The structure of a coumarin ester stabilized by C—H⋯O hydrogen bonds and C=O⋯π and π–π stacking interactions has been studied by X-ray diffraction, Hirshfeld surface analysis and quantum chemical calculations.
Keywords: coumarin ester, C—H⋯O hydrogen bonds, π–π stacking interactions, Hirshfeld surface analysis, quantum chemical calculations, crystal structure
Abstract
In the title compound, C16H9FO4, (I), the benzene ring is oriented at an acute angle of 59.03 (15)° relative to the coumarin plane (r.m.s deviation = 0.009 Å). This conformation of (I) is stabilized by an intramolecular C—H⋯O hydrogen bond, which closes a five-membering ring. In the crystal, molecules of (I) form infinite zigzag chains along the b-axis direction, linked by C—H⋯O hydrogen bonds. Furthermore, the crystal structure is supported by π–π stacking interactions between neighbouring pyrone and benzene or coumarin rings [centroid–centroid distances in the range 3.5758 (18)–3.6115 (16) Å], as well as C=O⋯π interactions [O⋯centroid distances in the range 3.266 (3)–3.567 (3) Å]. The theoretical data for (I) obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin fragment and the benzene ring (73.7°) is somewhat larger than the experimental value [63.4 (4)°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.
Chemical context
Coumarins and their derivatives constitute one of the major classes of naturally occurring compounds and interest in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009 ▸), anti-oxidant (Vuković et al., 2010 ▸) and anti-inflammatory agents (Emmanuel-Giota et al., 2001 ▸). In view of their importance and as a continuation of our work on the crystal structure analysis of coumarin derivatives (Abou et al., 2013 ▸; Ouédraogo et al., 2018 ▸), we report herein the synthesis, crystal structure, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative (I).
Structural commentary
The molecular structure of (I) is illustrated in Fig. 1 ▸. In the structure, an S(5) ring motif arises from the intramolecular C16—H16⋯O3 hydrogen bond (Table 1 ▸), and generates a pseudo bicyclic ring system (Fig. 1 ▸). The coumarin fragment is planar (r.m.s deviation = 0.009 Å) and oriented at an acute angle of 59.03 (15)° with respect to the C11–C16 benzene ring, while the hydrogen-bonded five-membered ring [r.m.s deviation = 0.007 Å] forms dihedral angles of 59.23 (13) and 0.59 (18)°, respectively, with the coumarin ring system and the benzene ring. These dihedral angles suggest that the five-membered hydrogen-bonded and C11–C16 benzene rings are coplanar. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C2—C3 [1.332 (5) Å] and C1—C2 [1.451 (5) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C3—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016 ▸; Ziki et al., 2016 ▸).
Figure 1.
The molecular structure of (I), along with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The intramolecular hydrogen bond is indicated by a dashed line.
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C16—H16⋯O3 | 0.93 | 2.37 | 2.693 (4) | 100 |
| C2—H2⋯O2i | 0.93 | 2.51 | 3.412 (4) | 163 |
| C1—O2⋯Cg2ii | 1.20 (1) | 3.27 (1) | 3.403 (3) | 86 (1) |
| C1—O2⋯Cg4ii | 1.20 (1) | 3.57 (1) | 3.368 (3) | 71 (1) |
Symmetry codes: (i)
; (ii)
.
Supramolecular features
In the crystal, the C2—H2⋯O2 hydrogen bond links molecules into infinite zigzag C(4) chains along the [010] direction (Fig. 2 ▸). In addition, a close contact with a distance shorter than the sum of the van der Waals radii [C1⋯C4 (−1 + x, y, z) = 3.336 (5) Å] and C1=O2⋯π interactions are present [O2⋯Cg1 (−1 + x, y, z) = 3.266 (3) and O2⋯Cg4 (−1 + x, y, z) = 3.567 (3) Å, where Cg1 and Cg4 are the centroids of the pyrone ring and the coumarin ring system, respectively]. The resulting supramolecular aggregation is completed by the presence of π–π stacking between the pyrone and C4–C9 benzene rings or coumarin ring systems (Fig. 3 ▸). The centroid–centroid distances [Cg1⋯Cg2 (−1 + x, y, z) = 3.5758 (18), Cg1⋯Cg4 (−1 + x, y, z) = 3.6116 (16), Cg2⋯Cg4 (1 + x, y, z) = 3.6047 (16) Å, where Cg2 is the centroid of the C4–C9 benzene ring] are less than 3.8 Å, the maximum regarded as suitable for an effective π–π interaction (Janiak, 2000 ▸). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2 ▸.
Figure 2.
Part of the crystal packing of (I) showing the formation of an infinite C(4) chain along the b-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.
Figure 3.
A view of the crystal packing showing C1=O2⋯π and π–π stacking interactions (dashed lines). The yellow dots are ring centroids.
Table 2. Analysis of short ring interactions (Å).
| Cg(I) | Cg(J) | Symmetry Cg(J) | Cg(I)⋯Cg(J) | CgI_Perp | CgJ_Perp | Slippage |
|---|---|---|---|---|---|---|
| Cg1 | Cg2 | −1 + x, y, z | 3.5758 (18) | 3.3139 (13) | −3.3124 (13) | 1.347 |
| Cg1 | Cg4 | −1 + x, y, z | 3.6116 (16) | 3.3133 (13) | −3.3044 (10) | 1.458 |
| Cg2 | Cg1 | 1 + x, y, z | 3.5758 (18) | −3.3123 (13) | 3.3140 (13) | 1.343 |
| Cg2 | Cg4 | 1 + x, y, z | 3.6047 (16) | −3.3109 (13) | 3.3195 (10) | 1.405 |
| Cg4 | Cg1 | 1 + x, y, z | 3.6115 (16) | −3.3043 (10) | 3.3134(13 | 1.437 |
| Cg4 | Cg2 | −1 + x, y, z | 3.6049 (16) | 3.3196 (10) | −3.3110 (13) | 1.426 |
Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.
Database survey
A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016 ▸) found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982 ▸; Gnanaguru et al., 1985 ▸; Parveen et al., 2011 ▸; Ji et al., 2014 ▸, 2017 ▸). In these structures and those of meta-substituted coumarin esters (Abou et al., 2013 ▸; Bibila Mayaya Bisseyou et al., 2013 ▸; Yu et al., 2014 ▸; Gomes et al., 2016 ▸; Ziki et al., 2016 ▸, 2017 ▸), the pyrone rings show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated for (I) with C2—C3 = 1.332 (5) Å, while C1—C2 = 1.451 (5), C3—C4 = 1.434 (4) and C4—C5 = 1.399 (4) Å.
Hirshfeld surface analysis
Molecular Hirshfeld surfaces and the associated two-dimensional fingerprint plots of (I) were calculated using a standard (high) surface resolution with the the three-dimensional d
norm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012 ▸). The analysis of intermolecular interactions through the mapping of three-dimensional d
norm surfaces is permitted by the contact distances d
i and d
e from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I), the surface mapped over d
norm highlights several red spots showing distances shorter than the sum of the van der Waals radii. These dominant interactions correspond to intermolecular C—H⋯O hydrogen bonds, C8⋯C5 (1 + x, y, z), O⋯π and π–π stacking interactions between the surface and the neighbouring environment. The mapping also shows white or pale-red spots with distances almost equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are shown as transparent to allow visualization of the molecule (Fig. 4 ▸). In the shape-index map (−0.99 to 1 Å) (Fig. 5 ▸), the adjacent red and blue triangle-like patches show concave regions that indicate π–π stacking interactions (Bitzer et al., 2017 ▸). Furthermore, the 2D fingerprint plots (FP), decomposed to highlight particular close contacts of atom pairs and the contributions from different contacts, are provided in Fig. 6 ▸. The red spots in the middle of the surface appearing near d
e = d
i = 1.8-2.0 Å correspond to close C⋯C interplanar contacts. These contacts, which comprise 10.1% of the total Hirshfeld surface area, are related to π–π interactions (Fig. 6 ▸
a) as predicted by the X-ray study. The most significant contribution to the Hirshfeld surface (27.7%) is from H⋯O/O⋯H contacts, which appear on the left-side as blue spikes with the tip at d
e + d
i = 2.4 Å, top and bottom (Fig. 6 ▸
b). As expected in organic compounds, the H⋯H contacts are important with a 24.5% contribution to Hirshfeld surface; these appear in the central region of the FP with a central blue tip spike at d
e = d
i = 1.10 Å (Fig. 6 ▸
c) whereas the F⋯H/H⋯F contacts with a contribution to the Hirshfeld surface of 11.4% are indicated by the distribution of points around a pair of wings at d
e + d
i
2.6 Å (Fig. 6 ▸
d). The C⋯H/H⋯C plot (16.2%) reveals information on the intermolecular hydrogen bonds (Fig. 6 ▸
e). Other visible spots in the Hirshfeld surfaces indicate the C⋯O/O⋯C, O⋯O, F⋯F and C⋯F/F⋯C contacts, which contribute only 6.6, 1.3, 1.2 and 1.1%, respectively (Fig. 6 ▸
f–6i).
Figure 4.
A view of the Hirshfeld surface for (I) with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue).
Figure 5.
Hirshfeld surface mapped over shape-index highlighting the regions involved in π–π stacking interactions.
Figure 6.
Decomposed two-dimensional fingerprint plots for (I). Various short contacts and their relative contributions are indicated.
Theoretical calculations
The geometry optimization of (I) was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The crystal structure in the solid state was used as the starting structure for the calculations. The DFT calculations were performed with the GAUSSIAN09 program package (Frisch et al., 2013 ▸). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study, showing a good agreement for the bond lengths and bond angles with r.m.s. deviations of 0.017 Å and 1.06°, respectively (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin fragment and the C11–C16 benzene ring are co-planar (see Supplementary Table S3), which is in good agreement with the experimental results, although the calculated C10—O3—C7—C8 torsion angle between them (73.7°) is somewhat larger than the observed value [63.4 (4)°].
Synthesis and crystallization
To a solution of 4-fluorobenzoyl chloride (6.17 mmol; 0.98 g) in dried tetrahydrofuran (40 mL) was added dried triethylamine (3 molar equivalents; 2.6 mL) and 7-hydroxycoumarin (6.17 mmol; 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 mL of chloroform. The solution was acidified with diluted hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from acetone. Pale-yellow crystals of (I) were obtained in a good yield (85.1%; m.p. 467–468 K).
Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using the riding-model approximation with U iso(H) = 1.2U eq(C).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C16H9FO4 |
| M r | 284.23 |
| Crystal system, space group | Monoclinic, P21 |
| Temperature (K) | 298 |
| a, b, c (Å) | 4.0181 (2), 5.7296 (3), 27.5566 (14) |
| β (°) | 91.660 (4) |
| V (Å3) | 634.14 (6) |
| Z | 2 |
| Radiation type | Cu Kα |
| μ (mm−1) | 1.00 |
| Crystal size (mm) | 0.40 × 0.12 × 0.05 |
| Data collection | |
| Diffractometer | Rigaku SuperNova, Dual, Cu at zero, Atlas S2 |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2015 ▸) |
| T min, T max | 0.683, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 8239, 2228, 2149 |
| R int | 0.026 |
| (sin θ/λ)max (Å−1) | 0.601 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.035, 0.098, 1.13 |
| No. of reflections | 2228 |
| No. of parameters | 190 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.13, −0.16 |
| Absolute structure | Flack x determined using 875 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | −0.03 (8) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901800614X/kq2021Isup3.cml
CCDC reference: 1834035
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are grateful to Mr Michel GIORGI (Spectropôle Service of the Faculty of Sciences and Technique, Saint Jérôme center, Aix-Marseille University, France) for his help with the X-ray diffraction study.
supplementary crystallographic information
Crystal data
| C16H9FO4 | F(000) = 292 |
| Mr = 284.23 | Dx = 1.489 Mg m−3 |
| Monoclinic, P21 | Melting point = 467–468 K |
| Hall symbol: P2yb | Cu Kα radiation, λ = 1.54184 Å |
| a = 4.0181 (2) Å | Cell parameters from 4751 reflections |
| b = 5.7296 (3) Å | θ = 4.8–67.5° |
| c = 27.5566 (14) Å | µ = 1.00 mm−1 |
| β = 91.660 (4)° | T = 298 K |
| V = 634.14 (6) Å3 | Prism, pale yellow |
| Z = 2 | 0.40 × 0.12 × 0.05 mm |
Data collection
| Rigaku SuperNova, Dual, Cu at zero, Atlas S2 diffractometer | 2228 independent reflections |
| Radiation source: micro-focus sealed X-ray tube | 2149 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.026 |
| Detector resolution: 5.3048 pixels mm-1 | θmax = 67.9°, θmin = 4.8° |
| ω scans | h = −4→4 |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −6→6 |
| Tmin = 0.683, Tmax = 1.000 | l = −32→32 |
| 8239 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
| wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1688P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.13 | (Δ/σ)max < 0.001 |
| 2228 reflections | Δρmax = 0.13 e Å−3 |
| 190 parameters | Δρmin = −0.16 e Å−3 |
| 1 restraint | Absolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 36 constraints | Absolute structure parameter: −0.03 (8) |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.6427 (6) | 0.3343 (4) | 0.88096 (8) | 0.0524 (6) | |
| O3 | 0.0412 (6) | 0.4724 (4) | 0.73539 (8) | 0.0615 (6) | |
| C7 | 0.1548 (8) | 0.5614 (6) | 0.78012 (11) | 0.0497 (7) | |
| C10 | 0.1085 (8) | 0.5845 (6) | 0.69372 (12) | 0.0530 (8) | |
| C5 | 0.4431 (7) | 0.4840 (5) | 0.85424 (11) | 0.0441 (6) | |
| O2 | 0.9356 (7) | 0.2473 (5) | 0.94698 (9) | 0.0754 (8) | |
| C6 | 0.3531 (8) | 0.4146 (6) | 0.80778 (11) | 0.0478 (7) | |
| H6 | 0.4246 | 0.2726 | 0.7955 | 0.057* | |
| C9 | 0.1406 (8) | 0.8388 (6) | 0.84388 (12) | 0.0521 (7) | |
| H9 | 0.0667 | 0.9806 | 0.8560 | 0.062* | |
| C4 | 0.3401 (8) | 0.6973 (5) | 0.87346 (11) | 0.0460 (7) | |
| C11 | −0.0314 (8) | 0.4585 (6) | 0.65121 (11) | 0.0503 (7) | |
| C16 | −0.1991 (9) | 0.2483 (7) | 0.65592 (12) | 0.0573 (8) | |
| H16 | −0.2289 | 0.1853 | 0.6866 | 0.069* | |
| F1 | −0.3952 (7) | 0.1157 (6) | 0.53091 (9) | 0.1069 (10) | |
| O4 | 0.2703 (7) | 0.7609 (5) | 0.69274 (9) | 0.0745 (8) | |
| C3 | 0.4468 (8) | 0.7532 (6) | 0.92219 (11) | 0.0535 (8) | |
| H3 | 0.3784 | 0.8923 | 0.9361 | 0.064* | |
| C12 | 0.0095 (8) | 0.5513 (7) | 0.60524 (13) | 0.0613 (9) | |
| H12 | 0.1210 | 0.6923 | 0.6018 | 0.074* | |
| C1 | 0.7538 (8) | 0.3880 (6) | 0.92768 (12) | 0.0536 (8) | |
| C8 | 0.0489 (8) | 0.7757 (6) | 0.79730 (12) | 0.0546 (8) | |
| H8 | −0.0810 | 0.8743 | 0.7778 | 0.066* | |
| C14 | −0.2763 (10) | 0.2274 (9) | 0.57115 (14) | 0.0705 (11) | |
| C2 | 0.6429 (9) | 0.6080 (7) | 0.94771 (12) | 0.0570 (8) | |
| H2 | 0.7103 | 0.6486 | 0.9792 | 0.068* | |
| C15 | −0.3218 (10) | 0.1325 (7) | 0.61538 (14) | 0.0679 (10) | |
| H15 | −0.4339 | −0.0085 | 0.6184 | 0.081* | |
| C13 | −0.1144 (10) | 0.4358 (9) | 0.56453 (13) | 0.0735 (11) | |
| H13 | −0.0889 | 0.4972 | 0.5336 | 0.088* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0609 (13) | 0.0430 (13) | 0.0528 (12) | 0.0028 (10) | −0.0050 (10) | −0.0037 (10) |
| O3 | 0.0801 (15) | 0.0560 (15) | 0.0479 (12) | −0.0166 (13) | −0.0091 (10) | 0.0029 (11) |
| C7 | 0.0542 (16) | 0.0476 (19) | 0.0470 (16) | −0.0114 (15) | −0.0026 (13) | 0.0003 (14) |
| C10 | 0.0528 (17) | 0.052 (2) | 0.0542 (18) | 0.0026 (16) | −0.0010 (13) | 0.0049 (15) |
| C5 | 0.0439 (14) | 0.0383 (16) | 0.0501 (15) | −0.0058 (12) | 0.0007 (11) | 0.0008 (12) |
| O2 | 0.0877 (19) | 0.0643 (18) | 0.0726 (16) | 0.0051 (16) | −0.0235 (14) | 0.0052 (14) |
| C6 | 0.0553 (16) | 0.0396 (17) | 0.0486 (16) | −0.0033 (13) | 0.0039 (12) | −0.0033 (13) |
| C9 | 0.0527 (17) | 0.0378 (17) | 0.0660 (19) | 0.0015 (13) | 0.0063 (14) | −0.0016 (14) |
| C4 | 0.0484 (16) | 0.0366 (17) | 0.0532 (16) | −0.0052 (13) | 0.0058 (12) | −0.0037 (12) |
| C11 | 0.0503 (16) | 0.0493 (19) | 0.0511 (16) | 0.0079 (14) | −0.0034 (12) | 0.0015 (14) |
| C16 | 0.0611 (19) | 0.054 (2) | 0.0567 (18) | 0.0012 (17) | −0.0044 (14) | 0.0021 (16) |
| F1 | 0.116 (2) | 0.129 (3) | 0.0749 (15) | −0.0067 (19) | −0.0203 (14) | −0.0386 (16) |
| O4 | 0.097 (2) | 0.0636 (17) | 0.0629 (15) | −0.0291 (16) | 0.0016 (13) | 0.0011 (13) |
| C3 | 0.0615 (19) | 0.0438 (18) | 0.0556 (18) | −0.0076 (16) | 0.0066 (14) | −0.0096 (15) |
| C12 | 0.0592 (19) | 0.064 (2) | 0.060 (2) | −0.0040 (18) | −0.0001 (15) | 0.0055 (17) |
| C1 | 0.0577 (18) | 0.050 (2) | 0.0527 (17) | −0.0078 (16) | −0.0050 (14) | 0.0021 (15) |
| C8 | 0.0580 (19) | 0.0442 (18) | 0.0613 (19) | 0.0014 (15) | −0.0029 (14) | 0.0062 (14) |
| C14 | 0.067 (2) | 0.081 (3) | 0.063 (2) | 0.004 (2) | −0.0124 (17) | −0.022 (2) |
| C2 | 0.065 (2) | 0.056 (2) | 0.0498 (17) | −0.0123 (16) | −0.0016 (14) | −0.0059 (15) |
| C15 | 0.070 (2) | 0.061 (2) | 0.072 (2) | −0.0016 (19) | −0.0067 (17) | −0.0090 (18) |
| C13 | 0.077 (2) | 0.095 (3) | 0.0480 (18) | 0.011 (2) | −0.0041 (16) | 0.002 (2) |
Geometric parameters (Å, º)
| O1—C5 | 1.374 (3) | C11—C16 | 1.388 (5) |
| O1—C1 | 1.385 (4) | C11—C12 | 1.388 (5) |
| O3—C10 | 1.350 (4) | C16—C15 | 1.378 (5) |
| O3—C7 | 1.398 (4) | C16—H16 | 0.9300 |
| C7—C6 | 1.374 (4) | F1—C14 | 1.355 (4) |
| C7—C8 | 1.387 (5) | C3—C2 | 1.332 (5) |
| C10—O4 | 1.202 (4) | C3—H3 | 0.9300 |
| C10—C11 | 1.473 (4) | C12—C13 | 1.383 (5) |
| C5—C6 | 1.379 (4) | C12—H12 | 0.9300 |
| C5—C4 | 1.399 (4) | C1—C2 | 1.451 (5) |
| O2—C1 | 1.202 (4) | C8—H8 | 0.9300 |
| C6—H6 | 0.9300 | C14—C15 | 1.352 (6) |
| C9—C8 | 1.373 (5) | C14—C13 | 1.374 (7) |
| C9—C4 | 1.388 (4) | C2—H2 | 0.9300 |
| C9—H9 | 0.9300 | C15—H15 | 0.9300 |
| C4—C3 | 1.434 (4) | C13—H13 | 0.9300 |
| C5—O1—C1 | 121.8 (2) | C11—C16—H16 | 119.8 |
| C10—O3—C7 | 120.5 (3) | C2—C3—C4 | 120.7 (3) |
| C6—C7—C8 | 122.1 (3) | C2—C3—H3 | 119.6 |
| C6—C7—O3 | 115.8 (3) | C4—C3—H3 | 119.6 |
| C8—C7—O3 | 121.9 (3) | C13—C12—C11 | 120.5 (4) |
| O4—C10—O3 | 122.7 (3) | C13—C12—H12 | 119.7 |
| O4—C10—C11 | 126.0 (3) | C11—C12—H12 | 119.7 |
| O3—C10—C11 | 111.2 (3) | O2—C1—O1 | 116.0 (3) |
| O1—C5—C6 | 116.8 (3) | O2—C1—C2 | 127.1 (3) |
| O1—C5—C4 | 121.1 (3) | O1—C1—C2 | 116.9 (3) |
| C6—C5—C4 | 122.1 (3) | C9—C8—C7 | 118.4 (3) |
| C7—C6—C5 | 118.1 (3) | C9—C8—H8 | 120.8 |
| C7—C6—H6 | 121.0 | C7—C8—H8 | 120.8 |
| C5—C6—H6 | 121.0 | C15—C14—F1 | 119.6 (4) |
| C8—C9—C4 | 122.0 (3) | C15—C14—C13 | 123.1 (4) |
| C8—C9—H9 | 119.0 | F1—C14—C13 | 117.3 (4) |
| C4—C9—H9 | 119.0 | C3—C2—C1 | 121.7 (3) |
| C9—C4—C5 | 117.4 (3) | C3—C2—H2 | 119.2 |
| C9—C4—C3 | 124.9 (3) | C1—C2—H2 | 119.2 |
| C5—C4—C3 | 117.8 (3) | C14—C15—C16 | 118.9 (4) |
| C16—C11—C12 | 119.2 (3) | C14—C15—H15 | 120.6 |
| C16—C11—C10 | 121.7 (3) | C16—C15—H15 | 120.6 |
| C12—C11—C10 | 119.0 (3) | C14—C13—C12 | 118.0 (4) |
| C15—C16—C11 | 120.4 (3) | C14—C13—H13 | 121.0 |
| C15—C16—H16 | 119.8 | C12—C13—H13 | 121.0 |
| C10—O3—C7—C6 | −122.3 (3) | C12—C11—C16—C15 | 0.4 (5) |
| C10—O3—C7—C8 | 63.4 (4) | C10—C11—C16—C15 | −178.8 (3) |
| C7—O3—C10—O4 | 1.1 (5) | C9—C4—C3—C2 | −179.0 (3) |
| C7—O3—C10—C11 | 179.3 (3) | C5—C4—C3—C2 | 1.3 (5) |
| C1—O1—C5—C6 | 178.7 (3) | C16—C11—C12—C13 | −0.2 (5) |
| C1—O1—C5—C4 | −0.7 (4) | C10—C11—C12—C13 | 179.0 (3) |
| C8—C7—C6—C5 | 1.0 (4) | C5—O1—C1—O2 | −177.7 (3) |
| O3—C7—C6—C5 | −173.3 (3) | C5—O1—C1—C2 | 1.5 (4) |
| O1—C5—C6—C7 | −179.7 (3) | C4—C9—C8—C7 | 1.4 (5) |
| C4—C5—C6—C7 | −0.3 (4) | C6—C7—C8—C9 | −1.5 (5) |
| C8—C9—C4—C5 | −0.8 (5) | O3—C7—C8—C9 | 172.5 (3) |
| C8—C9—C4—C3 | 179.5 (3) | C4—C3—C2—C1 | −0.5 (5) |
| O1—C5—C4—C9 | 179.6 (3) | O2—C1—C2—C3 | 178.2 (4) |
| C6—C5—C4—C9 | 0.2 (4) | O1—C1—C2—C3 | −0.9 (5) |
| O1—C5—C4—C3 | −0.7 (4) | F1—C14—C15—C16 | 180.0 (3) |
| C6—C5—C4—C3 | 179.9 (3) | C13—C14—C15—C16 | −0.4 (6) |
| O4—C10—C11—C16 | 176.2 (3) | C11—C16—C15—C14 | −0.1 (5) |
| O3—C10—C11—C16 | −1.9 (4) | C15—C14—C13—C12 | 0.6 (6) |
| O4—C10—C11—C12 | −3.0 (5) | F1—C14—C13—C12 | −179.7 (3) |
| O3—C10—C11—C12 | 178.9 (3) | C11—C12—C13—C14 | −0.3 (6) |
Hydrogen-bond geometry (Å, º)
Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C16—H16···O3 | 0.93 | 2.37 | 2.693 (4) | 100 |
| C2—H2···O2i | 0.93 | 2.51 | 3.412 (4) | 163 |
| C1—O2···Cg2ii | 1.20 (1) | 3.27 (1) | 3.403 (3) | 86 (1) |
| C1—O2···Cg4ii | 1.20 (1) | 3.57 (1) | 3.368 (3) | 71 (1) |
Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) x−1, y, z.
Table S1
Experimental and calculated bond lengths (Å)
| Bond | X-ray | 6-311++G(d,p) |
| O1—C5 | 1.374 (3) | 1.348 |
| O1—C1 | 1.385 (4) | 1.354 |
| O3—C10 | 1.350 (4) | 1.342 |
| O3—C7 | 1.398 (4) | 1.375 |
| C7—C6 | 1.374 (4) | 1.373 |
| C7—C8 | 1.387 (5) | 1.3889 |
| C10—O4 | 1.202 (4) | 1.180 |
| C10—C11 | 1.473 (4) | 1.486 |
| C5—C6 | 1.379 (4) | 1.385 |
| C5—C4 | 1.399 (4) | 1.385 |
| O2—C1 | 1.202 (4) | 1.178 |
| C9—C8 | 1.373 (5) | 1.374 |
| C9—C4 | 1.388 (4) | 1.395 |
| C4—C3 | 1.434 (4) | 1.452 |
| C11—C16 | 1.388 (5) | 1.390 |
| C11—C12 | 1.388 (5) | 1.391 |
| C16—C15 | 1.378 (5) | 1.383 |
| F1—C14 | 1.355 (4) | 1.321 |
| C3—C2 | 1.332 (5) | 1.329 |
| C12—C13 | 1.383 (5) | 1.380 |
| C1—C2 | 1.451 (5) | 1.468 |
| C14—C15 | 1.352 (6) | 1.378 |
| C14—C13 | 1.374 (7) | 1.379 |
Table S2
Experimental and calculated bond angles (°)
| Bond angle | X-ray | 6-311++G(d,p) |
| C5—O1—C1 | 121.8 (2) | 123.7 |
| C10—O3—C7 | 120.5 (3) | 119.9 |
| C6—C7—C8 | 122.1 (3) | 122.0 |
| C6—C7—O3 | 115.8 (3) | 117.7 |
| C8—C7—O3 | 121.9 (3) | 120.1 |
| O4—C10—O3 | 122.7 (3) | 123.1 |
| O4—C10—C11 | 126.0 (3) | 124.8 |
| O3—C10—C11 | 111.2 (3) | 112.1 |
| O1—C5—C6 | 116.8 (3) | 117.1 |
| O1—C5—C4 | 121.1 (3) | 121.4 |
| C6—C5—C4 | 122.1 (3) | 121.5 |
| C7—C6—C5 | 118.1 (3) | 118.2 |
| C8—C9—C4 | 122.0 (3) | 121.0 |
| C9—C4—C5 | 117.4 (3) | 118.6 |
| C9—C4—C3 | 124.9 (3) | 124.2 |
| C5—C4—C3 | 117.8 (3) | 117.2 |
| C16—C11—C12 | 119.2 (3) | 119.7 |
| C16—C11—C10 | 121.7 (3) | 122.4 |
| C12—C11—C10 | 119.0 (3) | 117.8 |
| C15—C16—C11 | 120.4 (3) | 120.3 |
| C2—C3—C4 | 120.7 (3) | 120.5 |
| C13—C12—C11 | 120.5 (4) | 120.5 |
| O2—C1—O1 | 116.0 (3) | 118.7 |
| O2—C1—C2 | 127.1 (3) | 124.9 |
| O1—C1—C2 | 116.9 (3) | 116.3 |
| C9—C8—C7 | 118.4 (3) | 118.7 |
| C15—C14—F1 | 119.6 (4) | 118.7 |
| C15—C14—C13 | 123.1 (4) | 122.6 |
| F1—C14—C13 | 117.3 (4) | 118.7 |
| C3—C2—C1 | 121.7 (3) | 121.0 |
| C14—C15—C16 | 118.9 (4) | 118.5 |
| C14—C13—C12 | 118.0 (4) | 118.3 |
Table S3
Experimental and calculated torsion angles (°)
| Torsion angle | X-ray | 6-311++G(d,p) |
| C10—O3—C7—C6 | -122.3 (3) | -109.7 |
| C10—O3—C7—C8 | 63.4 (4) | 73.7 |
| C7—O3—C10—O4 | 1.1 (5) | -0.1 |
| C7—O3—C10—C11 | 179.3 (3) | 179.9 |
| C1—O1—C5—C6 | 178.7 (3) | -180.0 |
| C1—O1—C5—C4 | -0.7 (4) | -0.1 |
| C8—C7—C6—C5 | 1.0 (4) | -0.2 |
| O3—C7—C6—C5 | -173.3 (3) | -176.7 |
| O1—C5—C6—C7 | -179.7 (3) | 179.9 |
| C4—C5—C6—C7 | -0.3 (4) | -0.0 |
| C8—C9—C4—C5 | -0.8 (5) | 0.0 |
| C8—C9—C4—C3 | 179.5 (3) | -179.9 |
| O1—C5—C4—C9 | 179.6 (3) | -179.7 |
| C6—C5—C4—C9 | 0.2 (4) | 0.1 |
| O1—C5—C4—C3 | -0.7 (4) | 0.2 |
| C6—C5—C4—C3 | 179.9 (3) | -179.9 |
| O4—C10—C11—C16 | 176.2 (3) | -179.7 |
| O3—C10—C11—C16 | -1.9 (4) | 0.3 |
| O4—C10—C11—C12 | -3.0 (5) | 0.4 |
| O3—C10—C11—C12 | 178.9 (3) | -179.6 |
| C12—C11—C16—C15 | 0.4 (5) | -0.1 |
| C10—C11—C16—C15 | -178.8 (3) | 179.9 |
| C9—C4—C3—C2 | -179.0 (3) | 179.8 |
| C5—C4—C3—C2 | 1.3 (5) | -0.2 |
| C16—C11—C12—C13 | -0.2 (5) | 0.0 |
| C10—C11—C12—C13 | 179.0 (3) | -180.0 |
| C5—O1—C1—O2 | -177.7 (3) | 180.0 |
| C5—O1—C1—C2 | 1.5 (4) | -0.1 |
| C4—C9—C8—C7 | 1.4 (5) | -0.3 |
| C6—C7—C8—C9 | -1.5 (5) | 0.4 |
| O3—C7—C8—C9 | 172.5 (3) | 176.8 |
| C4—C3—C2—C1 | -0.5 (5) | -0.0 |
| O2—C1—C2—C3 | 178.2 (4) | -179.8 |
| O1—C1—C2—C3 | -0.9 (5) | 0.1 |
| F1—C14—C15—C16 | 180.0 (3) | 180.0 |
| C13—C14—C15—C16 | -0.4 (6) | -0.0 |
| C11—C16—C15—C14 | -0.1 (5) | 0.1 |
| C15—C14—C13—C12 | 0.6 (6) | -0.0 |
| F1—C14—C13—C12 | -179.7 (3) | 180.0 |
| C11—C12—C13—C14 | -0.3 (6) | 0.0 |
References
- Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. [DOI] [PMC free article] [PubMed]
- Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
- Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. [DOI] [PMC free article] [PubMed]
- Bitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.
- Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.
- Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
- Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795. [DOI] [PubMed]
- Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534. [DOI] [PMC free article] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30.
- Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Vuković, N., Sukdolak, S., Solujić, S. & Niciforović, N. (2010). Arch. Pharm. Res. 33, 5–15. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
- Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370. [DOI] [PMC free article] [PubMed]
- Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. [DOI] [PMC free article] [PubMed]
- Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901800614X/kq2021Isup3.cml
CCDC reference: 1834035
Additional supporting information: crystallographic information; 3D view; checkCIF report






