Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 13;74(Pt 3):349–351. doi: 10.1107/S2056989018002360

Crystal structure of dimethyl 1-oxo-2,4-di­phenyl-1,2-dihydronaphthalene-2,3-di­carboxyl­ate

Gajendran Jagadeesan a,*, Immanuel Monica Chandramalar a, Jayachandran Karunakaran b, Solaiappan Gopinath c, Arasambattu K Mohanakrishnan b
PMCID: PMC5947801  PMID: 29765721

In the title compound, a naphthalene derivative, the cyclo­hexa-1,3-diene ring of the 1,2-di­hydro­naphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-di­hydro­napthalene ring system make dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. In the crystal, the mol­ecules are linked by C—H⋯O, inter­actions and further stabilized by C—H⋯π and π–π inter­actions.

Keywords: crystal structure; 1,2-di­hydro­naphthalene derivative; hydrogen bonding

Abstract

In the title compound, C26H20O5, a 1,2-di­hydro­naphthalene derivative, the cyclo­hexa-1,3-diene ring of the 1,2-di­hydro­naphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-di­hydro­napthalene ring system makes dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. The carbonyl O atom attached to the di­hydro­naphthalene ring system deviates from the mean plane of the 1,2-di­hydro­naphthalene ring system by 0.618 (1) Å. In the crystal, the mol­ecules are linked into layers parallel to the bc plane via two kinds of C—H⋯O inter­actions, one of which forms a C(10) chain motif running along the c-axis direction and the other forms an R 2 2(6) ring motif. Adjacent layers are further connected by C—H⋯π and offset π–π inter­actions [centroid–centroid distance = 3.6318 (9) Å].

Chemical context  

Naphthalene derivatives have manifested applications in many fields, for example, as colorants, explosives, disinfectants, insecticides and the plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). Naphthalene derivatives have been identified as a new range of potent anti-microbials that are effective against a wide range of human pathogens and have diverse and inter­esting anti­biotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al., 2010). Compounds with non-coplanarly accumulated aromatic rings have received attention from organic chemists and materials chemists as unique structural building blocks, because they provide characteristic optical and electronic properties originating from their structural features. For example, biphenyl and binaphthyl are applied to optically active mol­ecular catalysts and polymer materials on the basis of their axial chiralities (Deria et al., 2013). The structures of similar 1-oxo-1,2-di­hydro­naphtalene derivatives, namely, dimethyl 4-(4-meth­oxy­phen­yl)-2-(4-methyl­phen­yl)-1-oxo-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate, dimethyl 1-oxo-2-(pyren-4-yl)-4-(thio­phen-2-yl)-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate and ethyl 1-oxo-2-phen­yl-2,4-bis­(thio­phen-2-yl)-1,2-di­hydro­naphthalene-3-carboxyl­ate, have been reported by Gopinath et al. (2017).

Structural commentary  

In the title compound (Fig. 1), the 1,2-di­hydro­naphthalene C1–C10 ring system is not strictly planar and the cyclo­hexa-1,3-diene C5–C10 ring adopts a half-chair conformation with puckering and smallest displacement parameters q 2 = 0.3091 (14) Å, q 3 = 0.1461 (14) Å, φ2 = 155.9 (3)° and θ = 64.7 (2)° and ΔCs = 4.41 (19). The dihedral angle between the C1–C6 and C5–C10 rings is 10.15 (6)°. The C11–C16 phenyl ring is almost perpendicular to the 1,2-di­hydro­naphthalene C1–C10 ring system with a dihedral angle of 83.83 (7)° between them. The other phenyl ring (C21–C26) makes dihedral angles of 64.80 (7) and 29.06 (8)° with the mean plane of C1–C10 ring system and the C11–C16 phenyl ring, respectively. Atom O1 of the carbonyl group deviates from the mean plane of the 1,2-di­hydro­naphthalene ring system by 0.647 (1) Å.graphic file with name e-74-00349-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii.

Supra­molecular features  

In the crystal, the mol­ecules are linked via C—H⋯O hydrogen bonds (C24—H24⋯O2i; symmetry code as in Table 1), which generates C(10) zigzag chains running along the c-axis direction (Fig. 2). In addition, the chains are linked via pairs of C—H⋯O inter­actions (C20—H20B⋯O5ii; Table 2) with an Inline graphic(6) ring motif (Fig. 3), forming layers parallel to the bc plane. Between the layers there are also C—H⋯π (C3—H3⋯Cg3iii; Table 1) and π–π stacking inter­actions (Fig. 4) [Cg1⋯Cg1iii = 3.6318 (9) Å, inter­planar distance = 3.343 (1) Å and offset distance = 1.419 (1) Å; symmetry code: (iii) −x, 1 − y, −z; Cg1 and Cg3 are the centroids of the C1–C6 and C11–C16 rings, respectively].

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the phenyl C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O2i 0.93 2.59 3.449 (3) 155
C20—H20B⋯O5ii 0.96 2.59 3.430 (2) 146
C3—H3⋯Cg3iii 0.93 2.77 3.6338 (16) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound, showing a C(10) zigzag chain along to the c axis formed via C—H⋯O hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (i) x, Inline graphic − y, −Inline graphic + z.]

Table 2. Experimental details.

Crystal data
Chemical formula C26H20O5
M r 412.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.8021 (8), 7.4706 (4), 17.8599 (9)
β (°) 96.581 (2)
V3) 2094.49 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.969, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 21819, 4614, 3375
R int 0.028
(sin θ/λ)max−1) 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.108, 1.03
No. of reflections 4614
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.15

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Figure 3.

Figure 3

A part of the crystal packing of the title compound, showing an R22(6) inversion dimer formed via a pair of C—H⋯O hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (ii) 1 − x, 1 − y, −z.]

Figure 4.

Figure 4

A packing diagram of the title compound, showing C—H⋯π and π–π inter­actions (dashed lines), where Cg1 and Cg3 are the centroids of the phenyl C1–C6 and C11–C16 rings, respectively. [Symmetry code: (iii) −x, 1 − y, −z.]

Synthesis and crystallization  

To a solution of 1,3-di­phenyl­isobenzo­furan (1 g, 3.70 mmol) in dry di­chloro­methane, dimethyl acetyl­enedi­carboxyl­ate (0.58 g, 4.07 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) afforded isobenzo­furan­dimethyl acetyl­enedi­carboxyl­ate adduct as a colourless solid (1.10 g, 72%). To a solution of the adduct (0.50 g, 1.21 mmol) in dry di­chloro­methane, BF3·OEt2 (0.075 g, 0.52 mmol) was added and the reaction mixture was stirred at room temperature for 5 min. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) gave the title compound as a colourless solid (0.45 g, 94%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the title compound at room temperature (m.p. = 454–456 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were localized in a difference-Fourier map and then were treated as riding atoms, with C—H = 0.93 and 0.96 Å for aryl and methyl groups, respectively, and with U iso(H) = 1.2U eq(aryl C) and 1.5U eq(methyl C), allowing for free rotation of the methyl groups.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018002360/is5487sup1.cif

e-74-00349-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002360/is5487Isup2.hkl

e-74-00349-Isup2.hkl (226.1KB, hkl)

CCDC reference: 1823056

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr P. K. Sudhadevi Antharjanam, Technical Officer, SAIF, IIT Madras, Chennai, India, for the data collection. GJ thanks Jeppiaar Engineering College, Rajiv Gandhi Salai, Chennai, India for their support.

supplementary crystallographic information

Crystal data

C26H20O5 F(000) = 864
Mr = 412.42 Dx = 1.308 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3375 reflections
a = 15.8021 (8) Å θ = 2.3–27.1°
b = 7.4706 (4) Å µ = 0.09 mm1
c = 17.8599 (9) Å T = 296 K
β = 96.581 (2)° Block, colourless
V = 2094.49 (19) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 4614 independent reflections
Radiation source: fine-focus sealed tube 3375 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω & φ scans θmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −20→13
Tmin = 0.969, Tmax = 0.978 k = −9→8
21819 measured reflections l = −22→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4036P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.017
4614 reflections Δρmax = 0.22 e Å3
283 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0033 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.05662 (10) 0.2111 (2) 0.01264 (8) 0.0463 (4)
H1 0.0388 0.1135 0.0391 0.056*
C2 0.00596 (10) 0.2750 (2) −0.04963 (8) 0.0512 (4)
H2 −0.0464 0.2217 −0.0648 0.061*
C3 0.03304 (10) 0.4172 (2) −0.08905 (8) 0.0488 (4)
H3 −0.0011 0.4600 −0.1311 0.059*
C4 0.11058 (9) 0.4978 (2) −0.06695 (7) 0.0433 (3)
H4 0.1284 0.5932 −0.0947 0.052*
C5 0.16244 (8) 0.43761 (18) −0.00354 (7) 0.0354 (3)
C6 0.13411 (8) 0.29249 (18) 0.03586 (7) 0.0368 (3)
C7 0.18723 (9) 0.22355 (19) 0.10317 (7) 0.0384 (3)
C8 0.24887 (8) 0.35947 (17) 0.14498 (6) 0.0338 (3)
C9 0.28722 (8) 0.48058 (18) 0.08927 (7) 0.0336 (3)
C10 0.24565 (8) 0.52183 (18) 0.02146 (7) 0.0338 (3)
C11 0.19360 (8) 0.46192 (18) 0.19635 (6) 0.0344 (3)
C12 0.18236 (8) 0.64551 (18) 0.19151 (7) 0.0368 (3)
H12 0.2110 0.7110 0.1580 0.044*
C13 0.12938 (9) 0.7325 (2) 0.23568 (8) 0.0447 (3)
H13 0.1228 0.8560 0.2319 0.054*
C14 0.08630 (10) 0.6384 (2) 0.28520 (8) 0.0530 (4)
H14 0.0499 0.6971 0.3145 0.064*
C15 0.09745 (11) 0.4569 (3) 0.29111 (9) 0.0595 (5)
H15 0.0691 0.3926 0.3252 0.071*
C16 0.15022 (10) 0.3687 (2) 0.24720 (8) 0.0505 (4)
H16 0.1568 0.2453 0.2517 0.061*
C17 0.31896 (9) 0.24874 (19) 0.19065 (8) 0.0430 (3)
C18 0.44438 (13) 0.0867 (3) 0.17834 (12) 0.0857 (7)
H18A 0.4743 0.1552 0.2185 0.129*
H18B 0.4820 0.0603 0.1412 0.129*
H18C 0.4246 −0.0231 0.1982 0.129*
C19 0.37168 (9) 0.55771 (19) 0.11799 (7) 0.0387 (3)
C20 0.50781 (11) 0.6419 (3) 0.08805 (11) 0.0783 (6)
H20A 0.5019 0.7671 0.0983 0.117*
H20B 0.5429 0.6268 0.0480 0.117*
H20C 0.5338 0.5825 0.1325 0.117*
C21 0.27693 (8) 0.6601 (2) −0.02840 (7) 0.0398 (3)
C22 0.28407 (11) 0.8357 (2) −0.00451 (10) 0.0593 (4)
H22 0.2708 0.8659 0.0433 0.071*
C23 0.31073 (13) 0.9673 (3) −0.05105 (14) 0.0824 (6)
H23 0.3156 1.0851 −0.0344 0.099*
C24 0.33002 (12) 0.9242 (4) −0.12164 (13) 0.0846 (7)
H24 0.3474 1.0127 −0.1531 0.102*
C25 0.32355 (11) 0.7507 (4) −0.14553 (9) 0.0723 (6)
H25 0.3375 0.7214 −0.1932 0.087*
C26 0.29671 (9) 0.6184 (3) −0.10003 (8) 0.0531 (4)
H26 0.2918 0.5010 −0.1173 0.064*
O1 0.18036 (7) 0.07330 (14) 0.12689 (6) 0.0561 (3)
O2 0.32467 (8) 0.21704 (16) 0.25637 (6) 0.0629 (3)
O3 0.37245 (7) 0.18860 (15) 0.14387 (6) 0.0548 (3)
O4 0.38995 (7) 0.60087 (17) 0.18244 (5) 0.0600 (3)
O5 0.42502 (6) 0.56566 (15) 0.06595 (5) 0.0508 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0517 (8) 0.0388 (8) 0.0475 (8) −0.0064 (7) 0.0016 (6) −0.0088 (6)
C2 0.0441 (8) 0.0553 (10) 0.0514 (8) −0.0034 (7) −0.0068 (7) −0.0165 (7)
C3 0.0473 (8) 0.0566 (10) 0.0394 (7) 0.0071 (7) −0.0084 (6) −0.0076 (7)
C4 0.0447 (8) 0.0500 (9) 0.0340 (7) 0.0043 (7) −0.0011 (6) 0.0003 (6)
C5 0.0384 (7) 0.0373 (8) 0.0300 (6) 0.0046 (6) 0.0016 (5) −0.0049 (5)
C6 0.0422 (7) 0.0334 (7) 0.0338 (6) 0.0010 (6) 0.0006 (5) −0.0076 (5)
C7 0.0466 (8) 0.0326 (8) 0.0359 (7) 0.0017 (6) 0.0044 (6) −0.0022 (6)
C8 0.0398 (7) 0.0326 (7) 0.0281 (6) 0.0019 (5) −0.0006 (5) 0.0004 (5)
C9 0.0361 (6) 0.0361 (7) 0.0288 (6) 0.0026 (5) 0.0041 (5) −0.0029 (5)
C10 0.0362 (6) 0.0370 (7) 0.0285 (6) 0.0045 (6) 0.0052 (5) −0.0026 (5)
C11 0.0385 (7) 0.0366 (8) 0.0275 (6) −0.0022 (6) 0.0013 (5) −0.0001 (5)
C12 0.0380 (7) 0.0380 (8) 0.0342 (6) −0.0032 (6) 0.0041 (5) 0.0007 (5)
C13 0.0464 (8) 0.0421 (9) 0.0454 (8) 0.0010 (6) 0.0047 (6) −0.0078 (6)
C14 0.0490 (9) 0.0658 (12) 0.0463 (8) −0.0050 (8) 0.0146 (7) −0.0155 (8)
C15 0.0701 (11) 0.0657 (12) 0.0475 (9) −0.0119 (9) 0.0272 (8) 0.0014 (8)
C16 0.0668 (10) 0.0416 (9) 0.0452 (8) −0.0066 (7) 0.0155 (7) 0.0035 (7)
C17 0.0506 (8) 0.0381 (8) 0.0383 (7) 0.0050 (6) −0.0036 (6) 0.0008 (6)
C18 0.0694 (13) 0.0904 (16) 0.0951 (15) 0.0431 (11) 0.0000 (11) 0.0129 (12)
C19 0.0384 (7) 0.0431 (8) 0.0344 (7) 0.0035 (6) 0.0030 (5) −0.0026 (6)
C20 0.0424 (9) 0.1093 (17) 0.0855 (13) −0.0188 (10) 0.0176 (9) −0.0311 (12)
C21 0.0363 (7) 0.0489 (9) 0.0343 (7) 0.0033 (6) 0.0039 (5) 0.0079 (6)
C22 0.0679 (11) 0.0505 (11) 0.0622 (10) 0.0009 (8) 0.0191 (8) 0.0096 (8)
C23 0.0831 (14) 0.0603 (13) 0.1064 (17) −0.0032 (10) 0.0224 (12) 0.0306 (12)
C24 0.0596 (12) 0.1074 (19) 0.0883 (15) −0.0008 (12) 0.0150 (10) 0.0621 (14)
C25 0.0470 (9) 0.128 (2) 0.0429 (9) 0.0034 (11) 0.0090 (7) 0.0312 (11)
C26 0.0438 (8) 0.0809 (12) 0.0347 (7) 0.0026 (8) 0.0045 (6) 0.0059 (7)
O1 0.0767 (8) 0.0338 (6) 0.0554 (6) −0.0059 (5) −0.0029 (5) 0.0052 (5)
O2 0.0806 (8) 0.0670 (8) 0.0383 (6) 0.0193 (6) −0.0058 (5) 0.0116 (5)
O3 0.0531 (6) 0.0581 (7) 0.0521 (6) 0.0213 (5) 0.0011 (5) −0.0005 (5)
O4 0.0472 (6) 0.0932 (9) 0.0387 (5) −0.0121 (6) 0.0013 (4) −0.0186 (6)
O5 0.0362 (5) 0.0741 (8) 0.0430 (5) −0.0041 (5) 0.0081 (4) −0.0076 (5)

Geometric parameters (Å, º)

C1—C2 1.379 (2) C14—H14 0.9300
C1—C6 1.3873 (19) C15—C16 1.376 (2)
C1—H1 0.9300 C15—H15 0.9300
C2—C3 1.370 (2) C16—H16 0.9300
C2—H2 0.9300 C17—O2 1.1905 (16)
C3—C4 1.381 (2) C17—O3 1.3328 (18)
C3—H3 0.9300 C18—O3 1.4456 (19)
C4—C5 1.3942 (17) C18—H18A 0.9600
C4—H4 0.9300 C18—H18B 0.9600
C5—C6 1.3940 (19) C18—H18C 0.9600
C5—C10 1.4796 (18) C19—O4 1.1985 (15)
C6—C7 1.4777 (18) C19—O5 1.3256 (17)
C7—O1 1.2090 (17) C20—O5 1.4399 (19)
C7—C8 1.5397 (18) C20—H20A 0.9600
C8—C9 1.5212 (18) C20—H20B 0.9600
C8—C17 1.5392 (17) C20—H20C 0.9600
C8—C11 1.5408 (18) C21—C22 1.380 (2)
C9—C10 1.3457 (16) C21—C26 1.3867 (19)
C9—C19 1.4897 (18) C22—C23 1.384 (2)
C10—C21 1.4852 (18) C22—H22 0.9300
C11—C12 1.3844 (19) C23—C24 1.369 (3)
C11—C16 1.3866 (19) C23—H23 0.9300
C12—C13 1.3774 (19) C24—C25 1.365 (3)
C12—H12 0.9300 C24—H24 0.9300
C13—C14 1.371 (2) C25—C26 1.377 (3)
C13—H13 0.9300 C25—H25 0.9300
C14—C15 1.369 (2) C26—H26 0.9300
C2—C1—C6 120.04 (15) C14—C15—C16 120.74 (15)
C2—C1—H1 120.0 C14—C15—H15 119.6
C6—C1—H1 120.0 C16—C15—H15 119.6
C3—C2—C1 119.74 (14) C15—C16—C11 120.65 (15)
C3—C2—H2 120.1 C15—C16—H16 119.7
C1—C2—H2 120.1 C11—C16—H16 119.7
C2—C3—C4 120.68 (13) O2—C17—O3 124.69 (13)
C2—C3—H3 119.7 O2—C17—C8 126.72 (14)
C4—C3—H3 119.7 O3—C17—C8 108.57 (11)
C3—C4—C5 120.74 (14) O3—C18—H18A 109.5
C3—C4—H4 119.6 O3—C18—H18B 109.5
C5—C4—H4 119.6 H18A—C18—H18B 109.5
C6—C5—C4 117.90 (12) O3—C18—H18C 109.5
C6—C5—C10 120.27 (11) H18A—C18—H18C 109.5
C4—C5—C10 121.82 (12) H18B—C18—H18C 109.5
C1—C6—C5 120.89 (12) O4—C19—O5 123.97 (13)
C1—C6—C7 119.35 (13) O4—C19—C9 122.85 (13)
C5—C6—C7 119.76 (12) O5—C19—C9 113.11 (11)
O1—C7—C6 122.90 (12) O5—C20—H20A 109.5
O1—C7—C8 121.30 (11) O5—C20—H20B 109.5
C6—C7—C8 115.69 (11) H20A—C20—H20B 109.5
C9—C8—C17 110.48 (11) O5—C20—H20C 109.5
C9—C8—C7 110.63 (10) H20A—C20—H20C 109.5
C17—C8—C7 106.22 (10) H20B—C20—H20C 109.5
C9—C8—C11 112.92 (10) C22—C21—C26 118.68 (14)
C17—C8—C11 111.96 (10) C22—C21—C10 119.79 (12)
C7—C8—C11 104.24 (10) C26—C21—C10 121.49 (14)
C10—C9—C19 123.16 (12) C21—C22—C23 120.60 (17)
C10—C9—C8 122.34 (11) C21—C22—H22 119.7
C19—C9—C8 114.40 (10) C23—C22—H22 119.7
C9—C10—C5 119.96 (12) C24—C23—C22 120.1 (2)
C9—C10—C21 122.49 (12) C24—C23—H23 119.9
C5—C10—C21 117.40 (10) C22—C23—H23 119.9
C12—C11—C16 117.97 (13) C25—C24—C23 119.64 (18)
C12—C11—C8 122.16 (11) C25—C24—H24 120.2
C16—C11—C8 119.81 (12) C23—C24—H24 120.2
C13—C12—C11 120.92 (13) C24—C25—C26 120.94 (18)
C13—C12—H12 119.5 C24—C25—H25 119.5
C11—C12—H12 119.5 C26—C25—H25 119.5
C14—C13—C12 120.45 (14) C25—C26—C21 120.02 (18)
C14—C13—H13 119.8 C25—C26—H26 120.0
C12—C13—H13 119.8 C21—C26—H26 120.0
C15—C14—C13 119.25 (14) C17—O3—C18 115.77 (13)
C15—C14—H14 120.4 C19—O5—C20 117.16 (12)
C13—C14—H14 120.4
C6—C1—C2—C3 1.0 (2) C9—C8—C11—C16 176.27 (12)
C1—C2—C3—C4 −0.1 (2) C17—C8—C11—C16 −58.27 (16)
C2—C3—C4—C5 −0.8 (2) C7—C8—C11—C16 56.13 (14)
C3—C4—C5—C6 1.0 (2) C16—C11—C12—C13 −0.28 (18)
C3—C4—C5—C10 −179.82 (13) C8—C11—C12—C13 176.90 (12)
C2—C1—C6—C5 −0.8 (2) C11—C12—C13—C14 −0.3 (2)
C2—C1—C6—C7 179.38 (13) C12—C13—C14—C15 1.0 (2)
C4—C5—C6—C1 −0.2 (2) C13—C14—C15—C16 −1.0 (2)
C10—C5—C6—C1 −179.37 (12) C14—C15—C16—C11 0.4 (2)
C4—C5—C6—C7 179.65 (12) C12—C11—C16—C15 0.2 (2)
C10—C5—C6—C7 0.44 (18) C8—C11—C16—C15 −177.00 (13)
C1—C6—C7—O1 21.7 (2) C9—C8—C17—O2 138.57 (16)
C5—C6—C7—O1 −158.09 (14) C7—C8—C17—O2 −101.40 (17)
C1—C6—C7—C8 −154.54 (12) C11—C8—C17—O2 11.8 (2)
C5—C6—C7—C8 25.65 (18) C9—C8—C17—O3 −42.97 (14)
O1—C7—C8—C9 145.22 (13) C7—C8—C17—O3 77.06 (14)
C6—C7—C8—C9 −38.46 (15) C11—C8—C17—O3 −169.76 (11)
O1—C7—C8—C17 25.29 (17) C10—C9—C19—O4 140.82 (15)
C6—C7—C8—C17 −158.39 (11) C8—C9—C19—O4 −35.58 (19)
O1—C7—C8—C11 −93.12 (15) C10—C9—C19—O5 −42.04 (18)
C6—C7—C8—C11 83.21 (13) C8—C9—C19—O5 141.56 (12)
C17—C8—C9—C10 146.53 (12) C9—C10—C21—C22 −62.17 (19)
C7—C8—C9—C10 29.18 (17) C5—C10—C21—C22 113.49 (15)
C11—C8—C9—C10 −87.22 (15) C9—C10—C21—C26 120.02 (15)
C17—C8—C9—C19 −37.04 (15) C5—C10—C21—C26 −64.33 (17)
C7—C8—C9—C19 −154.38 (11) C26—C21—C22—C23 −0.2 (2)
C11—C8—C9—C19 89.22 (13) C10—C21—C22—C23 −178.11 (15)
C19—C9—C10—C5 179.15 (12) C21—C22—C23—C24 0.3 (3)
C8—C9—C10—C5 −4.73 (19) C22—C23—C24—C25 −0.6 (3)
C19—C9—C10—C21 −5.3 (2) C23—C24—C25—C26 0.9 (3)
C8—C9—C10—C21 170.82 (12) C24—C25—C26—C21 −0.9 (2)
C6—C5—C10—C9 −11.87 (19) C22—C21—C26—C25 0.6 (2)
C4—C5—C10—C9 168.95 (13) C10—C21—C26—C25 178.39 (13)
C6—C5—C10—C21 172.36 (12) O2—C17—O3—C18 −3.7 (2)
C4—C5—C10—C21 −6.82 (18) C8—C17—O3—C18 177.83 (14)
C9—C8—C11—C12 −0.86 (16) O4—C19—O5—C20 −4.2 (2)
C17—C8—C11—C12 124.60 (13) C9—C19—O5—C20 178.73 (14)
C7—C8—C11—C12 −121.00 (12)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the phenyl C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C24—H24···O2i 0.93 2.59 3.449 (3) 155
C20—H20B···O5ii 0.96 2.59 3.430 (2) 146
C3—H3···Cg3iii 0.93 2.77 3.6338 (16) 154

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deria, P., Von Bargen, C. D., Olivier, J. H., Kumbhar, A. S., Saven, J. G. & Therien, M. J. (2013). J. Am. Chem. Soc. 135, 16220–16234. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gopinath, S., Narayanan, P., Sethusankar, K., Karunakaran, J., Nandakumar, M. & Mohanakrishnan, A. K. (2017). Acta Cryst. E73, 177–182. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867. [DOI] [PubMed]
  10. Wiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936–940.
  11. Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018002360/is5487sup1.cif

e-74-00349-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002360/is5487Isup2.hkl

e-74-00349-Isup2.hkl (226.1KB, hkl)

CCDC reference: 1823056

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES