The title compound comprises a central o-dianisidine unit and terminal benzyl groups. In the molecule, the O atom are involved in intramolecular hydrogen bonding. In the crystal, adjacent molecules are linked by C—H⋯O interactions, forming a one-dimensional ladder along the a axis.
Keywords: crystal structure, hydrogen bond, one-dimensional ladder, o-dianisidine
Abstract
The title compound, (systematic name: N,N′-dibenzyl-3,3′-dimethoxy-1,1′-biphenyl-4,4′-diamine), C28H28N2O2, was synthesized by the reduction of a Schiff base prepared via a condensation reaction between o-dianisidine and benzaldehyde under acidic conditions. The molecule lies on a crystallographic inversion centre so that the asymmetric unit contains one half-molecule. The biphenyl moiety compound is essentially planar. Two intramolecular N—H⋯O hydrogen bonds occur. The dihedral angle between the terminal phenyl and phenylene rings of a benzidine unit is 48.68 (6)°. The methylene C atom of the benzyl group is disordered over two sets of sites, with occupancy ratio 0.779 (18):0.221 (18). In the crystal, molecules are connected by hydrogen bonding between o-dianisidine O atoms and H atoms of the terminal benzyl groups, forming a one-dimensional ladder-like structure. In the data from DFT calculations, the central biphenyl showed a twisted conformation.
Chemical context
Benzidine derivatives have received increasing attention in recent years beacuse of their applications in a wide variety of domains, for instance as building blocks in the construction of functionalized organic/organometallic materials and as sensor materials (Hmadeh et al., 2008 ▸; Satapathi, 2015 ▸; Nagaraja et al., 2017 ▸). The chemical and physical properties of benzidine-based compounds have enabled their use in cell biology as staining reagents (Liu et al., 2004 ▸). Benzidine derivatives are also relevant examples of simple redox systems, which could find applications as OLEDs (Zhang et al., 2004 ▸) or electroactive organic polymeric compounds (D’Eramo et al., 1994 ▸). Recently, we have reported copper(I) coordination polymers based on pyromellitic diimide derivatives, and shown that photoluminescence emission peaks are shifted depending on the solvent (Kang et al., 2015 ▸). In an extension of previous research, we have synthesized a benzidine derivative as a diamine intermediate, in which a benzidine moiety was used instead of a pyromellitic diimide spacer unit, and report its crystal structure here.
Structural commentary
The molecular structure of the title compound consists of a central dimethoxybenzidine unit and two terminal benzyl groups (Fig. 1 ▸). The molecule lies about a crystallographic inversion centre at the midpoint of the C4—C4(−x, −y, −z + 1) bond, thus the asymmetric unit contains one half-molecule. The dihedral angle between the terminal phenyl and phenylene rings of a benzidine unit is 48.68 (6)°. Disorder was modelled for the methylene C atom of the benzyl group over two sets of sites with an occupancy ratio of 0.779 (18):0.221 (18). The biphenyl moiety is strictly planar [dihedral angle between rings = 0°; maximum deviation of 0.015 (2) Å for atom C3]. There is no pronounced anisotropy in the aryl anisotropic displacement parameters, indicating that there is no disorder or dynamic twisting process to accommodate the steric crowding of the ortho H atoms of the biphenyl moiety (El-Shafei et al., 2003 ▸). The molecular conformation is in part influenced by the formation of weak intramolecular N1—H1⋯O1 hydrogen bonds that enclose S(5) rings (Fig. 1 ▸, Table 1 ▸).
Figure 1.
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow dashed lines represent the intramolecular N—H⋯O hydrogen bonds. Unlabelled atoms are generated by the symmetry operation (−x, −y, −z + 1).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10—H10⋯O1i | 0.95 | 2.66 | 3.400 (2) | 135 |
| N1—H1⋯O1 | 0.88 | 2.33 | 2.6464 (19) | 101 |
Symmetry code: (i)
.
Supramolecular features
In the crystal, neighbouring molecules are linked by C10—H10⋯O1 hydrogen bonds (Table 1 ▸; yellow dashed lines in Fig. 2 ▸) that generate
(24) rings. These contacts stack adjacent molecules, forming a one-dimensional ladder-like structure (Fig. 2 ▸). Neighbouring stacks of molecules in these ladders are not connected but lie parallel to the (01
) plane (Fig. 3 ▸).
Figure 2.
C—H⋯O hydrogen bonds (orange dashed lines) link adjacent molecules. H atoms not involved in intermolecular interactions have been omitted for clarity.
Figure 3.
Overall packing diagram of title compound, showing the one-dimensional ladder structure (hydrogen bonds drawn as orange dashed lines). H atoms not involved in intermolecular interactions have been omitted for clarity.
Database survey
The Cambridge Database (Version 5.27, last update February 2017; Groom et al., 2016 ▸) reveals polymorphs of related biphenyl derivatives that have both twisted and planar biphenyl conformations (Hoser et al., 2012 ▸). However, in the biphenyl compounds 4,4′-diamino-2,2′,6,6′-tetramethylbiphenyl (Batsanov et al., 2006 ▸), 2,2′-dichloro-5,5′-dipropoxybenzidine and 2,2′-dimethyl-5,5′-dipropoxybenzidine (El-Shafei et al., 2004 ▸), in which atoms other than hydrogen are substituted in the ortho positions of the biphenyl unit, adopt twisted biphenyl conformations due to steric repulsion between substituted atoms. Hybrid inorganic–organic complexes with benzidine dications display structures with either twisted or planar conformations for the benzidine unit and, in some case, even both conformations (Dobrzycki & Woźniak, 2009 ▸). Related structures with an essentially planar benzidine conformation include 3,3′-dipropoxybenzidine (El-Shafei et al., 2003 ▸), N,N-bis(diphenylphosphino)benzidine (Kayan et al., 2012 ▸) and N,N′-bis(4-chlorobenzylidene)-3,3′-dimethoxybiphenyl-4,4′-diamine (Subashini et al., 2011 ▸).
Theoretical calculations
DFT calculations have been performed to support the experimental values on the basis of the diffraction study using the GAUSSIAN09 software package (Frisch et al., 2009 ▸). Full geometry optimizations were performed using B3LYP levels of theory with a 6-311G* basis set. The bond lengths of the optimized parameter are in excellent agreement with the experimental crystallographic data (Table 2 ▸). Interestingly, however, while the central biphenyl conformation from the crystal structure is found to be planar, that from the DFT calculations shows an angle of 37.67° between the two aromatic rings, Fig. 4 ▸. Furthermore, the dihedral angle between the terminal phenyl and phenylene rings of the title compound is 48.68 (6)° from the crystallographic data but 76.69° from the DFT calculation. Similarly, as a result of the twisted conformation found in the DFT calculations, the lengths of the intramolecular N—H⋯O hydrogen bonds from the X-ray and DFT calculation data are also slightly different, at 2.33 and 2.21 Å, respectively.
Table 2. Experimental and calculated bond lengths (Å).
| Bond | X-ray | B3LYP (6–311G*) |
|---|---|---|
| O1—C1 | 1.425 (2) | 1.4208 |
| O1—C2 | 1.374 (3) | 1.3744 |
| N1—C7 | 1.394 (2) | 1.3872 |
| N1—C8 | 1.438 (5) | 1.4567 |
| C2—C3 | 1.378 (2) | 1.3859 |
| C3—C4 | 1.399 (2) | 1.4104 |
| C4—C5 | 1.389 (2) | 1.3951 |
| C5—C6 | 1.386 (2) | 1.3964 |
| C6—C7 | 1.385 (2) | 1.3972 |
| C2—C7 | 1.408 (2) | 1.4189 |
| C8—C9 | 1.498 (6) | 1.5139 |
| C9—C10 | 1.389 (3) | 1.400) |
| C10—C11 | 1.379 (3) | 1.3921 |
| C11—C12 | 1.380 (2) | 1.3966 |
| C12—C13 | 1.377 (3) | 1.3923 |
| C13—C14 | 1.383 (3) | 1.3965 |
| C9—C14 | 1.382 (2) | 1.3976 |
| C4—C4i | 1.491 (2) | 1.4823 |
Symmetry code: (i) −x, −y, −z + 1.
Figure 4.
The central biphenyl conformation from the crystallographic data is planar (a), while that from the DFT calculations is twisted (b).
Synthesis and crystallization
A mixture of o-dianisidine (4.88 g, 20 mmol), benzaldehyde (4.71 g, 40 mmol) and acetic acid (2.47 g, 40 mmol) in 30 mL of toluene and 7 mL of ethanol was heated at refluxed for 6 h. Sodium borohydride (1.62 g, 40 mmol) was added and the mixture was refluxed for two h. After cooling to room temperature, water was added to the reaction mixture. The organic layer was collected and the water layer was extracted with dichloromethane. The combined organic layer was dried with anhydrous sodium sulfate then evaporated to give a solid. Column chromatography (silica gel, ethyl acetate/hexane = 30/70 (v/v) gave the pure product. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/n-hexane solution (v/v = 30/70) of the title compound. 1H NMR (300 MHz, DMSO): δ = 8.31 (s, 2H, CHCO), 7.28 (m, 10H, phenyl), 6.64 (d, 2H, CCHC), 6.41 (d, 2H, CHCN), 5.52 (t, 2H, NH), 4.33 (d, 4H, CH2), 3.88 (s, 6H, CH3).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C). The methylene C8 atom of the benzyl group is disordered over two sets of sites. Their occupancies refined to 0.779 (18) and 0.221 (18).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C28H28N2O2 |
| M r | 424.52 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 173 |
| a, b, c (Å) | 4.7089 (2), 9.6760 (4), 12.1952 (5) |
| α, β, γ (°) | 93.387 (3), 92.165 (2), 103.180 (2) |
| V (Å3) | 539.32 (4) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.31 × 0.18 × 0.06 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2014 ▸) |
| T min, T max | 0.659, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 6528, 1888, 1683 |
| R int | 0.019 |
| (sin θ/λ)max (Å−1) | 0.594 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.048, 0.145, 1.10 |
| No. of reflections | 1888 |
| No. of parameters | 156 |
| No. of restraints | 6 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.37, −0.60 |
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989018001688/sj5545sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001688/sj5545Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989018001688/sj5545Isup3.cml
CCDC reference: 1820338
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C28H28N2O2 | Z = 1 |
| Mr = 424.52 | F(000) = 226 |
| Triclinic, P1 | Dx = 1.307 Mg m−3 |
| a = 4.7089 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.6760 (4) Å | Cell parameters from 5519 reflections |
| c = 12.1952 (5) Å | θ = 2.6–28.0° |
| α = 93.387 (3)° | µ = 0.08 mm−1 |
| β = 92.165 (2)° | T = 173 K |
| γ = 103.180 (2)° | Plate, yellow |
| V = 539.32 (4) Å3 | 0.31 × 0.18 × 0.06 mm |
Data collection
| Bruker APEXII CCD diffractometer | 1683 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.019 |
| Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.0°, θmin = 1.7° |
| Tmin = 0.659, Tmax = 0.746 | h = −5→5 |
| 6528 measured reflections | k = −11→11 |
| 1888 independent reflections | l = −13→14 |
Refinement
| Refinement on F2 | 6 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
| wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0797P)2 + 0.2226P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.10 | (Δ/σ)max < 0.001 |
| 1888 reflections | Δρmax = 0.37 e Å−3 |
| 156 parameters | Δρmin = −0.60 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| O1 | 0.2453 (3) | 0.22554 (13) | 0.81729 (9) | 0.0350 (4) | |
| N1 | 0.6872 (3) | 0.38961 (16) | 0.72486 (12) | 0.0367 (4) | |
| H1 | 0.6890 | 0.3862 | 0.7968 | 0.044* | |
| C1 | −0.0076 (4) | 0.15213 (19) | 0.86818 (14) | 0.0355 (4) | |
| H1A | −0.1827 | 0.1701 | 0.8312 | 0.053* | |
| H1B | 0.0024 | 0.1860 | 0.9459 | 0.053* | |
| H1C | −0.0163 | 0.0498 | 0.8625 | 0.053* | |
| C2 | 0.2594 (3) | 0.19646 (17) | 0.70622 (13) | 0.0275 (4) | |
| C3 | 0.0682 (3) | 0.08840 (16) | 0.64431 (13) | 0.0270 (4) | |
| H3 | −0.0911 | 0.0316 | 0.6786 | 0.032* | |
| C4 | 0.1022 (3) | 0.06000 (16) | 0.53238 (13) | 0.0261 (4) | |
| C5 | 0.3347 (4) | 0.14802 (18) | 0.48559 (14) | 0.0328 (4) | |
| H5 | 0.3646 | 0.1318 | 0.4098 | 0.039* | |
| C6 | 0.5243 (4) | 0.25895 (18) | 0.54660 (14) | 0.0329 (4) | |
| H6 | 0.6790 | 0.3178 | 0.5114 | 0.039* | |
| C7 | 0.4931 (3) | 0.28575 (17) | 0.65775 (14) | 0.0284 (4) | |
| C8 | 0.8843 (16) | 0.5024 (3) | 0.6758 (5) | 0.0414 (13) | 0.779 (18) |
| H8A | 0.7710 | 0.5531 | 0.6291 | 0.050* | 0.779 (18) |
| H8B | 1.0144 | 0.4613 | 0.6282 | 0.050* | 0.779 (18) |
| C8' | 0.791 (3) | 0.4999 (12) | 0.7085 (11) | 0.023 (3) | 0.221 (18) |
| H8'1 | 0.6326 | 0.5513 | 0.7158 | 0.028* | 0.221 (18) |
| H8'2 | 0.8268 | 0.4949 | 0.6291 | 0.028* | 0.221 (18) |
| C9 | 1.0656 (4) | 0.60586 (18) | 0.76161 (15) | 0.0336 (4) | |
| C10 | 1.1686 (4) | 0.56526 (18) | 0.86005 (15) | 0.0373 (5) | |
| H10 | 1.1067 | 0.4695 | 0.8787 | 0.045* | |
| C11 | 1.3596 (4) | 0.66246 (19) | 0.93095 (14) | 0.0368 (4) | |
| H11 | 1.4302 | 0.6334 | 0.9978 | 0.044* | |
| C12 | 1.4480 (4) | 0.80198 (18) | 0.90472 (15) | 0.0370 (4) | |
| H12 | 1.5781 | 0.8693 | 0.9538 | 0.044* | |
| C13 | 1.3474 (4) | 0.84355 (18) | 0.80734 (15) | 0.0357 (4) | |
| H13 | 1.4098 | 0.9394 | 0.7889 | 0.043* | |
| C14 | 1.1558 (4) | 0.74595 (18) | 0.73633 (14) | 0.0339 (4) | |
| H14 | 1.0855 | 0.7754 | 0.6696 | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0359 (7) | 0.0396 (7) | 0.0222 (6) | −0.0042 (5) | 0.0004 (5) | −0.0061 (5) |
| N1 | 0.0347 (8) | 0.0398 (9) | 0.0262 (8) | −0.0081 (7) | 0.0009 (6) | −0.0086 (6) |
| C1 | 0.0359 (9) | 0.0416 (10) | 0.0252 (9) | 0.0021 (7) | 0.0029 (7) | −0.0022 (7) |
| C2 | 0.0303 (8) | 0.0285 (8) | 0.0224 (8) | 0.0056 (6) | −0.0033 (6) | −0.0015 (6) |
| C3 | 0.0277 (8) | 0.0256 (8) | 0.0253 (8) | 0.0017 (6) | −0.0015 (6) | 0.0008 (6) |
| C4 | 0.0270 (8) | 0.0258 (8) | 0.0244 (8) | 0.0050 (7) | −0.0047 (7) | −0.0001 (6) |
| C5 | 0.0333 (9) | 0.0375 (9) | 0.0228 (8) | −0.0001 (7) | −0.0019 (7) | −0.0028 (7) |
| C6 | 0.0307 (9) | 0.0339 (9) | 0.0286 (9) | −0.0033 (7) | 0.0007 (7) | 0.0001 (7) |
| C7 | 0.0265 (8) | 0.0285 (8) | 0.0273 (9) | 0.0025 (6) | −0.0043 (6) | −0.0023 (6) |
| C8 | 0.048 (2) | 0.0322 (14) | 0.037 (3) | −0.0026 (15) | −0.014 (2) | −0.0002 (13) |
| C8' | 0.022 (4) | 0.029 (4) | 0.018 (4) | 0.005 (3) | 0.011 (3) | 0.003 (3) |
| C9 | 0.0356 (9) | 0.0290 (9) | 0.0328 (9) | 0.0032 (7) | −0.0054 (7) | −0.0041 (7) |
| C10 | 0.0454 (10) | 0.0255 (8) | 0.0366 (10) | 0.0003 (7) | −0.0055 (8) | 0.0017 (7) |
| C11 | 0.0429 (10) | 0.0362 (10) | 0.0272 (9) | 0.0023 (8) | −0.0065 (8) | 0.0008 (7) |
| C12 | 0.0346 (9) | 0.0331 (9) | 0.0367 (10) | −0.0027 (7) | −0.0055 (8) | −0.0056 (7) |
| C13 | 0.0351 (9) | 0.0276 (9) | 0.0405 (10) | −0.0009 (7) | 0.0001 (8) | 0.0033 (7) |
| C14 | 0.0368 (9) | 0.0337 (9) | 0.0298 (9) | 0.0055 (7) | −0.0010 (7) | 0.0033 (7) |
Geometric parameters (Å, º)
| O1—C2 | 1.374 (2) | C6—H6 | 0.9500 |
| O1—C1 | 1.425 (2) | C8—C9 | 1.498 (3) |
| N1—C8' | 1.100 (12) | C8—H8A | 0.9900 |
| N1—C7 | 1.394 (2) | C8—H8B | 0.9900 |
| N1—C8 | 1.438 (7) | C8'—C9 | 1.549 (11) |
| N1—H1 | 0.8800 | C8'—H8'1 | 0.9900 |
| C1—H1A | 0.9800 | C8'—H8'2 | 0.9900 |
| C1—H1B | 0.9800 | C9—C14 | 1.382 (2) |
| C1—H1C | 0.9800 | C9—C10 | 1.389 (3) |
| C2—C3 | 1.378 (2) | C10—C11 | 1.379 (2) |
| C2—C7 | 1.408 (2) | C10—H10 | 0.9500 |
| C3—C4 | 1.399 (2) | C11—C12 | 1.379 (2) |
| C3—H3 | 0.9500 | C11—H11 | 0.9500 |
| C4—C5 | 1.389 (2) | C12—C13 | 1.377 (3) |
| C4—C4i | 1.491 (3) | C12—H12 | 0.9500 |
| C5—C6 | 1.386 (2) | C13—C14 | 1.383 (2) |
| C5—H5 | 0.9500 | C13—H13 | 0.9500 |
| C6—C7 | 1.385 (2) | C14—H14 | 0.9500 |
| C2—O1—C1 | 117.19 (12) | C9—C8—H8A | 109.3 |
| C8'—N1—C7 | 129.4 (6) | N1—C8—H8B | 109.3 |
| C7—N1—C8 | 119.6 (2) | C9—C8—H8B | 109.3 |
| C7—N1—H1 | 120.2 | H8A—C8—H8B | 108.0 |
| C8—N1—H1 | 120.2 | N1—C8'—C9 | 131.8 (9) |
| O1—C1—H1A | 109.5 | N1—C8'—H8'1 | 104.3 |
| O1—C1—H1B | 109.5 | C9—C8'—H8'1 | 104.3 |
| H1A—C1—H1B | 109.5 | N1—C8'—H8'2 | 104.3 |
| O1—C1—H1C | 109.5 | C9—C8'—H8'2 | 104.3 |
| H1A—C1—H1C | 109.5 | H8'1—C8'—H8'2 | 105.6 |
| H1B—C1—H1C | 109.5 | C14—C9—C10 | 118.83 (15) |
| O1—C2—C3 | 124.56 (15) | C14—C9—C8 | 117.8 (2) |
| O1—C2—C7 | 114.59 (14) | C10—C9—C8 | 123.1 (2) |
| C3—C2—C7 | 120.84 (15) | C14—C9—C8' | 124.5 (4) |
| C2—C3—C4 | 121.84 (15) | C10—C9—C8' | 114.0 (5) |
| C2—C3—H3 | 119.1 | C11—C10—C9 | 120.71 (16) |
| C4—C3—H3 | 119.1 | C11—C10—H10 | 119.6 |
| C5—C4—C3 | 116.84 (15) | C9—C10—H10 | 119.6 |
| C5—C4—C4i | 122.18 (18) | C10—C11—C12 | 119.89 (16) |
| C3—C4—C4i | 120.98 (18) | C10—C11—H11 | 120.1 |
| C6—C5—C4 | 121.75 (16) | C12—C11—H11 | 120.1 |
| C6—C5—H5 | 119.1 | C13—C12—C11 | 119.95 (16) |
| C4—C5—H5 | 119.1 | C13—C12—H12 | 120.0 |
| C7—C6—C5 | 121.41 (16) | C11—C12—H12 | 120.0 |
| C7—C6—H6 | 119.3 | C12—C13—C14 | 120.10 (16) |
| C5—C6—H6 | 119.3 | C12—C13—H13 | 120.0 |
| C6—C7—N1 | 124.04 (15) | C14—C13—H13 | 120.0 |
| C6—C7—C2 | 117.31 (15) | C9—C14—C13 | 120.52 (16) |
| N1—C7—C2 | 118.54 (15) | C9—C14—H14 | 119.7 |
| N1—C8—C9 | 111.4 (4) | C13—C14—H14 | 119.7 |
| N1—C8—H8A | 109.3 | ||
| C1—O1—C2—C3 | −9.3 (2) | C3—C2—C7—N1 | −177.38 (14) |
| C1—O1—C2—C7 | 171.68 (14) | C7—N1—C8—C9 | 177.7 (3) |
| O1—C2—C3—C4 | −176.98 (14) | C7—N1—C8'—C9 | −160.1 (9) |
| C7—C2—C3—C4 | 1.9 (2) | N1—C8—C9—C14 | −149.9 (3) |
| C2—C3—C4—C5 | −1.4 (2) | N1—C8—C9—C10 | 36.3 (6) |
| C2—C3—C4—C4i | 178.26 (16) | N1—C8'—C9—C14 | −175.1 (12) |
| C3—C4—C5—C6 | −0.1 (3) | N1—C8'—C9—C10 | −13.8 (19) |
| C4i—C4—C5—C6 | −179.73 (17) | C14—C9—C10—C11 | −0.6 (3) |
| C4—C5—C6—C7 | 1.0 (3) | C8—C9—C10—C11 | 173.1 (4) |
| C5—C6—C7—N1 | 175.71 (16) | C8'—C9—C10—C11 | −163.1 (6) |
| C5—C6—C7—C2 | −0.5 (3) | C9—C10—C11—C12 | 0.6 (3) |
| C8'—N1—C7—C6 | 43.5 (11) | C10—C11—C12—C13 | −0.6 (3) |
| C8—N1—C7—C6 | 18.3 (4) | C11—C12—C13—C14 | 0.6 (3) |
| C8'—N1—C7—C2 | −140.3 (11) | C10—C9—C14—C13 | 0.6 (3) |
| C8—N1—C7—C2 | −165.6 (3) | C8—C9—C14—C13 | −173.5 (4) |
| O1—C2—C7—C6 | 178.08 (14) | C8'—C9—C14—C13 | 161.1 (7) |
| C3—C2—C7—C6 | −0.9 (2) | C12—C13—C14—C9 | −0.6 (3) |
| O1—C2—C7—N1 | 1.6 (2) |
Symmetry code: (i) −x, −y, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C10—H10···O1ii | 0.95 | 2.66 | 3.400 (2) | 135 |
| N1—H1···O1 | 0.88 | 2.33 | 2.6464 (19) | 101 |
Symmetry code: (ii) x+1, y, z.
Funding Statement
This work was funded by National Research Foundation of Korea grants 2015R1D1A4A01020317 and 2017R1D1A3A03000534.
References
- Batsanov, A. S., Low, P. J. & Paterson, M. A. J. (2006). Acta Cryst. E62, o2973–o2975.
- Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- D’Eramo, F., Arévalo, A. H., Silber, J. J. & Sereno, L. (1994). J. Braz. Chem. Soc. 5, 213–218.
- Dobrzycki, L. & Woźniak, K. (2009). J. Mol. Struct. 921, 18–33.
- El-Shafei, A., Boyle, P. D., Hinks, D. & Freeman, H. S. (2003). Acta Cryst. C59, o71–o73. [DOI] [PubMed]
- El-Shafei, A., Hinks, D., Boyle, P. D. & Freeman, H. S. (2004). Acta Cryst. C60, o569–o571. [DOI] [PubMed]
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hmadeh, M., Traboulsi, H., Elhabiri, M., Braunstein, P., Albrecht-Gary, A. & Siri, O. (2008). Tetrahedron, 64, 6522–6529.
- Hoser, A. A., Jarzembska, K. N., Dobrzycki, Ł., Łukasz, , Gutmann, M. J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3526–3539.
- Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.
- Kayan, C., Biricik, N., Aydemir, M. & Scopelliti, R. (2012). Inorg. Chim. Acta, 385, 164–169.
- Liu, L. F., Yulan, Z. & Qian, X. H. (2004). Dyes Pigments, 60, 17–21.
- Nagaraja, V., Kumar, M. K. & Giddappa, N. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 407–417. [DOI] [PubMed]
- Satapathi, S. (2015). Inorg. Chem. Commun. 56, 22–34.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, o1296–o1297. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhang, S. T., Wang, Z. J., Zhao, J. M., Zhan, Y. Q., Wu, Y., Zhou, Y. C., Ding, X. M. & Hou, X. Y. (2004). Appl. Phys. Lett. 84, 2916–2918.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989018001688/sj5545sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001688/sj5545Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989018001688/sj5545Isup3.cml
CCDC reference: 1820338
Additional supporting information: crystallographic information; 3D view; checkCIF report





