Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 2;74(Pt 3):287–291. doi: 10.1107/S2056989018001883

Crystal structure of octa­kis­(4-meth­oxy­pyridinium) bis­(4-meth­oxy­pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III) bis­[(4-meth­oxypyri­dine-κN)pentakis­(thio­cyanato-κN)ferrate(III)] hexa­kis­(thio­cyanato-κN)ferrate(III) with iron in three different octa­hedral coordination environments

Aleksej Jochim a,*, Inke Jess a, Christian Näther a
PMCID: PMC5947788  PMID: 29765708

The crystal structure of the title compound consists of three different negatively charged discrete octa­hedral iron(III) complexes, that are charge-balanced by 4-meth­oxy­pyridinium cations.

Keywords: crystal structure, ferrate complexes, 4-meth­oxy­pyridine, iron thio­cyanate, octa­hedral coordination

Abstract

The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octa­hedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thio­cyanate anions and 4-meth­oxy­pyridine ligands. Charge balance is achieved by 4-meth­oxy­pyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and 4-meth­oxy­pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter­actions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding inter­actions involving the pyridinium N—H groups of the cations and the thio­cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.

Chemical context  

Recently, the synthesis of new coordination compounds based on paramagnetic metal cations has become increasingly inter­esting. In particular, compounds in which the paramagnetic metal cations are linked by small-sized anionic ligands that can mediate magnetic exchange are of special importance. For example, this can be achieved by thio- or seleno­cyanate anions that are able to coordinate to a central metal cation in different ways (Palion-Gazda et al., 2015; Guillet et al., 2016; Prananto et al., 2017). Most of the reported compounds contain terminally N-bonded thio­cyanate ligands, whereas compounds with these ligands in a bridging mode are relatively rare. Nevertheless, the latter can be obtained by thermal decomposition of precursor complexes with terminal anionic ligands, as we have recently shown. With monodentate co-ligands, such as simple pyridine derivatives substituted in the 4-position, we were able to synthesize a number of compounds (predominantly including divalent cobalt or nickel), in which the metal cations are linked by pairs of anionic ligands into chains (Rams et al., 2017a,b ; Wöhlert et al., 2012; Werner et al., 2015). In this context, divalent iron compounds are also of inter­est, but are scarce in comparison to divalent cobalt or nickel compounds because they are more difficult to synthesize in solution due to the poor oxidation stability of FeII. Therefore, we attempted to prepare either a coordination polymer with planned composition [Fe(NCS)2(4-meth­oxy­pyridine)2]n or a discrete complex with composition [Fe(NCS)2(4-meth­oxy­pyridine)4], which on thermal annealing might be transformed into the desired coordination polymer. 4-Meth­oxy­pyridine was selected because this ligand exhibits a strong donor substituent in the 4-position in comparison to the pyridine or 1,2-bis­(4-pyrid­yl)ethyl­ene ligands we have already investigated (Boeckmann & Näther, 2012; Wöhlert et al., 2013). In the course of these investigations, we accidently obtained crystals of the title compound, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], indicating that FeII was oxidized to FeIII.graphic file with name e-74-00287-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound comprises three iron(III) cations, of which one is located on a centre of inversion (Fe3), one on a twofold rotation axis (Fe1) and one in a general position (Fe2), as well as ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and four 4-meth­oxy­pyridinium cations, one of which is disordered over two sets of sites.

The three FeIII cations form discrete anionic complexes that are charge-balanced by the 4-meth­oxy­pyridinium cations. For each of the cations, the N—H hydrogen atom was clearly located, indicating an oxidation state of +III for iron. Each of the three FeIII cations shows a different octa­hedral coordin­ation environment. Fe1 is coordinated by two pairs of symmetry-related terminal-N-bonding thio­cyanate anions defining the equatorial plane of the octa­hedron, whereas the two axial positions are occupied by the N atoms of two symmetry-related 4-meth­oxy­pyridine ligands (Fig. 1). The Fe1—N distances to the anionic ligands are similar and significantly shorter than those to the neutral 4-meth­oxy­pyridine co-ligands (Table 1). Fe2 is coordinated by five crystallographically independent N-bonding thio­cyanate anions and by one 4-meth­oxy­pyridine ligand that occupies one of the axial positions (Fig. 1). The Fe2—N bond lengths are comparable to those of Fe1, except that of an equatorial thio­cyanate anion (N4) that is somewhat elongated. Inter­estingly, the distance to the N7 atom of the thio­cyanate anion that is trans to the 4-meth­oxy­pridine ligand is comparable to the other short Fe—N distances (Table 1). Fe3 is octa­hedrally coordinated by three pairs of N-bonding thio­cyanate anions related by a centre of inversion (Fig. 1). The Fe—N distances scatter over a wider range between 2.030 (2) and 2.075 (2) Å (Table 1). To investigate the deviations of the N—Fe—N bond angles from the ideal values, the octa­hedral angle variance σθ〈oct〉 2, which was introduced as a measure of distortion in octa­hedra (Robinson et al., 1971), was calculated for each of the discrete complexes. The greatest value of σθ〈oct〉 2 is found for Fe1 (σθ〈oct〉 2 = 8.89) followed by Fe2 (σθ〈oct〉 2 = 2.34) and Fe3 (σθ〈oct〉 2 = 0.28). Thus for Fe1, the bond angles deviate more from the ideal values compared to Fe2 and Fe3, with the latter showing the smallest distortion from an ideal octa­hedron.

Figure 1.

Figure 1

View of the three different coordination spheres of the FeIII cations in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, y, Inline graphic − z; (ii) 1 − x, −y, 1 − z.]

Table 1. Selected geometric parameters (Å, °).

Fe1—N2 2.030 (2) Fe2—N5 2.045 (2)
Fe1—N1 2.038 (2) Fe2—N4 2.074 (3)
Fe1—N11 2.1551 (19) Fe2—N21 2.158 (2)
Fe2—N6 2.034 (3) Fe3—N10 2.030 (2)
Fe2—N3 2.036 (3) Fe3—N9 2.049 (2)
Fe2—N7 2.039 (3) Fe3—N8 2.075 (2)
       
N2—Fe1—N2i 93.91 (15) N6—Fe2—N4 90.10 (11)
N2—Fe1—N1i 176.31 (10) N3—Fe2—N4 176.00 (10)
N2—Fe1—N1 89.62 (10) N7—Fe2—N4 90.25 (12)
N1i—Fe1—N1 86.87 (12) N5—Fe2—N4 88.73 (10)
N2—Fe1—N11i 87.37 (8) N6—Fe2—N21 89.70 (9)
N2—Fe1—N11 87.05 (8) N3—Fe2—N21 88.88 (9)
N1i—Fe1—N11 94.19 (8) N7—Fe2—N21 177.30 (12)
N1—Fe1—N11 91.75 (8) N5—Fe2—N21 90.29 (9)
N11i—Fe1—N11 171.82 (11) N4—Fe2—N21 87.34 (9)
N6—Fe2—N3 91.15 (12) N10—Fe3—N9ii 89.53 (9)
N6—Fe2—N7 89.08 (11) N10—Fe3—N9 90.46 (9)
N3—Fe2—N7 93.56 (12) N10—Fe3—N8ii 90.66 (9)
N6—Fe2—N5 178.84 (12) N9—Fe3—N8ii 90.35 (9)
N3—Fe2—N5 90.01 (11) N10—Fe3—N8 89.34 (9)
N7—Fe2—N5 90.87 (11) N9—Fe3—N8 89.65 (9)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

It is noted that a number of discrete anionic complexes based, for example, on MnII or FeII thio­cyanates, are reported in which the metal cations are four-, five-, or sixfold coordinated by anionic and additional neutral co-ligands. What makes the title compound so special is the fact that its crystal structure contains three different coordination spheres for iron in one crystal structure, suggesting a snapshot of the species that might be present in equillibrium in solution. Therefore it is not surprising that pure samples were not obtained under the given conditions. X-ray powder diffraction revealed that for all batches, large amounts of additional crystalline phases were present that could not be identified (see Fig. S1 in the Supporting information).

The negative charges of the anionic complexes in the title compound (–1 for Fe1, 2× −2 for Fe2 and −3 for Fe3) are compensated by eight 4-meth­oxy­pyridinium cations, of which each two are pairwise related by symmetry (Fig. 2).

Figure 2.

Figure 2

View of the four crystallographically independent 4-meth­oxy­pyridinium cations. Displacement ellipsoids are drawn at the 50% probability level. The disorder of one of the cations is shown with solid (major component) and open (minor component) bonds.

Supra­molecular features  

The discrete anionic complexes are linked with the cations through weak inter­molecular N—H⋯S hydrogen bonds between the pyridinium hydrogen atoms and the thio­cyanate sulfur atoms (Fig. 3, Table 2). The complex containing Fe3 is additionally involved in weak Caromatic—H⋯N hydrogen bonding. Other short contacts indicate further weak Caromatic—H⋯S and Cmeth­yl—H⋯S hydrogen bonds, respectively, connecting the cations and anionic complexes into a three-dimensional network.

Figure 3.

Figure 3

Crystal structure of the title compound in a view along [010]. Inter­molecular N—H⋯S hydrogen bonding is shown as dashed lines. The minor component of the disordered 4-meth­oxy­pyridine cation is not shown for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N5 0.95 2.66 3.141 (3) 112
C25—H25⋯N6 0.95 2.58 3.079 (4) 113
N31—H31A⋯S4iii 0.88 2.67 3.359 (3) 136
N41—H41A⋯S2 0.88 2.62 3.320 (3) 137
C46—H46C⋯S10iv 0.98 2.85 3.691 (5) 144
N41′—H41B⋯S2i 0.88 2.60 3.225 (14) 129
N41′—H41B⋯S9 0.88 2.88 3.676 (15) 151
C42′—H42′⋯S5v 0.95 2.98 3.83 (3) 151
C45′—H45′⋯S1vi 0.95 2.86 3.370 (18) 115
C45′—H45′⋯S2i 0.95 2.92 3.394 (19) 112
C46′—H46D⋯S3 0.98 2.81 3.52 (2) 130
N51—H51A⋯S1 0.88 2.78 3.464 (3) 135
C54—H54⋯S8vii 0.95 2.97 3.885 (3) 163
C56—H56B⋯S7viii 0.98 2.90 3.793 (4) 152
N61—H61A⋯S8iv 0.88 2.62 3.419 (3) 151
C62—H62⋯S5v 0.95 2.93 3.831 (3) 160
C65—H65⋯N8iv 0.95 2.68 3.608 (4) 167

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Database survey  

In the Cambridge Structure Database (Version 5.38, last update 2017; Groom et al., 2016) only one structure containing both 4-meth­oxy­pyridine and thio­cyanate ligands is reported. It consists of discrete complexes with ruthenium(II) as the central cation coordinated by two thio­cyanate anions and four 4-meth­oxy­pyridine mol­ecules (Cadranel et al., 2016). The structures of several ferrate complexes are deposited where FeII or FeIII cations are present. With FeII, this includes ((C2H5)4N)4[Fe(NCS)6] (Krautscheid & Gerber, 1999) or (2,2′-Hbpe)4[Fe(NCS)6]·4H2O where 2,2′-Hbpe is 1-(2-pyridin­ium)-2-(2-pyrid­yl)ethyl­ene (Briceño & Hill, 2012). Several complexes in which the FeIII cation is octa­hedrally coordin­ated by six thio­cyanate anions are also known, like in (C4H12N)3[Fe(SCN)6]·4H2O (Addison et al., 2005), or in [Ru(phen)3](NCS)[Fe(NCS)4]·H2O (phen: 1,10-phenanthroline), in which it is tetra­hedrally coordinated (Ghazzali et al., 2008). Moreover, with pyridine as ligand and pyridinium as cation, two structures are reported with a coordination identical to those in the title compound. In the structure of (C5H6N)2[Fe(SCN)5(C5H5N)]·C5H5N, the FeIII cations are octa­hedrally coordinated by five thio­cyanate anions and one pyridine ligand (Wood et al., 2015). In the structure of (C5H6N)[Fe(SCN)4(C5H5N)2] the FeIII cations are coordin­ated by two neutral pyridine ligands and four thio­cyanate anions (Shylin et al., 2013). However, structures in which three different coordination spheres are simultaneously present like in the title compound have not been reported to date.

Synthesis and crystallization  

Iron(II) chloride tetra­hydrate was obtained from Sigma Aldrich, potassium thio­cyanate from Fluka and 4-meth­oxy­pyridine from TCI. No further purification was carried out.

49.7 mg iron(II) chloride tetra­hydrate (0.25 mmol) and 48.6 mg potassium thio­cyanate (0.50 mmol) were reacted with 50.8 µl 4-meth­oxy­pyridine (0.50 mmol) in 2.0 ml water at room temperature. After stirring the mixture for three hours, the resulting powder was filtered off and the filtrate was let to evaporate slowly at room temperature. After several weeks single crystals suitable for single crystal X-ray analysis were obtained. The synthesis of larger and pure amounts of the title compound was not successful because in all batches additional crystalline phases were present (Supplementary Fig. S1).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The C—H and N—H hydrogen atoms were located in a difference-Fourier map but were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip), and refined with U iso(H) = 1.2U eq(C or N) (1.5 for methyl H atoms) using a riding model with Caromatic—H = 0.95 Å, Cmeth­yl—H = 0.98 Å and N—H = 0.88 Å. One of the four crystallographically independent 4-meth­oxy­pyridinium cations is disordered over two sets of sites and was refined with a split model using restraints. The sites with minor occupation (occupancy 0.22) were refined with isotropic displacement parameters, the sites of the major component with anisotropic displacement parameters.

Table 3. Experimental details.

Crystal data
Chemical formula (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6]
M r 2702.57
Crystal system, space group Monoclinic, C2/c
Temperature (K) 170
a, b, c (Å) 35.5034 (8), 10.5199 (1), 35.7432 (8)
β (°) 113.864 (2)
V3) 12208.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.42 × 0.23 × 0.13
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008)
T min, T max 0.607, 0.806
No. of measured, independent and observed [I > 2σ(I)] reflections 41955, 10715, 9204
R int 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.106, 1.04
No. of reflections 10715
No. of parameters 763
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.67

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 and XP (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018001883/wm5434sup1.cif

e-74-00287-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001883/wm5434Isup2.hkl

e-74-00287-Isup2.hkl (586.8KB, hkl)

Fig. S1 Experimental XRPD pattern of a representative batch obtained from the synthesis of the title compound (top) and XRPD pattern of the title compound calculated from single crystal data (bottom).. DOI: 10.1107/S2056989018001883/wm5434sup3.tif

CCDC reference: 1821019

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities.

supplementary crystallographic information

Crystal data

(C6H8NO)8[Fe(NCS)4(C6H7NO)2] [Fe(NCS)5(C6H7NO)]2[Fe(NCS)6] F(000) = 5552
Mr = 2702.57 Dx = 1.470 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 35.5034 (8) Å Cell parameters from 41955 reflections
b = 10.5199 (1) Å θ = 1.3–25.0°
c = 35.7432 (8) Å µ = 0.88 mm1
β = 113.864 (2)° T = 170 K
V = 12208.5 (4) Å3 Block, brown
Z = 4 0.42 × 0.23 × 0.13 mm

Data collection

Stoe IPDS-2 diffractometer 9204 reflections with I > 2σ(I)
ω scans Rint = 0.050
Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2008) θmax = 25.0°, θmin = 1.3°
Tmin = 0.607, Tmax = 0.806 h = −42→42
41955 measured reflections k = −11→12
10715 independent reflections l = −42→40

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0524P)2 + 13.0479P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106 (Δ/σ)max = 0.003
S = 1.04 Δρmax = 0.86 e Å3
10715 reflections Δρmin = −0.67 e Å3
763 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00035 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.5000 0.79411 (4) 0.7500 0.03724 (12)
Fe2 0.71066 (2) 1.07287 (4) 0.84000 (2) 0.04926 (12)
Fe3 0.5000 0.0000 0.5000 0.03680 (12)
N1 0.52452 (6) 0.9347 (2) 0.79210 (6) 0.0445 (5)
C1 0.53236 (7) 1.0362 (2) 0.80667 (7) 0.0392 (5)
S1 0.54416 (2) 1.17539 (7) 0.82712 (2) 0.05421 (18)
N2 0.52698 (7) 0.6624 (2) 0.79435 (8) 0.0556 (6)
C2 0.54258 (8) 0.5929 (2) 0.82173 (8) 0.0452 (6)
S2 0.56402 (3) 0.49338 (7) 0.85800 (2) 0.0700 (2)
N3 0.68743 (8) 0.9154 (3) 0.85615 (8) 0.0674 (7)
C3 0.67683 (8) 0.8151 (4) 0.86277 (9) 0.0601 (8)
S3 0.66233 (3) 0.67745 (10) 0.87176 (3) 0.0744 (3)
N4 0.73167 (7) 1.2305 (3) 0.81932 (8) 0.0579 (6)
C4 0.74817 (8) 1.3210 (3) 0.81490 (9) 0.0510 (6)
S4 0.77159 (3) 1.44758 (9) 0.80971 (3) 0.0805 (3)
N5 0.74237 (7) 0.9600 (3) 0.81615 (7) 0.0565 (6)
C5 0.76540 (8) 0.8855 (3) 0.81352 (8) 0.0443 (6)
S5 0.79698 (2) 0.78076 (7) 0.81075 (3) 0.0610 (2)
N6 0.67957 (8) 1.1883 (3) 0.86335 (8) 0.0686 (7)
C6 0.67073 (8) 1.2423 (3) 0.88703 (8) 0.0475 (6)
S6 0.65888 (3) 1.31425 (9) 0.92017 (4) 0.0839 (3)
N7 0.76055 (8) 1.0821 (3) 0.89460 (8) 0.0776 (9)
C7 0.78393 (8) 1.1252 (3) 0.92523 (8) 0.0550 (7)
S7 0.81637 (3) 1.18196 (10) 0.96765 (3) 0.0776 (3)
N8 0.55865 (7) 0.0555 (2) 0.53986 (7) 0.0478 (5)
C8 0.59190 (8) 0.0635 (3) 0.56455 (8) 0.0455 (6)
S8 0.63856 (2) 0.07056 (9) 0.59923 (2) 0.0672 (2)
N9 0.47535 (7) 0.1365 (2) 0.52431 (7) 0.0504 (5)
C9 0.46529 (8) 0.2161 (2) 0.54081 (8) 0.0440 (6)
S9 0.45060 (3) 0.32654 (7) 0.56329 (3) 0.0669 (2)
N10 0.49907 (7) −0.1274 (2) 0.54230 (7) 0.0515 (5)
C10 0.49663 (8) −0.2122 (3) 0.56219 (8) 0.0480 (6)
S10 0.49314 (3) −0.33036 (9) 0.58901 (3) 0.0790 (3)
N11 0.44671 (6) 0.77950 (18) 0.76427 (6) 0.0391 (4)
C11 0.40853 (7) 0.7706 (2) 0.73448 (8) 0.0420 (5)
H11 0.4052 0.7838 0.7070 0.050*
C12 0.37417 (8) 0.7434 (2) 0.74160 (8) 0.0439 (5)
H12 0.3478 0.7392 0.7196 0.053*
C13 0.37876 (8) 0.7224 (2) 0.78148 (8) 0.0435 (6)
C14 0.41790 (8) 0.7334 (2) 0.81264 (8) 0.0448 (6)
H14 0.4220 0.7209 0.8403 0.054*
C15 0.45048 (8) 0.7622 (2) 0.80300 (7) 0.0419 (5)
H15 0.4770 0.7705 0.8246 0.050*
O11 0.34810 (6) 0.6914 (2) 0.79279 (6) 0.0558 (5)
C16 0.30703 (8) 0.6808 (3) 0.76090 (10) 0.0643 (8)
H16A 0.2982 0.7638 0.7479 0.096*
H16B 0.2880 0.6524 0.7728 0.096*
H16C 0.3071 0.6190 0.7404 0.096*
N21 0.65815 (6) 1.07258 (19) 0.78190 (6) 0.0390 (4)
C21 0.66158 (7) 1.0628 (2) 0.74598 (7) 0.0402 (5)
H21 0.6884 1.0570 0.7464 0.048*
C22 0.62854 (7) 1.0607 (2) 0.70855 (7) 0.0415 (5)
H22 0.6325 1.0533 0.6839 0.050*
C23 0.58915 (7) 1.0696 (2) 0.70784 (7) 0.0401 (5)
C24 0.58506 (7) 1.0811 (2) 0.74488 (7) 0.0394 (5)
H24 0.5586 1.0884 0.7453 0.047*
C25 0.61953 (7) 1.0817 (2) 0.78039 (7) 0.0391 (5)
H25 0.6163 1.0889 0.8054 0.047*
O21 0.55360 (5) 1.06869 (18) 0.67422 (5) 0.0500 (4)
C26 0.55563 (10) 1.0511 (3) 0.63513 (8) 0.0603 (7)
H26C 0.5717 1.1203 0.6304 0.091*
H26B 0.5277 1.0515 0.6135 0.091*
H26A 0.5689 0.9696 0.6349 0.091*
N31 0.73444 (8) 0.1116 (4) 0.61226 (9) 0.0760 (8)
H31A 0.7380 0.1133 0.6381 0.091*
C31 0.74033 (11) 0.0049 (4) 0.59560 (13) 0.0812 (10)
H31 0.7470 −0.0709 0.6114 0.097*
C32 0.73708 (10) 0.0020 (4) 0.55662 (12) 0.0735 (9)
H32 0.7416 −0.0746 0.5450 0.088*
C33 0.72697 (9) 0.1138 (3) 0.53394 (9) 0.0618 (8)
C34 0.72211 (9) 0.2252 (4) 0.55238 (10) 0.0655 (8)
H34 0.7164 0.3030 0.5376 0.079*
C35 0.72563 (9) 0.2221 (4) 0.59177 (10) 0.0697 (9)
H35 0.7219 0.2973 0.6046 0.084*
O31 0.72109 (8) 0.1230 (3) 0.49454 (7) 0.0789 (7)
C36 0.72391 (14) 0.0086 (5) 0.47393 (14) 0.1034 (15)
H36A 0.7520 −0.0249 0.4866 0.155*
H36B 0.7170 0.0273 0.4450 0.155*
H36C 0.7046 −0.0546 0.4760 0.155*
N41 0.60287 (10) 0.4088 (3) 0.79138 (10) 0.0577 (8) 0.78
H41A 0.6064 0.4147 0.8171 0.069* 0.78
C41 0.56493 (12) 0.4082 (4) 0.76217 (14) 0.0584 (9) 0.78
H41 0.5421 0.4127 0.7696 0.070* 0.78
C42 0.55780 (17) 0.4013 (4) 0.7213 (2) 0.0517 (12) 0.78
H42 0.5306 0.4029 0.7006 0.062* 0.78
C43 0.59162 (14) 0.3921 (4) 0.71152 (19) 0.0500 (9) 0.78
C44 0.63139 (17) 0.3912 (4) 0.74297 (19) 0.0556 (11) 0.78
H44 0.6548 0.3842 0.7366 0.067* 0.78
C45 0.63606 (14) 0.4005 (4) 0.7822 (2) 0.0588 (10) 0.78
H45 0.6629 0.4012 0.8035 0.071* 0.78
O41 0.58854 (16) 0.3815 (4) 0.67352 (15) 0.0650 (9) 0.78
C46 0.54772 (19) 0.3796 (5) 0.64126 (18) 0.0760 (15) 0.78
H46A 0.5316 0.3117 0.6465 0.114* 0.78
H46B 0.5496 0.3644 0.6150 0.114* 0.78
H46C 0.5343 0.4616 0.6404 0.114* 0.78
N41' 0.5283 (4) 0.3881 (14) 0.6671 (4) 0.078 (4)* 0.22
H41B 0.5037 0.3847 0.6470 0.094* 0.22
C41' 0.5639 (9) 0.387 (2) 0.6578 (8) 0.068 (6)* 0.22
H41C 0.5614 0.3769 0.6304 0.081* 0.22
C42' 0.6009 (7) 0.399 (2) 0.6891 (7) 0.056 (6)* 0.22
H42' 0.6252 0.4012 0.6840 0.067* 0.22
C43' 0.6036 (6) 0.4100 (15) 0.7292 (5) 0.040 (4)* 0.22
C44' 0.5661 (5) 0.4075 (17) 0.7368 (6) 0.038 (4)* 0.22
H44' 0.5672 0.4152 0.7637 0.046* 0.22
C45' 0.5316 (6) 0.3944 (15) 0.7055 (5) 0.068 (4)* 0.22
H45' 0.5071 0.3890 0.7101 0.081* 0.22
O41' 0.6404 (4) 0.4209 (13) 0.7590 (5) 0.060 (4)* 0.22
C46' 0.6450 (6) 0.430 (2) 0.8004 (6) 0.071 (6)* 0.22
H46D 0.6338 0.5110 0.8046 0.107* 0.22
H46E 0.6743 0.4248 0.8186 0.107* 0.22
H46F 0.6302 0.3597 0.8064 0.107* 0.22
N51 0.59908 (9) 1.0443 (3) 0.92277 (9) 0.0739 (8)
H51A 0.5915 1.1152 0.9086 0.089*
C51 0.59439 (14) 0.9349 (4) 0.90294 (11) 0.0872 (12)
H51 0.5846 0.9352 0.8740 0.105*
C52 0.60336 (12) 0.8228 (3) 0.92326 (10) 0.0726 (9)
H52 0.5996 0.7448 0.9088 0.087*
C53 0.61806 (8) 0.8244 (3) 0.96546 (9) 0.0534 (7)
C54 0.62320 (9) 0.9399 (3) 0.98531 (9) 0.0586 (7)
H54 0.6333 0.9430 1.0143 0.070*
C55 0.61375 (9) 1.0490 (3) 0.96308 (11) 0.0658 (8)
H55 0.6177 1.1288 0.9766 0.079*
O51 0.62817 (7) 0.7208 (2) 0.98876 (7) 0.0753 (6)
C56 0.62525 (15) 0.5989 (4) 0.96868 (15) 0.1087 (16)
H56A 0.5970 0.5862 0.9484 0.163*
H56B 0.6325 0.5308 0.9891 0.163*
H56C 0.6442 0.5975 0.9550 0.163*
N61 0.63662 (9) 0.7464 (3) 0.60504 (10) 0.0733 (8)
H61A 0.6463 0.8241 0.6110 0.088*
C61 0.65506 (10) 0.6400 (4) 0.62406 (10) 0.0738 (10)
H61 0.6803 0.6450 0.6476 0.089*
C62 0.63809 (9) 0.5255 (4) 0.61004 (9) 0.0637 (8)
H62 0.6512 0.4497 0.6236 0.076*
C63 0.60118 (9) 0.5200 (3) 0.57551 (8) 0.0516 (6)
C64 0.58280 (9) 0.6310 (3) 0.55646 (10) 0.0603 (7)
H64 0.5576 0.6291 0.5328 0.072*
C65 0.60119 (10) 0.7427 (3) 0.57192 (12) 0.0746 (9)
H65 0.5887 0.8199 0.5590 0.089*
O61 0.58606 (7) 0.4041 (2) 0.56325 (7) 0.0689 (6)
C66 0.54801 (13) 0.3931 (4) 0.52734 (11) 0.0837 (11)
H66A 0.5256 0.4317 0.5328 0.125*
H66B 0.5419 0.3032 0.5205 0.125*
H66C 0.5507 0.4370 0.5044 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0402 (3) 0.0329 (2) 0.0371 (3) 0.000 0.0141 (2) 0.000
Fe2 0.0431 (2) 0.0689 (3) 0.0364 (2) −0.00179 (18) 0.01665 (16) −0.00331 (17)
Fe3 0.0354 (2) 0.0376 (3) 0.0359 (2) 0.00046 (19) 0.0128 (2) −0.00297 (19)
N1 0.0445 (11) 0.0497 (13) 0.0382 (11) −0.0020 (10) 0.0156 (9) −0.0005 (10)
C1 0.0399 (12) 0.0440 (14) 0.0344 (11) −0.0029 (10) 0.0158 (10) −0.0017 (11)
S1 0.0670 (4) 0.0429 (4) 0.0535 (4) −0.0062 (3) 0.0252 (3) −0.0091 (3)
N2 0.0540 (13) 0.0515 (13) 0.0674 (15) 0.0090 (11) 0.0306 (12) 0.0143 (12)
C2 0.0533 (14) 0.0360 (13) 0.0497 (15) 0.0000 (11) 0.0243 (12) 0.0047 (12)
S2 0.1166 (7) 0.0410 (4) 0.0453 (4) 0.0038 (4) 0.0255 (4) 0.0087 (3)
N3 0.0582 (15) 0.092 (2) 0.0496 (14) 0.0032 (14) 0.0194 (12) 0.0181 (14)
C3 0.0410 (14) 0.096 (2) 0.0438 (15) 0.0074 (15) 0.0170 (12) 0.0201 (15)
S3 0.0578 (4) 0.0962 (7) 0.0681 (5) −0.0018 (4) 0.0242 (4) 0.0257 (5)
N4 0.0519 (13) 0.0652 (16) 0.0581 (15) −0.0100 (12) 0.0238 (12) −0.0140 (12)
C4 0.0421 (14) 0.0595 (17) 0.0497 (15) −0.0029 (13) 0.0167 (12) −0.0123 (13)
S4 0.1028 (7) 0.0734 (6) 0.0786 (6) −0.0361 (5) 0.0504 (5) −0.0217 (5)
N5 0.0493 (13) 0.0680 (15) 0.0513 (13) 0.0066 (12) 0.0193 (11) 0.0020 (12)
C5 0.0400 (13) 0.0491 (15) 0.0397 (13) −0.0026 (12) 0.0119 (10) 0.0029 (11)
S5 0.0506 (4) 0.0549 (4) 0.0701 (5) 0.0091 (3) 0.0168 (4) −0.0054 (4)
N6 0.0565 (14) 0.103 (2) 0.0492 (14) −0.0064 (14) 0.0242 (12) −0.0212 (14)
C6 0.0417 (13) 0.0563 (16) 0.0433 (14) −0.0018 (12) 0.0158 (11) −0.0036 (12)
S6 0.1018 (7) 0.0733 (6) 0.1058 (7) −0.0133 (5) 0.0722 (6) −0.0343 (5)
N7 0.0529 (14) 0.135 (3) 0.0435 (14) −0.0044 (16) 0.0175 (12) −0.0062 (16)
C7 0.0465 (15) 0.076 (2) 0.0409 (15) 0.0066 (14) 0.0165 (13) 0.0043 (14)
S7 0.0787 (6) 0.0835 (6) 0.0521 (4) −0.0013 (5) 0.0072 (4) −0.0097 (4)
N8 0.0423 (12) 0.0512 (13) 0.0470 (12) −0.0013 (10) 0.0150 (10) −0.0038 (10)
C8 0.0395 (14) 0.0528 (15) 0.0443 (14) −0.0072 (11) 0.0170 (12) −0.0099 (12)
S8 0.0401 (4) 0.0985 (6) 0.0536 (4) −0.0165 (4) 0.0094 (3) −0.0112 (4)
N9 0.0472 (12) 0.0485 (13) 0.0556 (13) 0.0022 (10) 0.0209 (11) −0.0059 (11)
C9 0.0434 (13) 0.0418 (14) 0.0479 (14) −0.0017 (11) 0.0195 (11) −0.0038 (11)
S9 0.0867 (6) 0.0474 (4) 0.0806 (5) 0.0039 (4) 0.0483 (5) −0.0143 (4)
N10 0.0538 (13) 0.0515 (13) 0.0470 (12) −0.0035 (11) 0.0181 (11) −0.0014 (11)
C10 0.0514 (15) 0.0517 (15) 0.0363 (13) −0.0091 (12) 0.0131 (11) −0.0045 (12)
S10 0.0975 (7) 0.0740 (6) 0.0533 (4) −0.0277 (5) 0.0180 (4) 0.0145 (4)
N11 0.0425 (11) 0.0344 (10) 0.0386 (10) −0.0012 (8) 0.0145 (9) 0.0007 (8)
C11 0.0442 (13) 0.0386 (13) 0.0404 (13) −0.0004 (10) 0.0142 (11) 0.0019 (10)
C12 0.0397 (12) 0.0447 (14) 0.0428 (13) 0.0000 (11) 0.0121 (11) 0.0015 (11)
C13 0.0412 (13) 0.0424 (13) 0.0489 (14) 0.0035 (11) 0.0205 (11) 0.0039 (11)
C14 0.0471 (13) 0.0479 (14) 0.0376 (13) 0.0048 (11) 0.0154 (11) 0.0035 (11)
C15 0.0412 (12) 0.0412 (13) 0.0399 (13) 0.0017 (10) 0.0130 (10) 0.0000 (10)
O11 0.0422 (10) 0.0753 (13) 0.0525 (11) 0.0000 (9) 0.0217 (9) 0.0084 (10)
C16 0.0409 (14) 0.087 (2) 0.0641 (19) −0.0022 (15) 0.0210 (14) 0.0042 (17)
N21 0.0408 (10) 0.0408 (11) 0.0374 (10) −0.0014 (8) 0.0178 (9) −0.0010 (8)
C21 0.0406 (12) 0.0445 (13) 0.0386 (12) 0.0005 (10) 0.0191 (10) −0.0005 (10)
C22 0.0461 (13) 0.0445 (13) 0.0378 (12) 0.0031 (11) 0.0210 (11) 0.0006 (10)
C23 0.0402 (12) 0.0381 (13) 0.0404 (13) 0.0004 (10) 0.0145 (10) 0.0016 (10)
C24 0.0392 (12) 0.0376 (12) 0.0442 (13) 0.0000 (10) 0.0199 (11) 0.0014 (10)
C25 0.0422 (12) 0.0410 (13) 0.0382 (12) −0.0012 (10) 0.0203 (10) 0.0004 (10)
O21 0.0444 (9) 0.0641 (12) 0.0374 (9) 0.0043 (8) 0.0123 (8) 0.0020 (8)
C26 0.0614 (17) 0.076 (2) 0.0365 (14) 0.0080 (15) 0.0126 (13) −0.0004 (14)
N31 0.0529 (15) 0.121 (3) 0.0520 (15) −0.0178 (17) 0.0194 (12) 0.0008 (18)
C31 0.064 (2) 0.095 (3) 0.081 (3) −0.010 (2) 0.0256 (19) 0.014 (2)
C32 0.0612 (19) 0.085 (3) 0.079 (2) −0.0132 (17) 0.0332 (17) −0.0039 (19)
C33 0.0499 (16) 0.082 (2) 0.0572 (17) −0.0205 (15) 0.0251 (14) −0.0133 (16)
C34 0.0546 (17) 0.082 (2) 0.0592 (18) −0.0135 (16) 0.0217 (15) −0.0070 (16)
C35 0.0484 (16) 0.101 (3) 0.0600 (19) −0.0145 (17) 0.0217 (15) −0.0189 (19)
O31 0.0853 (16) 0.1038 (19) 0.0560 (13) −0.0289 (14) 0.0372 (12) −0.0195 (13)
C36 0.101 (3) 0.131 (4) 0.097 (3) −0.043 (3) 0.060 (3) −0.056 (3)
N41 0.0628 (19) 0.0545 (18) 0.0594 (19) 0.0086 (15) 0.0285 (16) −0.0037 (15)
C41 0.055 (2) 0.053 (2) 0.073 (3) 0.0061 (17) 0.032 (2) −0.0064 (19)
C42 0.050 (3) 0.048 (2) 0.054 (3) 0.0077 (18) 0.018 (3) −0.001 (2)
C43 0.059 (2) 0.0353 (19) 0.062 (3) 0.0048 (18) 0.030 (3) 0.006 (2)
C44 0.052 (3) 0.046 (2) 0.077 (3) 0.006 (2) 0.034 (3) 0.006 (2)
C45 0.053 (2) 0.043 (2) 0.077 (3) 0.0051 (18) 0.023 (2) 0.001 (2)
O41 0.071 (3) 0.065 (2) 0.068 (3) 0.006 (2) 0.037 (2) 0.013 (2)
C46 0.087 (4) 0.067 (3) 0.068 (3) 0.015 (3) 0.025 (3) 0.018 (3)
N51 0.086 (2) 0.0571 (16) 0.0754 (19) 0.0108 (15) 0.0294 (16) 0.0107 (14)
C51 0.124 (3) 0.077 (2) 0.0504 (18) 0.022 (2) 0.024 (2) 0.0067 (18)
C52 0.096 (3) 0.0576 (19) 0.0496 (17) 0.0106 (18) 0.0145 (17) −0.0042 (15)
C53 0.0473 (14) 0.0591 (17) 0.0493 (15) −0.0019 (13) 0.0147 (12) 0.0028 (13)
C54 0.0509 (15) 0.074 (2) 0.0519 (16) 0.0012 (14) 0.0215 (13) −0.0087 (15)
C55 0.0527 (17) 0.0586 (18) 0.084 (2) −0.0001 (14) 0.0251 (16) −0.0165 (17)
O51 0.0763 (15) 0.0694 (15) 0.0645 (14) −0.0028 (12) 0.0123 (11) 0.0188 (12)
C56 0.112 (3) 0.053 (2) 0.113 (3) −0.003 (2) −0.004 (3) 0.012 (2)
N61 0.0665 (17) 0.0770 (19) 0.085 (2) −0.0157 (15) 0.0390 (16) −0.0243 (17)
C61 0.0502 (17) 0.123 (3) 0.0469 (17) −0.006 (2) 0.0188 (14) −0.007 (2)
C62 0.0531 (16) 0.087 (2) 0.0482 (16) 0.0126 (16) 0.0180 (14) 0.0145 (16)
C63 0.0528 (15) 0.0569 (17) 0.0464 (14) 0.0053 (13) 0.0215 (13) 0.0054 (13)
C64 0.0497 (15) 0.0589 (18) 0.0610 (18) 0.0065 (14) 0.0108 (14) 0.0077 (14)
C65 0.0600 (19) 0.060 (2) 0.095 (3) 0.0046 (16) 0.0228 (19) 0.0008 (18)
O61 0.0777 (14) 0.0559 (13) 0.0672 (13) 0.0048 (11) 0.0231 (12) 0.0078 (10)
C66 0.097 (3) 0.072 (2) 0.065 (2) −0.022 (2) 0.0148 (19) −0.0037 (18)

Geometric parameters (Å, º)

Fe1—N2 2.030 (2) C43'—O41' 1.31 (2)
Fe1—N2i 2.030 (2) C43'—C44' 1.46 (3)
Fe1—N1i 2.037 (2) C44'—C45' 1.29 (2)
Fe1—N1 2.038 (2) O41'—C46' 1.42 (2)
Fe1—N11i 2.1550 (19) N51—C55 1.320 (4)
Fe1—N11 2.1551 (19) N51—C51 1.326 (5)
Fe2—N6 2.034 (3) C51—C52 1.353 (5)
Fe2—N3 2.036 (3) C52—C53 1.382 (4)
Fe2—N7 2.039 (3) C53—O51 1.329 (4)
Fe2—N5 2.045 (2) C53—C54 1.381 (4)
Fe2—N4 2.074 (3) C54—C55 1.358 (5)
Fe2—N21 2.158 (2) O51—C56 1.453 (5)
Fe3—N10 2.030 (2) N61—C65 1.334 (5)
Fe3—N10ii 2.030 (2) N61—C61 1.335 (5)
Fe3—N9ii 2.049 (2) C61—C62 1.349 (5)
Fe3—N9 2.049 (2) C62—C63 1.391 (4)
Fe3—N8ii 2.075 (2) C63—O61 1.332 (4)
Fe3—N8 2.075 (2) C63—C64 1.377 (4)
N1—C1 1.171 (3) C64—C65 1.349 (5)
C1—S1 1.614 (3) O61—C66 1.443 (4)
N2—C2 1.166 (3) C11—H11 0.9500
C2—S2 1.600 (3) C12—H12 0.9500
N3—C3 1.176 (4) C14—H14 0.9500
C3—S3 1.612 (4) C15—H15 0.9500
N4—C4 1.162 (4) C16—H16A 0.9800
C4—S4 1.619 (3) C16—H16B 0.9800
N5—C5 1.163 (3) C16—H16C 0.9800
C5—S5 1.604 (3) C21—H21 0.9500
N6—C6 1.162 (4) C22—H22 0.9500
C6—S6 1.599 (3) C24—H24 0.9500
N7—C7 1.165 (4) C25—H25 0.9500
C7—S7 1.603 (3) C26—H26C 0.9800
N8—C8 1.156 (3) C26—H26B 0.9800
C8—S8 1.620 (3) C26—H26A 0.9800
N9—C9 1.161 (3) N31—H31A 0.8800
C9—S9 1.614 (3) C31—H31 0.9500
N10—C10 1.166 (3) C32—H32 0.9500
C10—S10 1.605 (3) C34—H34 0.9500
N11—C11 1.346 (3) C35—H35 0.9500
N11—C15 1.348 (3) C36—H36A 0.9800
C11—C12 1.373 (3) C36—H36B 0.9800
C12—C13 1.385 (4) C36—H36C 0.9800
C13—O11 1.346 (3) N41—H41A 0.8800
C13—C14 1.390 (4) C41—H41 0.9500
C14—C15 1.368 (3) C42—H42 0.9500
O11—C16 1.447 (3) C44—H44 0.9500
N21—C21 1.342 (3) C45—H45 0.9500
N21—C25 1.353 (3) C46—H46A 0.9800
C21—C22 1.377 (3) C46—H46B 0.9800
C22—C23 1.392 (3) C46—H46C 0.9800
C23—O21 1.345 (3) N41'—H41B 0.8800
C23—C24 1.394 (3) C41'—H41C 0.9500
C24—C25 1.361 (3) C42'—H42' 0.9500
O21—C26 1.440 (3) C44'—H44' 0.9500
N31—C31 1.326 (5) C45'—H45' 0.9500
N31—C35 1.342 (5) C46'—H46D 0.9800
C31—C32 1.351 (5) C46'—H46E 0.9800
C32—C33 1.391 (5) C46'—H46F 0.9800
C33—O31 1.341 (4) N51—H51A 0.8800
C33—C34 1.389 (5) C51—H51 0.9500
C34—C35 1.363 (5) C52—H52 0.9500
O31—C36 1.435 (5) C54—H54 0.9500
N41—C41 1.329 (5) C55—H55 0.9500
N41—C45 1.348 (6) C56—H56A 0.9800
C41—C42 1.381 (7) C56—H56B 0.9800
C42—C43 1.383 (6) C56—H56C 0.9800
C43—O41 1.323 (7) N61—H61A 0.8800
C43—C44 1.405 (7) C61—H61 0.9500
C44—C45 1.346 (8) C62—H62 0.9500
O41—C46 1.442 (7) C64—H64 0.9500
N41'—C45' 1.33 (2) C65—H65 0.9500
N41'—C41' 1.43 (3) C66—H66A 0.9800
C41'—C42' 1.34 (3) C66—H66B 0.9800
C42'—C43' 1.40 (3) C66—H66C 0.9800
N2—Fe1—N2i 93.91 (15) C51—C52—C53 118.5 (3)
N2—Fe1—N1i 176.31 (10) O51—C53—C54 116.9 (3)
N2i—Fe1—N1i 89.62 (10) O51—C53—C52 124.1 (3)
N2—Fe1—N1 89.62 (10) C54—C53—C52 119.0 (3)
N2i—Fe1—N1 176.31 (10) C55—C54—C53 119.5 (3)
N1i—Fe1—N1 86.87 (12) N51—C55—C54 120.1 (3)
N2—Fe1—N11i 87.37 (8) C53—O51—C56 117.8 (3)
N2i—Fe1—N11i 87.05 (8) C65—N61—C61 121.3 (3)
N1i—Fe1—N11i 91.76 (8) N61—C61—C62 120.4 (3)
N1—Fe1—N11i 94.19 (8) C61—C62—C63 119.0 (3)
N2—Fe1—N11 87.05 (8) O61—C63—C64 124.5 (3)
N2i—Fe1—N11 87.37 (8) O61—C63—C62 116.1 (3)
N1i—Fe1—N11 94.19 (8) C64—C63—C62 119.4 (3)
N1—Fe1—N11 91.75 (8) C65—C64—C63 118.9 (3)
N11i—Fe1—N11 171.82 (11) N61—C65—C64 121.0 (3)
N6—Fe2—N3 91.15 (12) C63—O61—C66 118.3 (3)
N6—Fe2—N7 89.08 (11) C11—C12—H12 120.6
N3—Fe2—N7 93.56 (12) C13—C12—H12 120.6
N6—Fe2—N5 178.84 (12) C15—C14—H14 120.3
N3—Fe2—N5 90.01 (11) C13—C14—H14 120.3
N7—Fe2—N5 90.87 (11) N11—C15—H15 118.5
N6—Fe2—N4 90.10 (11) C14—C15—H15 118.5
N3—Fe2—N4 176.00 (10) O11—C16—H16A 109.5
N7—Fe2—N4 90.25 (12) O11—C16—H16B 109.5
N5—Fe2—N4 88.73 (10) H16A—C16—H16B 109.5
N6—Fe2—N21 89.70 (9) O11—C16—H16C 109.5
N3—Fe2—N21 88.88 (9) H16A—C16—H16C 109.5
N7—Fe2—N21 177.30 (12) H16B—C16—H16C 109.5
N5—Fe2—N21 90.29 (9) N21—C21—H21 118.0
N4—Fe2—N21 87.34 (9) C22—C21—H21 118.0
N10—Fe3—N10ii 180.0 C21—C22—H22 120.9
N10—Fe3—N9ii 89.53 (9) C23—C22—H22 120.9
N10ii—Fe3—N9ii 90.46 (9) C25—C24—H24 120.5
N10—Fe3—N9 90.46 (9) C23—C24—H24 120.5
N10ii—Fe3—N9 89.54 (9) N21—C25—H25 118.3
N9ii—Fe3—N9 180.00 (12) C24—C25—H25 118.3
N10—Fe3—N8ii 90.66 (9) O21—C26—H26C 109.5
N10ii—Fe3—N8ii 89.34 (9) O21—C26—H26B 109.5
N9ii—Fe3—N8ii 89.65 (9) H26C—C26—H26B 109.5
N9—Fe3—N8ii 90.35 (9) O21—C26—H26A 109.5
N10—Fe3—N8 89.34 (9) H26C—C26—H26A 109.5
N10ii—Fe3—N8 90.66 (9) H26B—C26—H26A 109.5
N9ii—Fe3—N8 90.35 (9) C31—N31—H31A 120.5
N9—Fe3—N8 89.65 (9) C35—N31—H31A 117.2
N8ii—Fe3—N8 180.0 N31—C31—H31 119.4
C1—N1—Fe1 160.8 (2) C32—C31—H31 119.4
N1—C1—S1 178.8 (2) C31—C32—H32 120.8
C2—N2—Fe1 175.4 (2) C33—C32—H32 120.8
N2—C2—S2 177.7 (3) C35—C34—H34 120.2
C3—N3—Fe2 170.6 (3) C33—C34—H34 120.2
N3—C3—S3 179.9 (3) N31—C35—H35 120.4
C4—N4—Fe2 168.0 (2) C34—C35—H35 120.4
N4—C4—S4 178.9 (3) O31—C36—H36A 109.5
C5—N5—Fe2 161.5 (2) O31—C36—H36B 109.5
N5—C5—S5 178.6 (3) H36A—C36—H36B 109.5
C6—N6—Fe2 160.3 (3) O31—C36—H36C 109.5
N6—C6—S6 178.9 (3) H36A—C36—H36C 109.5
C7—N7—Fe2 158.5 (3) H36B—C36—H36C 109.5
N7—C7—S7 179.0 (4) C41—N41—H41A 119.5
C8—N8—Fe3 167.4 (2) C45—N41—H41A 119.5
N8—C8—S8 178.4 (3) N41—C41—H41 119.2
C9—N9—Fe3 173.3 (2) C42—C41—H41 119.2
N9—C9—S9 179.1 (3) C41—C42—H42 121.2
C10—N10—Fe3 170.7 (2) C43—C42—H42 121.2
N10—C10—S10 179.2 (3) C45—C44—H44 120.2
C11—N11—C15 116.9 (2) C43—C44—H44 120.2
C11—N11—Fe1 121.15 (16) C44—C45—H45 119.8
C15—N11—Fe1 121.38 (16) N41—C45—H45 119.8
N11—C11—C12 123.6 (2) C45'—N41'—H41B 119.2
C11—C12—C13 118.7 (2) C41'—N41'—H41B 119.2
O11—C13—C12 125.1 (2) C42'—C41'—H41C 121.2
O11—C13—C14 116.6 (2) N41'—C41'—H41C 121.2
C12—C13—C14 118.3 (2) C41'—C42'—H42' 120.1
C15—C14—C13 119.3 (2) C43'—C42'—H42' 120.1
N11—C15—C14 123.1 (2) C45'—C44'—H44' 121.4
C13—O11—C16 117.5 (2) C43'—C44'—H44' 121.4
C21—N21—C25 116.7 (2) C44'—C45'—H45' 118.2
C21—N21—Fe2 122.91 (16) N41'—C45'—H45' 118.2
C25—N21—Fe2 120.35 (15) O41'—C46'—H46D 109.5
N21—C21—C22 124.0 (2) O41'—C46'—H46E 109.5
C21—C22—C23 118.1 (2) H46D—C46'—H46E 109.5
O21—C23—C22 126.1 (2) O41'—C46'—H46F 109.5
O21—C23—C24 115.4 (2) H46D—C46'—H46F 109.5
C22—C23—C24 118.6 (2) H46E—C46'—H46F 109.5
C25—C24—C23 119.1 (2) C55—N51—H51A 119.3
N21—C25—C24 123.4 (2) C51—N51—H51A 119.1
C23—O21—C26 118.1 (2) N51—C51—H51 119.4
C31—N31—C35 122.2 (3) C52—C51—H51 119.4
N31—C31—C32 121.3 (4) C51—C52—H52 120.7
C31—C32—C33 118.4 (4) C53—C52—H52 120.7
O31—C33—C34 116.2 (3) C55—C54—H54 120.2
O31—C33—C32 124.5 (3) C53—C54—H54 120.2
C34—C33—C32 119.3 (3) N51—C55—H55 119.9
C35—C34—C33 119.6 (4) C54—C55—H55 119.9
N31—C35—C34 119.2 (3) O51—C56—H56A 109.5
C33—O31—C36 117.7 (3) O51—C56—H56B 109.5
C41—N41—C45 121.1 (4) H56A—C56—H56B 109.5
N41—C41—C42 121.7 (4) O51—C56—H56C 109.5
C41—C42—C43 117.7 (5) H56A—C56—H56C 109.5
O41—C43—C42 123.1 (5) H56B—C56—H56C 109.5
O41—C43—C44 117.4 (4) C65—N61—H61A 112.2
C42—C43—C44 119.5 (6) C61—N61—H61A 126.3
C45—C44—C43 119.6 (5) N61—C61—H61 119.8
C44—C45—N41 120.5 (4) C62—C61—H61 119.8
C43—O41—C46 117.5 (4) C61—C62—H62 120.5
C45'—N41'—C41' 121.6 (18) C63—C62—H62 120.5
C42'—C41'—N41' 118 (2) C65—C64—H64 120.6
C41'—C42'—C43' 120 (2) C63—C64—H64 120.6
O41'—C43'—C42' 117.9 (18) N61—C65—H65 119.5
O41'—C43'—C44' 122.3 (15) C64—C65—H65 119.5
C42'—C43'—C44' 119.8 (18) O61—C66—H66A 109.5
C45'—C44'—C43' 117.3 (18) O61—C66—H66B 109.5
C44'—C45'—N41' 123.7 (18) H66A—C66—H66B 109.5
C43'—O41'—C46' 120.3 (16) O61—C66—H66C 109.5
C55—N51—C51 121.6 (3) H66A—C66—H66C 109.5
N51—C51—C52 121.2 (3) H66B—C66—H66C 109.5

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21···N5 0.95 2.66 3.141 (3) 112
C25—H25···N6 0.95 2.58 3.079 (4) 113
N31—H31A···S4iii 0.88 2.67 3.359 (3) 136
N41—H41A···S2 0.88 2.62 3.320 (3) 137
C46—H46C···S10iv 0.98 2.85 3.691 (5) 144
N41′—H41B···S2i 0.88 2.60 3.225 (14) 129
N41′—H41B···S9 0.88 2.88 3.676 (15) 151
C42′—H42′···S5v 0.95 2.98 3.83 (3) 151
C45′—H45′···S1vi 0.95 2.86 3.370 (18) 115
C45′—H45′···S2i 0.95 2.92 3.394 (19) 112
C46′—H46D···S3 0.98 2.81 3.52 (2) 130
N51—H51A···S1 0.88 2.78 3.464 (3) 135
C54—H54···S8vii 0.95 2.97 3.885 (3) 163
C56—H56B···S7viii 0.98 2.90 3.793 (4) 152
N61—H61A···S8iv 0.88 2.62 3.419 (3) 151
C62—H62···S5v 0.95 2.93 3.831 (3) 160
C65—H65···N8iv 0.95 2.68 3.608 (4) 167

Symmetry codes: (i) −x+1, y, −z+3/2; (iii) −x+3/2, y−3/2, −z+3/2; (iv) x, y+1, z; (v) −x+3/2, y−1/2, −z+3/2; (vi) −x+1, y−1, −z+3/2; (vii) x, −y+1, z+1/2; (viii) −x+3/2, −y+3/2, −z+2.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant NA 720/5–2.

References

  1. Addison, A. W., Butcher, R. J., Homonnay, Z., Pavlishchuk, V. V., Prushan, M. J. & Thompson, L. K. (2005). Eur. J. Inorg. Chem. pp. 2404–2408.
  2. Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.
  3. Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Briceño, A. & Hill, Y. (2012). CrystEngComm, 14, 6121–6125.
  5. Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). Dalton Trans. 45, 5464–5475. [DOI] [PubMed]
  6. Ghazzali, M., Langer, V. & Öhrström, L. (2008). J. Solid State Chem. 181, 2191–2198.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099–8109. [DOI] [PubMed]
  9. Krautscheid, H. & Gerber, S. (1999). Z. Anorg. Allg. Chem. 625, 2041–2044.
  10. Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.
  11. Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.
  12. Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544. [DOI] [PubMed]
  13. Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243. [DOI] [PubMed]
  14. Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  17. Shylin, S. I., Gural’skiy, I. A., Haukka, M., Kapshuk, A. A. & Prisyazhnaya, E. V. (2013). Acta Cryst. E69, m298–m299. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  19. Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.
  22. Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068. [DOI] [PubMed]
  23. Wood, P. A., Gass, I. & Brechin, E. (2015). Private communication (CCDC1411039). CCDC, Cambridge, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018001883/wm5434sup1.cif

e-74-00287-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018001883/wm5434Isup2.hkl

e-74-00287-Isup2.hkl (586.8KB, hkl)

Fig. S1 Experimental XRPD pattern of a representative batch obtained from the synthesis of the title compound (top) and XRPD pattern of the title compound calculated from single crystal data (bottom).. DOI: 10.1107/S2056989018001883/wm5434sup3.tif

CCDC reference: 1821019

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES