433 (2) 0.0643 (8)
H1 1.109594 0.540142 0.650187 0.077*
C2 0.9085 (4) 0.6538 (4) 0.6217 (3) 0.0615 (8)
H2 0.943899 0.757761 0.609474 0.074*
C3 0.7555 (6) 0.6082 (6) 0.6199 (4) 0.0426 (11) 0.762 (3)
H3 0.670625 0.678061 0.610153 0.051* 0.762 (3)
S1 0.91332 (19) 0.35743 (15) 0.65722 (17) 0.0492 (3) 0.762 (3)
C3A 0.901 (2) 0.382 (2) 0.655 (2) 0.0426 (11) 0.238 (3)
H3A 0.933907 0.278893 0.670858 0.051* 0.238 (3)
S1A 0.7356 (7) 0.6272 (6) 0.6034 (4) 0.0492 (3) 0.238 (3)
C4 0.7359 (3) 0.4413 (3) 0.63434 (16) 0.0334 (4)
C5 0.7050 (3) 0.1354 (2) 0.52207 (17) 0.0330 (4)
C6 0.7152 (3) 0.0968 (2) 0.42142 (16) 0.0313 (4)
C7 0.8307 (3) 0.0022 (3) 0.37032 (19) 0.0375 (5)
H7 0.916655 −0.053427 0.393564 0.045*
C8 0.7892 (3) 0.0094 (3) 0.27811 (18) 0.0361 (4)
C9 0.8648 (4) −0.0637 (4) 0.1890 (2) 0.0529 (6)
H9A 0.794588 −0.150751 0.192409 0.079*
H9B 0.974150 −0.100242 0.193074 0.079*
H9C 0.874250 0.012686 0.124042 0.079*
C10 0.5646 (3) 0.1512 (3) 0.19870 (18) 0.0397 (5)
H10A 0.448790 0.169220 0.231841 0.048*
H10B 0.565068 0.066145 0.164493 0.048*
C11 0.6400 (5) 0.2998 (3) 0.1159 (2) 0.0466 (3) 0.762 (3)
C12 0.6577 (4) 0.4311 (3) 0.15290 (16) 0.0466 (3) 0.762 (3)
H12 0.629582 0.423813 0.224578 0.056* 0.762 (3)
C13 0.7173 (4) 0.5732 (3) 0.08277 (18) 0.0466 (3) 0.762 (3)
H13 0.729125 0.660962 0.107532 0.056* 0.762 (3)
C14 0.7593 (4) 0.5840 (2) −0.02436 (17) 0.0466 (3) 0.762 (3)
C15 0.7416 (5) 0.4528 (3) −0.06137 (17) 0.0466 (3) 0.762 (3)
H15 0.769664 0.460061 −0.133046 0.056* 0.762 (3)
C16 0.6819 (6) 0.3107 (3) 0.0088 (3) 0.0466 (3) 0.762 (3)
Cl1 0.8269 (3) 0.7564 (2) −0.11887 (17) 0.0835 (5) 0.762 (3)
Cl2 0.6424 (5) 0.1501 (4) −0.0388 (2) 0.0805 (7) 0.762 (3)
C11A 0.6465 (15) 0.3022 (11) 0.1193 (7) 0.0466 (3) 0.238 (3)
C12A 0.7063 (12) 0.4320 (11) 0.1423 (5) 0.0466 (3) 0.238 (3)
H12A 0.696770 0.433593 0.211501 0.056* 0.238 (3)
C13A 0.7802 (12) 0.5595 (9) 0.0618 (6) 0.0466 (3) 0.238 (3)
H13A 0.820202 0.646324 0.077136 0.056* 0.238 (3)
C14A 0.7945 (12) 0.5571 (9) −0.0417 (5) 0.0466 (3) 0.238 (3)
C15A 0.7347 (15) 0.4273 (11) −0.0646 (6) 0.0466 (3) 0.238 (3)
H15A 0.744229 0.425767 −0.133838 0.056* 0.238 (3)
C16A 0.6608 (17) 0.2999 (11) 0.0159 (9) 0.0466 (3) 0.238 (3)
Cl1A 0.8896 (10) 0.7355 (9) −0.1136 (7) 0.0835 (5) 0.238 (3)
Cl2A 0.6826 (18) 0.1514 (15) −0.0300 (9) 0.0805 (7) 0.238 (3)
N1 0.6005 (2) 0.2605 (2) 0.53833 (15) 0.0363 (4)
H1N 0.571 (4) 0.317 (3) 0.4869 (18) 0.044*
N2 0.6550 (2) 0.1036 (2) 0.27928 (14) 0.0340 (4)
N3 0.6080 (2) 0.1593 (2) 0.36579 (14) 0.0334 (4)
O1 0.5273 (2) 0.2101 (2) 0.73271 (13) 0.0479 (4)
O2 0.4310 (2) 0.4460 (2) 0.62514 (13) 0.0412 (4)
O3 0.7814 (2) 0.0698 (2) 0.58384 (14) 0.0473 (4)
S2 0.55880 (6) 0.33499 (6) 0.64141 (4) 0.03159 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1094 (16) 0.0562 (7) 0.0754 (7) −0.0290 (10) −0.0317 (10) 0.0150 (5)
Cl1A 0.1094 (16) 0.0562 (7) 0.0754 (7) −0.0290 (10) −0.0317 (10) 0.0150 (5)
Cl2 0.144 (2) 0.0649 (5) 0.0438 (7) −0.0339 (10) −0.0276 (8) −0.0255 (5)
Cl2A 0.144 (2) 0.0649 (5) 0.0438 (7) −0.0339 (10) −0.0276 (8) −0.0255 (5)
S1 0.0461 (5) 0.0507 (7) 0.0605 (6) 0.0166 (4) −0.0260 (4) −0.0205 (6)
S1A 0.0461 (5) 0.0507 (7) 0.0605 (6) 0.0166 (4) −0.0260 (4) −0.0205 (6)
S2 0.0325 (3) 0.0336 (3) 0.0302 (3) 0.0020 (2) −0.0086 (2) −0.0102 (2)
O1 0.0609 (11) 0.0441 (9) 0.0348 (8) −0.0091 (8) −0.0098 (7) −0.0038 (7)
O2 0.0342 (8) 0.0474 (9) 0.0468 (9) 0.0105 (7) −0.0122 (7) −0.0204 (7)
O3 0.0556 (10) 0.0487 (10) 0.0485 (10) 0.0187 (8) −0.0304 (8) −0.0160 (8)
N1 0.0458 (10) 0.0360 (9) 0.0336 (9) 0.0126 (8) −0.0186 (8) −0.0135 (7)
N2 0.0386 (9) 0.0332 (8) 0.0323 (9) 0.0031 (7) −0.0116 (7) −0.0099 (7)
N3 0.0366 (9) 0.0338 (8) 0.0330 (9) 0.0061 (7) −0.0125 (7) −0.0108 (7)
C1 0.0361 (12) 0.105 (3) 0.0567 (17) −0.0026 (14) −0.0139 (11) −0.0267 (17)
C2 0.0577 (16) 0.0581 (17) 0.0667 (19) −0.0200 (14) −0.0091 (14) −0.0164 (14)
C3 0.0345 (19) 0.0394 (19) 0.051 (2) −0.0035 (14) −0.0204 (15) 0.0060 (15)
C3A 0.0345 (19) 0.0394 (19) 0.051 (2) −0.0035 (14) −0.0204 (15) 0.0060 (15)
C4 0.0306 (9) 0.0381 (10) 0.0336 (10) 0.0034 (8) −0.0096 (7) −0.0122 (8)
C5 0.0344 (10) 0.0310 (9) 0.0369 (10) 0.0036 (7) −0.0137 (8) −0.0103 (8)
C6 0.0332 (9) 0.0285 (9) 0.0344 (10) 0.0027 (7) −0.0119 (8) −0.0088 (8)
C7 0.0361 (10) 0.0351 (10) 0.0468 (12) 0.0078 (8) −0.0157 (9) −0.0158 (9)
C8 0.0372 (10) 0.0317 (10) 0.0411 (11) 0.0031 (8) −0.0091 (8) −0.0139 (8)
C9 0.0538 (14) 0.0576 (15) 0.0525 (15) 0.0090 (12) −0.0087 (12) −0.0298 (13)
C10 0.0471 (12) 0.0413 (11) 0.0348 (11) −0.0009 (9) −0.0173 (9) −0.0094 (9)
C11 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C11A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C12 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C12A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C13 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C13A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C14 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C14A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C15 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C15A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C16 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)
C16A 0.0639 (8) 0.0396 (6) 0.0367 (6) −0.0054 (6) −0.0098 (5) −0.0130 (5)

Geometric parameters (Å, º)

Cl1—C14 1.733 (3) C10—C11 1.530 (4)
Cl1A—C14A 1.723 (12) C11—C12 1.391 (4)
Cl2—C16 1.760 (5) C11—C16 1.390 (5)
Cl2A—C16A 1.561 (17) C11A—C16A 1.389 (15)
S1—C4 1.688 (3) C11A—C12A 1.391 (14)
S1—C1 1.654 (4) C12—C13 1.390 (4)
S1A—C4 1.583 (6) C12A—C13A 1.390 (11)
S1A—C2 1.550 (7) C13—C14 1.390 (3)
S2—O2 1.4362 (18) C13A—C14A 1.391 (10)
S2—N1 1.641 (2) C14—C15 1.390 (3)
S2—C4 1.733 (3) C14A—C15A 1.390 (13)
S2—O1 1.4184 (18) C15—C16 1.390 (4)
O3—C5 1.210 (3) C15A—C16A 1.390 (14)
N1—C5 1.396 (3) C1—H1 0.9300
N2—N3 1.343 (3) C2—H2 0.9300
N2—C8 1.359 (3) C3—H3 0.9300
N2—C10 1.461 (3) C3A—H3A 0.9300
N3—C6 1.336 (3) C7—H7 0.9300
C1—C2 1.329 (5) C9—H9A 0.9600
C1—C3A 1.522 (19) C9—H9C 0.9600
N1—H1N 0.84 (3) C9—H9B 0.9600
C2—C3 1.349 (6) C10—H10A 0.9700
C3—C4 1.439 (6) C10—H10B 0.9700
C3A—C4 1.516 (19) C12—H12 0.9300
C5—C6 1.472 (3) C12A—H12A 0.9300
C6—C7 1.399 (3) C13—H13 0.9300
C7—C8 1.376 (3) C13A—H13A 0.9300
C8—C9 1.491 (4) C15—H15 0.9300
C10—C11A 1.540 (10) C15A—H15A 0.9300
C1—S1—C4 91.91 (16) Cl1—C14—C15 115.95 (18)
C2—S1A—C4 96.3 (4) C13—C14—C15 120.0 (2)
O1—S2—N1 108.73 (10) Cl1A—C14A—C13A 104.5 (7)
O1—S2—C4 108.83 (11) Cl1A—C14A—C15A 135.5 (6)
O1—S2—O2 120.05 (10) C13A—C14A—C15A 120.0 (7)
O2—S2—C4 107.17 (12) C14—C15—C16 120.0 (2)
N1—S2—C4 107.33 (10) C14A—C15A—C16A 120.0 (8)
O2—S2—N1 104.06 (10) Cl2—C16—C11 120.2 (3)
S2—N1—C5 126.32 (16) Cl2—C16—C15 119.6 (3)
N3—N2—C8 112.91 (18) C11—C16—C15 120.0 (3)
N3—N2—C10 119.06 (18) C11A—C16A—C15A 120.0 (10)
C8—N2—C10 128.01 (19) Cl2A—C16A—C11A 126.3 (10)
N2—N3—C6 104.17 (16) Cl2A—C16A—C15A 107.6 (9)
S1—C1—C2 115.5 (2) S1—C1—H1 122.00
C2—C1—C3A 108.6 (7) C2—C1—H1 122.00
S2—N1—H1N 113.9 (18) C3A—C1—H1 129.00
C5—N1—H1N 118.5 (18) S1A—C2—H2 116.00
C1—C2—C3 110.9 (4) C1—C2—H2 125.00
S1A—C2—C1 118.7 (4) C3—C2—H2 125.00
C2—C3—C4 113.7 (4) C2—C3—H3 123.00
C1—C3A—C4 104.5 (12) C4—C3—H3 123.00
S1—C4—C3 107.9 (3) C4—C3A—H3A 128.00
S2—C4—C3A 129.1 (7) C1—C3A—H3A 128.00
S1A—C4—S2 119.4 (3) C8—C7—H7 128.00
S2—C4—C3 128.3 (3) C6—C7—H7 128.00
S1—C4—S2 123.50 (17) C8—C9—H9A 109.00
S1A—C4—C3A 111.6 (8) H9A—C9—H9B 109.00
O3—C5—C6 124.5 (2) C8—C9—H9B 110.00
O3—C5—N1 122.7 (2) C8—C9—H9C 110.00
N1—C5—C6 112.78 (19) H9B—C9—H9C 109.00
C5—C6—C7 128.2 (2) H9A—C9—H9C 109.00
N3—C6—C7 111.90 (19) N2—C10—H10B 109.00
N3—C6—C5 119.91 (19) C11—C10—H10A 109.00
C6—C7—C8 104.9 (2) C11A—C10—H10A 110.00
C7—C8—C9 131.6 (3) C11A—C10—H10B 111.00
N2—C8—C9 122.3 (2) C11—C10—H10B 109.00
N2—C8—C7 106.1 (2) N2—C10—H10A 109.00
N2—C10—C11A 110.0 (5) H10A—C10—H10B 108.00
N2—C10—C11 113.2 (2) C13—C12—H12 120.00
C10—C11—C12 116.2 (2) C11—C12—H12 120.00
C10—C11—C16 123.7 (3) C13A—C12A—H12A 120.00
C12—C11—C16 120.0 (2) C11A—C12A—H12A 120.00
C10—C11A—C12A 126.4 (7) C14—C13—H13 120.00
C10—C11A—C16A 113.6 (8) C12—C13—H13 120.00
C12A—C11A—C16A 120.0 (9) C14A—C13A—H13A 120.00
C11—C12—C13 120.0 (2) C12A—C13A—H13A 120.00
C11A—C12A—C13A 120.0 (7) C16—C15—H15 120.00
C12—C13—C14 120.0 (2) C14—C15—H15 120.00
C12A—C13A—C14A 120.0 (8) C14A—C15A—H15A 120.00
Cl1—C14—C13 123.98 (18) C16A—C15A—H15A 120.00
C1—S1—C4—S2 −176.25 (16) C2—C3—C4—S1 3.8 (5)
C1—S1—C4—C3 −2.0 (3) C2—C3—C4—S2 177.7 (3)
C4—S1—C1—C2 −0.1 (3) O3—C5—C6—C7 −12.2 (4)
O1—S2—N1—C5 −44.1 (2) N1—C5—C6—N3 −11.7 (3)
O2—S2—N1—C5 −173.15 (18) N1—C5—C6—C7 166.0 (2)
C4—S2—N1—C5 73.5 (2) O3—C5—C6—N3 170.1 (2)
O2—S2—C4—S1 175.63 (16) N3—C6—C7—C8 0.1 (3)
N1—S2—C4—S1 −73.11 (18) C5—C6—C7—C8 −177.8 (2)
O1—S2—C4—C3 −128.6 (3) C6—C7—C8—C9 179.3 (3)
O2—S2—C4—C3 2.6 (3) C6—C7—C8—N2 −0.5 (3)
N1—S2—C4—C3 113.9 (3) N2—C10—C11—C12 −55.0 (4)
O1—S2—C4—S1 44.39 (19) N2—C10—C11—C16 128.4 (4)
S2—N1—C5—C6 179.75 (16) C10—C11—C12—C13 −176.8 (3)
S2—N1—C5—O3 −2.0 (3) C16—C11—C12—C13 0.0 (6)
C8—N2—C10—C11 −88.0 (3) C10—C11—C16—Cl2 2.2 (6)
C8—N2—N3—C6 −0.6 (2) C10—C11—C16—C15 176.6 (4)
N3—N2—C8—C7 0.7 (3) C12—C11—C16—Cl2 −174.4 (3)
N3—N2—C10—C11 90.2 (2) C12—C11—C16—C15 0.0 (7)
C10—N2—C8—C7 178.9 (2) C11—C12—C13—C14 0.0 (5)
C10—N2—N3—C6 −179.01 (19) C12—C13—C14—Cl1 177.4 (3)
C10—N2—C8—C9 −0.8 (4) C12—C13—C14—C15 0.0 (5)
N3—N2—C8—C9 −179.1 (2) Cl1—C14—C15—C16 −177.6 (3)
N2—N3—C6—C5 178.40 (18) C13—C14—C15—C16 0.0 (6)
N2—N3—C6—C7 0.3 (2) C14—C15—C16—Cl2 174.4 (3)
S1—C1—C2—C3 2.4 (4) C14—C15—C16—C11 0.0 (7)
C1—C2—C3—C4 −4.0 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the major component (S1/C1–C4) of the disordered thiophene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···N3 0.84 (3) 2.35 (3) 2.694 (3) 105 (2)
N1—H1N···O2i 0.84 (3) 2.27 (3) 3.029 (3) 150 (3)
C7—H7···O3ii 0.93 2.59 3.437 (3) 152
C10—H10B···Cl2 0.97 2.60 3.134 (4) 115
C10—H10B···Cl2A 0.97 2.50 3.012 (12) 112
C10—H10B···O1iii 0.97 2.52 3.141 (3) 122
C12—H12···N3 0.93 2.61 3.224 (3) 124
C12—H12···O2i 0.93 2.51 3.348 (3) 150
C15—H15···Cg1iv 0.93 2.97 3.893 (3) 174
C15A—H15A···Cg1iv 0.93 2.95 3.836 (8) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) x, y, z−1.

References

  1. Akkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955–o1956. [DOI] [PMC free article] [PubMed]
  2. Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247. [DOI] [PMC free article] [PubMed]
  3. Banoğlu, E., Akoğlu, Ç., Ünlü, S., Ergün, B., Küpeli, E., Yeşilada, E. & Şahin, M. (2005). Arzneimittelforschung, 55, 520–527. [DOI] [PubMed]
  4. Baraldi, P. G., Beria, I., Cozzi, P., Geroni, C., Espinosa, A., Gallo, M. A., Entrena, A., Bingham, J. P., Hartley, J. A. & Romagnoli, R. (2004). Bioorg. Med. Chem. 12, 3911–3921. [DOI] [PubMed]
  5. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Çalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoğlu, E. (2011). Eur. J. Med. Chem. 46, 5021–5033. [DOI] [PubMed]
  7. Çalışkan, B., Yılmaz, A., Evren, İ., Menevşe, S., Uludag, O. & Banoğlu, E. (2013). Med. Chem. Res. 22, 782–793.
  8. Cankara Pirol, Ş., Çalışkan, B., Durmaz, İ., Atalay, R. & Banoğlu, E. (2014). Eur. J. Med. Chem. 87, 140–149. [DOI] [PubMed]
  9. Comber, R. N., Gray, R. J. & Secrist, J. A. (1992). Carbohydr. Res. 216, 441–452. [DOI] [PubMed]
  10. Ding, X. L., Zhang, H. Y., Qi, L., Zhao, B. X., Lian, S., Lv, H. S. & Miao, J. Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325–5328. [DOI] [PubMed]
  11. Ergün, B. C., Nuñez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoğlu, E. (2010). Arzneimittelforschung, 60, 497–505. [DOI] [PubMed]
  12. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  13. Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011a). Acta Cryst. E67, o2743–o2744. [DOI] [PMC free article] [PubMed]
  14. Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011b). Acta Cryst. E67, o2781–o2782. [DOI] [PMC free article] [PubMed]
  15. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  16. Küçükgüzel, Ş. G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786–815. [DOI] [PubMed]
  17. Levent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, İ., Ünver, H. & Banoğlu, E. (2013). Eur. J. Med. Chem. 64, 42–53. [DOI] [PubMed]
  18. Mustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305. [DOI] [PMC free article] [PubMed]
  19. Mustafa, G., Muhmood, T., Khan, I. U. & Akkurt, M. (2012). Acta Cryst. E68, o1388. [DOI] [PMC free article] [PubMed]
  20. Palaska, E., Aydin, F., Uçar, G. & Erol, D. (2008). Arch. Pharm. Chem. Life Sci. 341, 209–215. [DOI] [PubMed]
  21. Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.
  22. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  26. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  27. Şüküroğlu, M., Ergün, B. Ç., Ünlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoğlu, E. (2005). Arch. Pharm. Res. 28, 509–517. [DOI] [PubMed]
  28. Sun, J. & Zhou, Y. (2015). Molecules, 20, 4383–4394. [DOI] [PMC free article] [PubMed]
  29. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.
  30. Yan, Z., Liu, A., Huang, M., Liu, M., Pei, H., Huang, L., Yi, H., Liu, W. & Hu, A. (2018). Eur. J. Med. Chem. 149, 170–181. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018006242/rz5232sup1.cif

e-74-00747-sup1.cif (587.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006242/rz5232Isup3.hkl

e-74-00747-Isup3.hkl (366.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006242/rz5232Isup4.cml

Checkcif Report. DOI: 10.1107/S2056989018006242/rz5232sup4.pdf

e-74-00747-sup4.pdf (147.5KB, pdf)

CCDC reference: 1839201

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES