Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Apr 27;74(Pt 5):761–765. doi: 10.1107/S205698901800614X

Crystal structure of 2-oxo-2H-chromen-7-yl 4-fluoro­benzoate

Akoun Abou a,*, Jules Yoda b, Abdoulaye Djandé b, Stéphane Coussan c, T Jérémie Zoueu a
PMCID: PMC5947504  PMID: 29850108

The structure of a coumarin ester stabilized by C—H⋯O hydrogen bonds and C=O⋯π and π–π stacking inter­actions has been studied by X-ray diffraction, Hirshfeld surface analysis and quantum chemical calculations.

Keywords: coumarin ester, C—H⋯O hydrogen bonds, π–π stacking inter­actions, Hirshfeld surface analysis, quantum chemical calculations, crystal structure

Abstract

In the title compound, C16H9FO4, (I), the benzene ring is oriented at an acute angle of 59.03 (15)° relative to the coumarin plane (r.m.s deviation = 0.009 Å). This conformation of (I) is stabilized by an intra­molecular C—H⋯O hydrogen bond, which closes a five-membering ring. In the crystal, mol­ecules of (I) form infinite zigzag chains along the b-axis direction, linked by C—H⋯O hydrogen bonds. Furthermore, the crystal structure is supported by π–π stacking inter­actions between neighbouring pyrone and benzene or coumarin rings [centroid–centroid distances in the range 3.5758 (18)–3.6115 (16) Å], as well as C=O⋯π inter­actions [O⋯centroid distances in the range 3.266 (3)–3.567 (3) Å]. The theoretical data for (I) obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin fragment and the benzene ring (73.7°) is somewhat larger than the experimental value [63.4 (4)°]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

Chemical context  

Coumarins and their derivatives constitute one of the major classes of naturally occurring compounds and inter­est in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several mol­ecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009), anti-oxidant (Vuković et al., 2010) and anti-inflammatory agents (Emmanuel-Giota et al., 2001). In view of their importance and as a continuation of our work on the crystal structure analysis of coumarin derivatives (Abou et al., 2013; Ouédraogo et al., 2018), we report herein the synthesis, crystal structure, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative (I).

Structural commentary  

The mol­ecular structure of (I) is illustrated in Fig. 1. In the structure, an S(5) ring motif arises from the intra­molecular C16—H16⋯O3 hydrogen bond (Table 1), and generates a pseudo bicyclic ring system (Fig. 1). The coumarin fragment is planar (r.m.s deviation = 0.009 Å) and oriented at an acute angle of 59.03 (15)° with respect to the C11–C16 benzene ring, while the hydrogen-bonded five-membered ring [r.m.s deviation = 0.007 Å] forms dihedral angles of 59.23 (13) and 0.59 (18)°, respectively, with the coumarin ring system and the benzene ring. These dihedral angles suggest that the five-membered hydrogen-bonded and C11–C16 benzene rings are coplanar. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C2—C3 [1.332 (5) Å] and C1—C2 [1.451 (5) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C3—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2016).graphic file with name e-74-00761-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I), along with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The intra­molecular hydrogen bond is indicated by a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3 0.93 2.37 2.693 (4) 100
C2—H2⋯O2i 0.93 2.51 3.412 (4) 163
C1—O2⋯Cg2ii 1.20 (1) 3.27 (1) 3.403 (3) 86 (1)
C1—O2⋯Cg4ii 1.20 (1) 3.57 (1) 3.368 (3) 71 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, the C2—H2⋯O2 hydrogen bond links mol­ecules into infinite zigzag C(4) chains along the [010] direction (Fig. 2). In addition, a close contact with a distance shorter than the sum of the van der Waals radii [C1⋯C4 (−1 + x, y, z) = 3.336 (5) Å] and C1=O2⋯π inter­actions are present [O2⋯Cg1 (−1 + x, y, z) = 3.266 (3) and O2⋯Cg4 (−1 + x, y, z) = 3.567 (3) Å, where Cg1 and Cg4 are the centroids of the pyrone ring and the coumarin ring system, respectively]. The resulting supra­molecular aggregation is completed by the presence of π–π stacking between the pyrone and C4–C9 benzene rings or coumarin ring systems (Fig. 3). The centroid–centroid distances [Cg1⋯Cg2 (−1 + x, y, z) = 3.5758 (18), Cg1⋯Cg4 (−1 + x, y, z) = 3.6116 (16), Cg2⋯Cg4 (1 + x, y, z) = 3.6047 (16) Å, where Cg2 is the centroid of the C4–C9 benzene ring] are less than 3.8 Å, the maximum regarded as suitable for an effective π–π inter­action (Janiak, 2000). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2.

Figure 2.

Figure 2

Part of the crystal packing of (I) showing the formation of an infinite C(4) chain along the b-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

Figure 3.

Figure 3

A view of the crystal packing showing C1=O2⋯π and π–π stacking inter­actions (dashed lines). The yellow dots are ring centroids.

Table 2. Analysis of short ring inter­actions (Å).

Cg(I) Cg(J) Symmetry Cg(J) Cg(I)⋯Cg(J) CgI_Perp CgJ_Perp Slippage
Cg1 Cg2 −1 + x, y, z 3.5758 (18) 3.3139 (13) −3.3124 (13) 1.347
Cg1 Cg4 −1 + x, y, z 3.6116 (16) 3.3133 (13) −3.3044 (10) 1.458
Cg2 Cg1 1 + x, y, z 3.5758 (18) −3.3123 (13) 3.3140 (13) 1.343
Cg2 Cg4 1 + x, y, z 3.6047 (16) −3.3109 (13) 3.3195 (10) 1.405
Cg4 Cg1 1 + x, y, z 3.6115 (16) −3.3043 (10) 3.3134(13 1.437
Cg4 Cg2 −1 + x, y, z 3.6049 (16) 3.3196 (10) −3.3110 (13) 1.426

Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.

Database survey  

A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016) found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982; Gnanaguru et al., 1985; Parveen et al., 2011; Ji et al., 2014, 2017). In these structures and those of meta-substituted coumarin esters (Abou et al., 2013; Bibila Mayaya Bisseyou et al., 2013; Yu et al., 2014; Gomes et al., 2016; Ziki et al., 2016, 2017), the pyrone rings show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated for (I) with C2—C3 = 1.332 (5) Å, while C1—C2 = 1.451 (5), C3—C4 = 1.434 (4) and C4—C5 = 1.399 (4) Å.

Hirshfeld surface analysis  

Mol­ecular Hirshfeld surfaces and the associated two-dimensional fingerprint plots of (I) were calculated using a standard (high) surface resolution with the the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012). The analysis of inter­molecular inter­actions through the mapping of three-dimensional d norm surfaces is permitted by the contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I), the surface mapped over d norm highlights several red spots showing distances shorter than the sum of the van der Waals radii. These dominant inter­actions correspond to inter­molecular C—H⋯O hydrogen bonds, C8⋯C5 (1 + x, y, z), O⋯π and π–π stacking inter­actions between the surface and the neighbouring environment. The mapping also shows white or pale-red spots with distances almost equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are shown as transparent to allow visualization of the mol­ecule (Fig. 4). In the shape-index map (−0.99 to 1 Å) (Fig. 5), the adjacent red and blue triangle-like patches show concave regions that indicate π–π stacking inter­actions (Bitzer et al., 2017). Furthermore, the 2D fingerprint plots (FP), decomposed to highlight particular close contacts of atom pairs and the contributions from different contacts, are provided in Fig. 6. The red spots in the middle of the surface appearing near d e = d i = 1.8-2.0 Å correspond to close C⋯C inter­planar contacts. These contacts, which comprise 10.1% of the total Hirshfeld surface area, are related to π–π inter­actions (Fig. 6 a) as predicted by the X-ray study. The most significant contrib­ution to the Hirshfeld surface (27.7%) is from H⋯O/O⋯H contacts, which appear on the left-side as blue spikes with the tip at d e + d i = 2.4 Å, top and bottom (Fig. 6 b). As expected in organic compounds, the H⋯H contacts are important with a 24.5% contribution to Hirshfeld surface; these appear in the central region of the FP with a central blue tip spike at d e = d i = 1.10 Å (Fig. 6 c) whereas the F⋯H/H⋯F contacts with a contribution to the Hirshfeld surface of 11.4% are indicated by the distribution of points around a pair of wings at d e + d i Inline graphic 2.6 Å (Fig. 6 d). The C⋯H/H⋯C plot (16.2%) reveals information on the inter­molecular hydrogen bonds (Fig. 6 e). Other visible spots in the Hirshfeld surfaces indicate the C⋯O/O⋯C, O⋯O, F⋯F and C⋯F/F⋯C contacts, which contribute only 6.6, 1.3, 1.2 and 1.1%, respectively (Fig. 6 f–6i).

Figure 4.

Figure 4

A view of the Hirshfeld surface for (I) with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue).

Figure 5.

Figure 5

Hirshfeld surface mapped over shape-index highlighting the regions involved in π–π stacking inter­actions.

Figure 6.

Figure 6

Decomposed two-dimensional fingerprint plots for (I). Various short contacts and their relative contributions are indicated.

Theoretical calculations  

The geometry optimization of (I) was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The crystal structure in the solid state was used as the starting structure for the calculations. The DFT calculations were performed with the GAUSSIAN09 program package (Frisch et al., 2013). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study, showing a good agreement for the bond lengths and bond angles with r.m.s. deviations of 0.017 Å and 1.06°, respectively (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin fragment and the C11–C16 benzene ring are co-planar (see Supplementary Table S3), which is in good agreement with the experimental results, although the calculated C10—O3—C7—C8 torsion angle between them (73.7°) is somewhat larger than the observed value [63.4 (4)°].

Synthesis and crystallization  

To a solution of 4-fluoro­benzoyl chloride (6.17 mmol; 0.98 g) in dried tetra­hydro­furan (40 mL) was added dried tri­ethyl­amine (3 molar equivalents; 2.6 mL) and 7-hy­droxy­coumarin (6.17 mmol; 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 mL of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from acetone. Pale-yellow crystals of (I) were obtained in a good yield (85.1%; m.p. 467–468 K).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using the riding-model approximation with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C16H9FO4
M r 284.23
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 4.0181 (2), 5.7296 (3), 27.5566 (14)
β (°) 91.660 (4)
V3) 634.14 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.40 × 0.12 × 0.05
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.683, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8239, 2228, 2149
R int 0.026
(sin θ/λ)max−1) 0.601
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.098, 1.13
No. of reflections 2228
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.16
Absolute structure Flack x determined using 875 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.03 (8)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021sup1.cif

e-74-00761-sup1.cif (290.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021Isup2.hkl

e-74-00761-Isup2.hkl (178.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800614X/kq2021Isup3.cml

CCDC reference: 1834035

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Mr Michel GIORGI (Spectropôle Service of the Faculty of Sciences and Technique, Saint Jérôme center, Aix-Marseille University, France) for his help with the X-ray diffraction study.

supplementary crystallographic information

Crystal data

C16H9FO4 F(000) = 292
Mr = 284.23 Dx = 1.489 Mg m3
Monoclinic, P21 Melting point = 467–468 K
Hall symbol: P2yb Cu Kα radiation, λ = 1.54184 Å
a = 4.0181 (2) Å Cell parameters from 4751 reflections
b = 5.7296 (3) Å θ = 4.8–67.5°
c = 27.5566 (14) Å µ = 1.00 mm1
β = 91.660 (4)° T = 298 K
V = 634.14 (6) Å3 Prism, pale yellow
Z = 2 0.40 × 0.12 × 0.05 mm

Data collection

Rigaku SuperNova, Dual, Cu at zero, Atlas S2 diffractometer 2228 independent reflections
Radiation source: micro-focus sealed X-ray tube 2149 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 5.3048 pixels mm-1 θmax = 67.9°, θmin = 4.8°
ω scans h = −4→4
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −6→6
Tmin = 0.683, Tmax = 1.000 l = −32→32
8239 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1688P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
2228 reflections Δρmax = 0.13 e Å3
190 parameters Δρmin = −0.16 e Å3
1 restraint Absolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
36 constraints Absolute structure parameter: −0.03 (8)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6427 (6) 0.3343 (4) 0.88096 (8) 0.0524 (6)
O3 0.0412 (6) 0.4724 (4) 0.73539 (8) 0.0615 (6)
C7 0.1548 (8) 0.5614 (6) 0.78012 (11) 0.0497 (7)
C10 0.1085 (8) 0.5845 (6) 0.69372 (12) 0.0530 (8)
C5 0.4431 (7) 0.4840 (5) 0.85424 (11) 0.0441 (6)
O2 0.9356 (7) 0.2473 (5) 0.94698 (9) 0.0754 (8)
C6 0.3531 (8) 0.4146 (6) 0.80778 (11) 0.0478 (7)
H6 0.4246 0.2726 0.7955 0.057*
C9 0.1406 (8) 0.8388 (6) 0.84388 (12) 0.0521 (7)
H9 0.0667 0.9806 0.8560 0.062*
C4 0.3401 (8) 0.6973 (5) 0.87346 (11) 0.0460 (7)
C11 −0.0314 (8) 0.4585 (6) 0.65121 (11) 0.0503 (7)
C16 −0.1991 (9) 0.2483 (7) 0.65592 (12) 0.0573 (8)
H16 −0.2289 0.1853 0.6866 0.069*
F1 −0.3952 (7) 0.1157 (6) 0.53091 (9) 0.1069 (10)
O4 0.2703 (7) 0.7609 (5) 0.69274 (9) 0.0745 (8)
C3 0.4468 (8) 0.7532 (6) 0.92219 (11) 0.0535 (8)
H3 0.3784 0.8923 0.9361 0.064*
C12 0.0095 (8) 0.5513 (7) 0.60524 (13) 0.0613 (9)
H12 0.1210 0.6923 0.6018 0.074*
C1 0.7538 (8) 0.3880 (6) 0.92768 (12) 0.0536 (8)
C8 0.0489 (8) 0.7757 (6) 0.79730 (12) 0.0546 (8)
H8 −0.0810 0.8743 0.7778 0.066*
C14 −0.2763 (10) 0.2274 (9) 0.57115 (14) 0.0705 (11)
C2 0.6429 (9) 0.6080 (7) 0.94771 (12) 0.0570 (8)
H2 0.7103 0.6486 0.9792 0.068*
C15 −0.3218 (10) 0.1325 (7) 0.61538 (14) 0.0679 (10)
H15 −0.4339 −0.0085 0.6184 0.081*
C13 −0.1144 (10) 0.4358 (9) 0.56453 (13) 0.0735 (11)
H13 −0.0889 0.4972 0.5336 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0609 (13) 0.0430 (13) 0.0528 (12) 0.0028 (10) −0.0050 (10) −0.0037 (10)
O3 0.0801 (15) 0.0560 (15) 0.0479 (12) −0.0166 (13) −0.0091 (10) 0.0029 (11)
C7 0.0542 (16) 0.0476 (19) 0.0470 (16) −0.0114 (15) −0.0026 (13) 0.0003 (14)
C10 0.0528 (17) 0.052 (2) 0.0542 (18) 0.0026 (16) −0.0010 (13) 0.0049 (15)
C5 0.0439 (14) 0.0383 (16) 0.0501 (15) −0.0058 (12) 0.0007 (11) 0.0008 (12)
O2 0.0877 (19) 0.0643 (18) 0.0726 (16) 0.0051 (16) −0.0235 (14) 0.0052 (14)
C6 0.0553 (16) 0.0396 (17) 0.0486 (16) −0.0033 (13) 0.0039 (12) −0.0033 (13)
C9 0.0527 (17) 0.0378 (17) 0.0660 (19) 0.0015 (13) 0.0063 (14) −0.0016 (14)
C4 0.0484 (16) 0.0366 (17) 0.0532 (16) −0.0052 (13) 0.0058 (12) −0.0037 (12)
C11 0.0503 (16) 0.0493 (19) 0.0511 (16) 0.0079 (14) −0.0034 (12) 0.0015 (14)
C16 0.0611 (19) 0.054 (2) 0.0567 (18) 0.0012 (17) −0.0044 (14) 0.0021 (16)
F1 0.116 (2) 0.129 (3) 0.0749 (15) −0.0067 (19) −0.0203 (14) −0.0386 (16)
O4 0.097 (2) 0.0636 (17) 0.0629 (15) −0.0291 (16) 0.0016 (13) 0.0011 (13)
C3 0.0615 (19) 0.0438 (18) 0.0556 (18) −0.0076 (16) 0.0066 (14) −0.0096 (15)
C12 0.0592 (19) 0.064 (2) 0.060 (2) −0.0040 (18) −0.0001 (15) 0.0055 (17)
C1 0.0577 (18) 0.050 (2) 0.0527 (17) −0.0078 (16) −0.0050 (14) 0.0021 (15)
C8 0.0580 (19) 0.0442 (18) 0.0613 (19) 0.0014 (15) −0.0029 (14) 0.0062 (14)
C14 0.067 (2) 0.081 (3) 0.063 (2) 0.004 (2) −0.0124 (17) −0.022 (2)
C2 0.065 (2) 0.056 (2) 0.0498 (17) −0.0123 (16) −0.0016 (14) −0.0059 (15)
C15 0.070 (2) 0.061 (2) 0.072 (2) −0.0016 (19) −0.0067 (17) −0.0090 (18)
C13 0.077 (2) 0.095 (3) 0.0480 (18) 0.011 (2) −0.0041 (16) 0.002 (2)

Geometric parameters (Å, º)

O1—C5 1.374 (3) C11—C16 1.388 (5)
O1—C1 1.385 (4) C11—C12 1.388 (5)
O3—C10 1.350 (4) C16—C15 1.378 (5)
O3—C7 1.398 (4) C16—H16 0.9300
C7—C6 1.374 (4) F1—C14 1.355 (4)
C7—C8 1.387 (5) C3—C2 1.332 (5)
C10—O4 1.202 (4) C3—H3 0.9300
C10—C11 1.473 (4) C12—C13 1.383 (5)
C5—C6 1.379 (4) C12—H12 0.9300
C5—C4 1.399 (4) C1—C2 1.451 (5)
O2—C1 1.202 (4) C8—H8 0.9300
C6—H6 0.9300 C14—C15 1.352 (6)
C9—C8 1.373 (5) C14—C13 1.374 (7)
C9—C4 1.388 (4) C2—H2 0.9300
C9—H9 0.9300 C15—H15 0.9300
C4—C3 1.434 (4) C13—H13 0.9300
C5—O1—C1 121.8 (2) C11—C16—H16 119.8
C10—O3—C7 120.5 (3) C2—C3—C4 120.7 (3)
C6—C7—C8 122.1 (3) C2—C3—H3 119.6
C6—C7—O3 115.8 (3) C4—C3—H3 119.6
C8—C7—O3 121.9 (3) C13—C12—C11 120.5 (4)
O4—C10—O3 122.7 (3) C13—C12—H12 119.7
O4—C10—C11 126.0 (3) C11—C12—H12 119.7
O3—C10—C11 111.2 (3) O2—C1—O1 116.0 (3)
O1—C5—C6 116.8 (3) O2—C1—C2 127.1 (3)
O1—C5—C4 121.1 (3) O1—C1—C2 116.9 (3)
C6—C5—C4 122.1 (3) C9—C8—C7 118.4 (3)
C7—C6—C5 118.1 (3) C9—C8—H8 120.8
C7—C6—H6 121.0 C7—C8—H8 120.8
C5—C6—H6 121.0 C15—C14—F1 119.6 (4)
C8—C9—C4 122.0 (3) C15—C14—C13 123.1 (4)
C8—C9—H9 119.0 F1—C14—C13 117.3 (4)
C4—C9—H9 119.0 C3—C2—C1 121.7 (3)
C9—C4—C5 117.4 (3) C3—C2—H2 119.2
C9—C4—C3 124.9 (3) C1—C2—H2 119.2
C5—C4—C3 117.8 (3) C14—C15—C16 118.9 (4)
C16—C11—C12 119.2 (3) C14—C15—H15 120.6
C16—C11—C10 121.7 (3) C16—C15—H15 120.6
C12—C11—C10 119.0 (3) C14—C13—C12 118.0 (4)
C15—C16—C11 120.4 (3) C14—C13—H13 121.0
C15—C16—H16 119.8 C12—C13—H13 121.0
C10—O3—C7—C6 −122.3 (3) C12—C11—C16—C15 0.4 (5)
C10—O3—C7—C8 63.4 (4) C10—C11—C16—C15 −178.8 (3)
C7—O3—C10—O4 1.1 (5) C9—C4—C3—C2 −179.0 (3)
C7—O3—C10—C11 179.3 (3) C5—C4—C3—C2 1.3 (5)
C1—O1—C5—C6 178.7 (3) C16—C11—C12—C13 −0.2 (5)
C1—O1—C5—C4 −0.7 (4) C10—C11—C12—C13 179.0 (3)
C8—C7—C6—C5 1.0 (4) C5—O1—C1—O2 −177.7 (3)
O3—C7—C6—C5 −173.3 (3) C5—O1—C1—C2 1.5 (4)
O1—C5—C6—C7 −179.7 (3) C4—C9—C8—C7 1.4 (5)
C4—C5—C6—C7 −0.3 (4) C6—C7—C8—C9 −1.5 (5)
C8—C9—C4—C5 −0.8 (5) O3—C7—C8—C9 172.5 (3)
C8—C9—C4—C3 179.5 (3) C4—C3—C2—C1 −0.5 (5)
O1—C5—C4—C9 179.6 (3) O2—C1—C2—C3 178.2 (4)
C6—C5—C4—C9 0.2 (4) O1—C1—C2—C3 −0.9 (5)
O1—C5—C4—C3 −0.7 (4) F1—C14—C15—C16 180.0 (3)
C6—C5—C4—C3 179.9 (3) C13—C14—C15—C16 −0.4 (6)
O4—C10—C11—C16 176.2 (3) C11—C16—C15—C14 −0.1 (5)
O3—C10—C11—C16 −1.9 (4) C15—C14—C13—C12 0.6 (6)
O4—C10—C11—C12 −3.0 (5) F1—C14—C13—C12 −179.7 (3)
O3—C10—C11—C12 178.9 (3) C11—C12—C13—C14 −0.3 (6)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.

D—H···A D—H H···A D···A D—H···A
C16—H16···O3 0.93 2.37 2.693 (4) 100
C2—H2···O2i 0.93 2.51 3.412 (4) 163
C1—O2···Cg2ii 1.20 (1) 3.27 (1) 3.403 (3) 86 (1)
C1—O2···Cg4ii 1.20 (1) 3.57 (1) 3.368 (3) 71 (1)

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) x−1, y, z.

Table S1

Experimental and calculated bond lengths (Å)

Bond X-ray 6-311++G(d,p)
O1—C5 1.374 (3) 1.348
O1—C1 1.385 (4) 1.354
O3—C10 1.350 (4) 1.342
O3—C7 1.398 (4) 1.375
C7—C6 1.374 (4) 1.373
C7—C8 1.387 (5) 1.3889
C10—O4 1.202 (4) 1.180
C10—C11 1.473 (4) 1.486
C5—C6 1.379 (4) 1.385
C5—C4 1.399 (4) 1.385
O2—C1 1.202 (4) 1.178
C9—C8 1.373 (5) 1.374
C9—C4 1.388 (4) 1.395
C4—C3 1.434 (4) 1.452
C11—C16 1.388 (5) 1.390
C11—C12 1.388 (5) 1.391
C16—C15 1.378 (5) 1.383
F1—C14 1.355 (4) 1.321
C3—C2 1.332 (5) 1.329
C12—C13 1.383 (5) 1.380
C1—C2 1.451 (5) 1.468
C14—C15 1.352 (6) 1.378
C14—C13 1.374 (7) 1.379

Table S2

Experimental and calculated bond angles (°)

Bond angle X-ray 6-311++G(d,p)
C5—O1—C1 121.8 (2) 123.7
C10—O3—C7 120.5 (3) 119.9
C6—C7—C8 122.1 (3) 122.0
C6—C7—O3 115.8 (3) 117.7
C8—C7—O3 121.9 (3) 120.1
O4—C10—O3 122.7 (3) 123.1
O4—C10—C11 126.0 (3) 124.8
O3—C10—C11 111.2 (3) 112.1
O1—C5—C6 116.8 (3) 117.1
O1—C5—C4 121.1 (3) 121.4
C6—C5—C4 122.1 (3) 121.5
C7—C6—C5 118.1 (3) 118.2
C8—C9—C4 122.0 (3) 121.0
C9—C4—C5 117.4 (3) 118.6
C9—C4—C3 124.9 (3) 124.2
C5—C4—C3 117.8 (3) 117.2
C16—C11—C12 119.2 (3) 119.7
C16—C11—C10 121.7 (3) 122.4
C12—C11—C10 119.0 (3) 117.8
C15—C16—C11 120.4 (3) 120.3
C2—C3—C4 120.7 (3) 120.5
C13—C12—C11 120.5 (4) 120.5
O2—C1—O1 116.0 (3) 118.7
O2—C1—C2 127.1 (3) 124.9
O1—C1—C2 116.9 (3) 116.3
C9—C8—C7 118.4 (3) 118.7
C15—C14—F1 119.6 (4) 118.7
C15—C14—C13 123.1 (4) 122.6
F1—C14—C13 117.3 (4) 118.7
C3—C2—C1 121.7 (3) 121.0
C14—C15—C16 118.9 (4) 118.5
C14—C13—C12 118.0 (4) 118.3

Table S3

Experimental and calculated torsion angles (°)

Torsion angle X-ray 6-311++G(d,p)
C10—O3—C7—C6 -122.3 (3) -109.7
C10—O3—C7—C8 63.4 (4) 73.7
C7—O3—C10—O4 1.1 (5) -0.1
C7—O3—C10—C11 179.3 (3) 179.9
C1—O1—C5—C6 178.7 (3) -180.0
C1—O1—C5—C4 -0.7 (4) -0.1
C8—C7—C6—C5 1.0 (4) -0.2
O3—C7—C6—C5 -173.3 (3) -176.7
O1—C5—C6—C7 -179.7 (3) 179.9
C4—C5—C6—C7 -0.3 (4) -0.0
C8—C9—C4—C5 -0.8 (5) 0.0
C8—C9—C4—C3 179.5 (3) -179.9
O1—C5—C4—C9 179.6 (3) -179.7
C6—C5—C4—C9 0.2 (4) 0.1
O1—C5—C4—C3 -0.7 (4) 0.2
C6—C5—C4—C3 179.9 (3) -179.9
O4—C10—C11—C16 176.2 (3) -179.7
O3—C10—C11—C16 -1.9 (4) 0.3
O4—C10—C11—C12 -3.0 (5) 0.4
O3—C10—C11—C12 178.9 (3) -179.6
C12—C11—C16—C15 0.4 (5) -0.1
C10—C11—C16—C15 -178.8 (3) 179.9
C9—C4—C3—C2 -179.0 (3) 179.8
C5—C4—C3—C2 1.3 (5) -0.2
C16—C11—C12—C13 -0.2 (5) 0.0
C10—C11—C12—C13 179.0 (3) -180.0
C5—O1—C1—O2 -177.7 (3) 180.0
C5—O1—C1—C2 1.5 (4) -0.1
C4—C9—C8—C7 1.4 (5) -0.3
C6—C7—C8—C9 -1.5 (5) 0.4
O3—C7—C8—C9 172.5 (3) 176.8
C4—C3—C2—C1 -0.5 (5) -0.0
O2—C1—C2—C3 178.2 (4) -179.8
O1—C1—C2—C3 -0.9 (5) 0.1
F1—C14—C15—C16 180.0 (3) 180.0
C13—C14—C15—C16 -0.4 (6) -0.0
C11—C16—C15—C14 -0.1 (5) 0.1
C15—C14—C13—C12 0.6 (6) -0.0
F1—C14—C13—C12 -179.7 (3) 180.0
C11—C12—C13—C14 -0.3 (6) 0.0

References

  1. Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. [DOI] [PMC free article] [PubMed]
  2. Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
  3. Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. [DOI] [PMC free article] [PubMed]
  4. Bitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173.
  5. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  6. Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.
  9. Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.
  10. Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  13. Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795. [DOI] [PubMed]
  14. Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534. [DOI] [PMC free article] [PubMed]
  17. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  18. Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30.
  19. Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161.
  20. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Vuković, N., Sukdolak, S., Solujić, S. & Niciforović, N. (2010). Arch. Pharm. Res. 33, 5–15. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  26. Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370. [DOI] [PMC free article] [PubMed]
  27. Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. [DOI] [PMC free article] [PubMed]
  28. Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021sup1.cif

e-74-00761-sup1.cif (290.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800614X/kq2021Isup2.hkl

e-74-00761-Isup2.hkl (178.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800614X/kq2021Isup3.cml

CCDC reference: 1834035

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES