Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 20;74(Pt 3):367–370. doi: 10.1107/S2056989018002621

Crystal structure and Hirshfeld surface analysis of 7-eth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazo­cine

Ercan Aydemir a,b, Sevgi Kansiz c,*, Mustafa Kemal Gumus b, Nikolay Yu Gorobets d,e, Necmi Dege c
PMCID: PMC5947805  PMID: 29765725

In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into the supra­molecular chains propagating along the c-axis direction.

Keywords: crystal structure, Biginelli condensation, benzoxa­diazo­cine, Hirshfeld surfaces

Abstract

The title compound, C19H19N5O2, was prepared by the reaction of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-eth­oxy­benzaldehyde. It crystallizes from ethanol in a tetra­gonal space group, with one mol­ecule in the asymmetric unit. The 1,2,4-triazole five-membered ring is planar (maximum deviation = 0.0028 Å). The pyridine and phenyl rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the c-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular inter­actions present in the crystal.

Chemical context  

The title compound represents a conformationally restricted analogue of so-called Biginelli compounds known to exhibit multiple pharmacological activities. It was selected for a single-crystal X-ray analysis in order to probe the chemical and spatial requirements of some kinds of activity. 4-Aryl-3,4-di­hydro­pyrimidine-2(1H)-ones and -thio­nes, known as Bigin­elli compounds, display a wide spectrum of significant pharma­cological activities (Kappe, 2000). For example, these pyrimidine derivatives were assayed as anti­hypertensive agents, selective α1a-adrenergic receptor antagonists, neuropeptide Y antagonists and were used as a lead for the development of anti­cancer drugs (Kappe, 2000). The Biginelli products have also been found to be potent hepatitis B replication inhibitors (Deres et al., 2003).

Recently, the ability of oxygen-bridged azolo­pyrimidine derivatives to inhibit Eg5 activity has been examined (Svetlík et al., 2010). As each of the above activities originates from stereo-selective binding of the drug mol­ecule to its specific receptor, it is of inter­est to design a conformationally restricted probe mol­ecule in order to examine geometric requirements of the given receptor binding site.

Since we had previously synthesized such a rigid type of oxygen-bridged triazolo-pyrimidine derivative, (I) (Gümüş et al., 2017), we decided to examine the structure of this heterocyclic system by X-ray analysis. A novel Biginelli-like assembly of 3-amino-5-(pyridin-3-yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-eth­oxy­benzaldehyde has been developed to enable easy access to 7-eth­oxy-5-methyl-2-(pyri­din-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine compounds as representatives of a new class of heterocycles.graphic file with name e-74-00367-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains one independent mol­ecule (Fig. 1). In the 1,2,4-triazole ring, the average C=N and C—N bond lengths are 1.324 and 1.355 Å, respectively, while the N—N bond is 1.389 (4) Å. These values consistent with literature values (Şen et al., 2017a ,b ; Atalay et al., 2004). The 1,2,4-triazole ring is planar with a maximum deviation of 0.0028 Å. The N1/C1–C5 and C12–C17 rings are also planar with maximum deviations of 0.0091 and 0.0094 Å, respectively. The dihedral angle between the N1/C1–C5 and C6/N2/N3/C7/N4 rings is 13.1 (2)°, while the latter ring is inclined to the N3/C10–C8/N5/C7 plane by 6.87 (15)°. The C12–C17 and N3/C10–C8/N5/C7 planes form dihedral angles of 7.8 (2) and 88.82 (12)°, respectively, with the C9/C10/O1/C12/C13 plane.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, the N—H⋯N hydrogen bonds link the mol­ecules, forming the supra­molecular chains propagating along the c-axis direction (Table 1, Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N1i 0.86 2.13 2.907 (4) 149

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A partial view of the crystal packing of the title compound. Dashed lines denote the inter­molecular N—H⋯N hydrogen bonds.

Hirshfeld surface analysis  

Crystal Explorer17.5 (Turner et al., 2017) was used to analyse the inter­actions in the crystal; fingerprint plots mapped over d norm (Figs. 3 and 4) were generated. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimentional d norm surfaces mapped over a fixed colour scale of −0.484 (red) to 1.652 (blue). There are two red spots in the d norm surface (Fig. 3), which are on the N-acceptor atoms involved in the inter­actions listed in Table 1. The red spots indicate the regions of donor–acceptor inter­actions (Kansiz et al., 2018 ; Şen et al., 2017a ,b , 2018; Yaman et al., 2018).

Figure 3.

Figure 3

The Hirshfeld surface of C19H19N5O2 mapped with d norm.

Figure 4.

Figure 4

d norm mapped on Hirshfeld surfaces to visualize the inter­molecular inter­actions of C19H19N5O2.

The inter­molecular inter­actions of the title compound are shown in the 2D fingerprint plots shown in Fig. 5. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with a contribution to the overall Hirshfeld surface of 52.6% (Fig. 6). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N inter­action, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (16.3%). The whole fingerprint region and all other inter­actions, which are a combination of d e and d i, are displayed in Fig. 6.

Figure 5.

Figure 5

Fingerprint plot of the title compound.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the H⋯H/H⋯H (52.6%), C⋯H/H⋯C (18.9%), N⋯H/H⋯N (16.3%) and O⋯H/H⋯O (7.2%) contacts in the title compound.

Database survey  

There are no direct precedents for the structure of (I) in the crystallographic literature (CSD Version 5.38; Groom et al., 2016). However, there are several precedents for the triazolobenzoxa­diazo­cines, including the structures of 5-(2-hy­droxy­phen­yl)-7-methyl-4,5,6,7-tetra­hydro­[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (Gorobets et al., 2010), ethyl 7-chloro­methyl-5-(2-chloro­phen­yl)-7-hy­droxy-2-methyl­sulfanyl-4,5,6,7-tetra­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate (Huang, 2009) and methyl 5′-(2-hy­droxy­phen­yl)-5′,6′-di­hydro-4′H-spiro­[chromene-2,7′-[1,2,4]triazolo[1,5-a]pyrimidine]-3-carboxyl­ate (Kettmann & Světlík, 2011).

Synthesis and crystallization  

The synthesis of the title compound (Fig. 7) was described by Gümüş et al. (2017). 3-Amino-5-(pyridin-3-yl)-1,2,4-triazole(1.0 mmol), 2-hy­droxy-3-eth­oxy­benzaldehyde (1.0 mmol), acetone (0.22 mL, 3.0 mmol), and abs. EtOH (2.0 mL) were mixed in a microwave process vial, and then a 4 N solution of HCl in dioxane (0.07 mL, 0.3 mmol) was added. The mixture was irradiated at 423 K for 30 min. The reaction mixture was cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the product. The precipitate was filtered off, washed with EtOH (1.0 mL) and Et2O (3 × 1.0 mL), and dried. Compound (I) was obtained in the form of a white solid. It was recrystallized from ethanol.

Figure 7.

Figure 7

Synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically [N—H = 0.86 Å, C—H = 0.93 (aromatic), 0.96 (meth­yl) and 0.97 (methyl­ene) Å] and refined using a riding model, with U iso(H) = 1.2U eq(N, C) and 1.5U eq(methyl C).

Table 2. Experimental details.

Crystal data
Chemical formula C19H19N5O2
M r 349.39
Crystal system, space group Tetragonal, I Inline graphic
Temperature (K) 293
a, c (Å) 17.1509 (8), 11.9033 (7)
V3) 3501.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.54 × 0.34 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.959, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 8018, 3629, 2449
R int 0.053
(sin θ/λ)max−1) 0.628
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.088, 0.90
No. of reflections 3629
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.12
Absolute structure Refined as an inversion twin.
Absolute structure parameter −3 (2)

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXL2017 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018002621/xu5917sup1.cif

e-74-00367-sup1.cif (301.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002621/xu5917Isup2.hkl

e-74-00367-Isup2.hkl (289.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002621/xu5917Isup3.cml

CCDC reference: 1820439

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C19H19N5O2 Dx = 1.326 Mg m3
Mr = 349.39 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 8727 reflections
a = 17.1509 (8) Å θ = 1.7–27.6°
c = 11.9033 (7) Å µ = 0.09 mm1
V = 3501.4 (4) Å3 T = 293 K
Z = 8 Prism, colorless
F(000) = 1472 0.54 × 0.34 × 0.16 mm

Data collection

Stoe IPDS 2 diffractometer 3629 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2449 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.053
rotation method scans θmax = 26.5°, θmin = 1.7°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −20→21
Tmin = 0.959, Tmax = 0.984 k = −21→21
8018 measured reflections l = −14→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 0.90 Δρmax = 0.15 e Å3
3629 reflections Δρmin = −0.12 e Å3
236 parameters Absolute structure: Refined as an inversion twin.
0 restraints Absolute structure parameter: −3 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0390 (2) 0.7259 (2) 0.4925 (3) 0.0581 (10)
H1 −0.014021 0.716332 0.501878 0.070*
C2 0.0662 (2) 0.7372 (2) 0.3863 (3) 0.0597 (10)
H2 0.032912 0.733641 0.324888 0.072*
C3 0.1444 (2) 0.7541 (2) 0.3716 (3) 0.0558 (9)
H3 0.164641 0.761427 0.299904 0.067*
C4 0.19186 (19) 0.76002 (19) 0.4641 (3) 0.0451 (8)
C5 0.1594 (2) 0.7450 (2) 0.5683 (3) 0.0524 (9)
H5 0.191757 0.746889 0.630959 0.063*
C6 0.27446 (19) 0.78337 (18) 0.4538 (3) 0.0433 (8)
C7 0.3820 (2) 0.81015 (19) 0.3807 (3) 0.0452 (8)
C8 0.5188 (2) 0.8326 (2) 0.3714 (3) 0.0530 (9)
H8 0.557656 0.853590 0.319160 0.064*
C9 0.5062 (2) 0.8898 (2) 0.4669 (4) 0.0575 (10)
H9A 0.555879 0.903724 0.500282 0.069*
H9B 0.481787 0.936913 0.438785 0.069*
C10 0.4545 (2) 0.85180 (19) 0.5536 (3) 0.0484 (8)
C11 0.4295 (2) 0.9041 (2) 0.6485 (4) 0.0620 (11)
H11A 0.401451 0.947929 0.618728 0.093*
H11B 0.396382 0.875548 0.698823 0.093*
H11C 0.474656 0.922184 0.688324 0.093*
C12 0.53691 (18) 0.74016 (18) 0.5322 (3) 0.0432 (8)
C13 0.54834 (18) 0.75667 (19) 0.4207 (3) 0.0460 (8)
C14 0.5883 (2) 0.7029 (2) 0.3536 (3) 0.0557 (10)
H14 0.596039 0.713003 0.277630 0.067*
C15 0.6162 (2) 0.6352 (2) 0.4004 (4) 0.0631 (11)
H15 0.642215 0.599352 0.355389 0.076*
C16 0.6062 (2) 0.6195 (2) 0.5133 (3) 0.0576 (10)
H16 0.625672 0.573495 0.543568 0.069*
C17 0.56737 (19) 0.6719 (2) 0.5813 (3) 0.0471 (8)
C18 0.5850 (3) 0.5943 (3) 0.7453 (4) 0.0716 (12)
H18A 0.641332 0.593704 0.738080 0.086*
H18B 0.564269 0.547848 0.709738 0.086*
C19 0.5622 (3) 0.5965 (3) 0.8665 (4) 0.1006 (17)
H19A 0.582492 0.551306 0.903941 0.151*
H19B 0.583133 0.642681 0.900739 0.151*
H19C 0.506407 0.597026 0.872521 0.151*
N1 0.08383 (17) 0.72774 (19) 0.5838 (3) 0.0572 (8)
N2 0.31602 (16) 0.80437 (15) 0.5418 (2) 0.0458 (7)
N3 0.38723 (15) 0.82148 (16) 0.4920 (2) 0.0442 (7)
N4 0.31108 (15) 0.78598 (17) 0.3519 (2) 0.0467 (7)
N5 0.44380 (16) 0.82375 (18) 0.3130 (2) 0.0542 (8)
H5A 0.439554 0.826988 0.241203 0.065*
O1 0.49588 (12) 0.78802 (13) 0.60565 (18) 0.0468 (6)
O2 0.55363 (14) 0.66252 (14) 0.6933 (2) 0.0567 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.045 (2) 0.071 (3) 0.058 (3) −0.0032 (17) −0.0068 (19) −0.002 (2)
C2 0.055 (2) 0.077 (3) 0.048 (2) −0.0014 (19) −0.0144 (18) −0.001 (2)
C3 0.055 (2) 0.070 (2) 0.042 (2) 0.0003 (18) −0.0024 (18) 0.0043 (18)
C4 0.0452 (19) 0.051 (2) 0.0389 (19) 0.0027 (15) −0.0019 (16) −0.0025 (16)
C5 0.050 (2) 0.065 (2) 0.043 (2) 0.0048 (17) −0.0047 (17) −0.0016 (18)
C6 0.0474 (19) 0.0454 (19) 0.0370 (19) 0.0039 (14) −0.0035 (16) −0.0014 (16)
C7 0.052 (2) 0.046 (2) 0.037 (2) 0.0000 (16) −0.0011 (17) 0.0026 (16)
C8 0.050 (2) 0.054 (2) 0.055 (2) −0.0108 (17) −0.0034 (18) 0.0068 (19)
C9 0.062 (2) 0.0416 (19) 0.069 (3) −0.0079 (16) −0.012 (2) 0.0020 (19)
C10 0.052 (2) 0.0433 (18) 0.050 (2) 0.0020 (15) −0.0100 (17) −0.0025 (17)
C11 0.070 (3) 0.051 (2) 0.064 (3) 0.0125 (18) −0.020 (2) −0.0181 (19)
C12 0.0350 (17) 0.0465 (19) 0.048 (2) −0.0012 (14) −0.0029 (15) −0.0062 (17)
C13 0.0388 (19) 0.050 (2) 0.049 (2) −0.0059 (15) −0.0008 (16) −0.0023 (17)
C14 0.048 (2) 0.066 (2) 0.054 (2) −0.0040 (18) 0.0081 (18) −0.0043 (19)
C15 0.056 (2) 0.065 (3) 0.068 (3) 0.0102 (19) 0.014 (2) −0.013 (2)
C16 0.048 (2) 0.056 (2) 0.069 (3) 0.0077 (17) 0.0038 (19) −0.001 (2)
C17 0.0395 (19) 0.048 (2) 0.053 (2) 0.0002 (15) −0.0013 (16) 0.0001 (17)
C18 0.070 (3) 0.072 (3) 0.073 (3) 0.020 (2) −0.002 (2) 0.020 (2)
C19 0.101 (4) 0.119 (4) 0.082 (3) 0.032 (3) 0.009 (3) 0.039 (3)
N1 0.0495 (18) 0.075 (2) 0.0473 (19) −0.0042 (15) −0.0009 (15) 0.0003 (16)
N2 0.0471 (17) 0.0498 (16) 0.0404 (17) 0.0034 (12) −0.0027 (14) −0.0044 (13)
N3 0.0414 (16) 0.0491 (16) 0.0422 (18) −0.0011 (12) −0.0038 (13) −0.0030 (13)
N4 0.0436 (17) 0.0571 (18) 0.0393 (17) 0.0005 (14) −0.0050 (13) 0.0033 (13)
N5 0.0486 (18) 0.073 (2) 0.0410 (16) −0.0050 (15) −0.0034 (14) 0.0104 (16)
O1 0.0494 (13) 0.0459 (13) 0.0451 (13) 0.0082 (10) −0.0054 (11) −0.0044 (11)
O2 0.0557 (15) 0.0585 (16) 0.0559 (16) 0.0140 (12) −0.0017 (13) 0.0087 (13)

Geometric parameters (Å, º)

C1—N1 1.331 (5) C10—C11 1.504 (5)
C1—C2 1.362 (5) C11—H11A 0.9600
C1—H1 0.9300 C11—H11B 0.9600
C2—C3 1.384 (5) C11—H11C 0.9600
C2—H2 0.9300 C12—C13 1.372 (5)
C3—C4 1.373 (5) C12—O1 1.390 (4)
C3—H3 0.9300 C12—C17 1.409 (5)
C4—C5 1.383 (5) C13—C14 1.399 (5)
C4—C6 1.477 (4) C14—C15 1.374 (5)
C5—N1 1.343 (4) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.380 (6)
C6—N2 1.317 (4) C15—H15 0.9300
C6—N4 1.367 (4) C16—C17 1.380 (5)
C7—N4 1.330 (4) C16—H16 0.9300
C7—N3 1.342 (4) C17—O2 1.364 (4)
C7—N5 1.352 (4) C18—O2 1.428 (4)
C8—N5 1.469 (4) C18—C19 1.495 (6)
C8—C13 1.515 (5) C18—H18A 0.9700
C8—C9 1.517 (5) C18—H18B 0.9700
C8—H8 0.9800 C19—H19A 0.9600
C9—C10 1.509 (5) C19—H19B 0.9600
C9—H9A 0.9700 C19—H19C 0.9600
C9—H9B 0.9700 N2—N3 1.389 (4)
C10—O1 1.443 (4) N5—H5A 0.8600
C10—N3 1.463 (4)
N1—C1—C2 123.7 (3) H11A—C11—H11C 109.5
N1—C1—H1 118.1 H11B—C11—H11C 109.5
C2—C1—H1 118.1 C13—C12—O1 124.0 (3)
C1—C2—C3 118.7 (4) C13—C12—C17 121.3 (3)
C1—C2—H2 120.7 O1—C12—C17 114.7 (3)
C3—C2—H2 120.7 C12—C13—C14 119.1 (3)
C4—C3—C2 119.2 (3) C12—C13—C8 120.3 (3)
C4—C3—H3 120.4 C14—C13—C8 120.6 (3)
C2—C3—H3 120.4 C15—C14—C13 119.7 (4)
C3—C4—C5 117.8 (3) C15—C14—H14 120.1
C3—C4—C6 121.4 (3) C13—C14—H14 120.1
C5—C4—C6 120.7 (3) C14—C15—C16 121.1 (4)
N1—C5—C4 123.5 (3) C14—C15—H15 119.5
N1—C5—H5 118.2 C16—C15—H15 119.5
C4—C5—H5 118.2 C17—C16—C15 120.3 (4)
N2—C6—N4 116.6 (3) C17—C16—H16 119.9
N2—C6—C4 121.8 (3) C15—C16—H16 119.9
N4—C6—C4 121.5 (3) O2—C17—C16 125.5 (3)
N4—C7—N3 111.2 (3) O2—C17—C12 116.0 (3)
N4—C7—N5 128.1 (3) C16—C17—C12 118.5 (3)
N3—C7—N5 120.7 (3) O2—C18—C19 107.4 (4)
N5—C8—C13 112.8 (3) O2—C18—H18A 110.2
N5—C8—C9 107.2 (3) C19—C18—H18A 110.2
C13—C8—C9 108.2 (3) O2—C18—H18B 110.2
N5—C8—H8 109.5 C19—C18—H18B 110.2
C13—C8—H8 109.5 H18A—C18—H18B 108.5
C9—C8—H8 109.5 C18—C19—H19A 109.5
C10—C9—C8 108.5 (3) C18—C19—H19B 109.5
C10—C9—H9A 110.0 H19A—C19—H19B 109.5
C8—C9—H9A 110.0 C18—C19—H19C 109.5
C10—C9—H9B 110.0 H19A—C19—H19C 109.5
C8—C9—H9B 110.0 H19B—C19—H19C 109.5
H9A—C9—H9B 108.4 C1—N1—C5 116.8 (3)
O1—C10—N3 109.5 (3) C6—N2—N3 101.2 (3)
O1—C10—C11 105.7 (3) C7—N3—N2 109.4 (3)
N3—C10—C11 111.3 (3) C7—N3—C10 126.8 (3)
O1—C10—C9 109.4 (3) N2—N3—C10 123.7 (3)
N3—C10—C9 105.9 (3) C7—N4—C6 101.6 (3)
C11—C10—C9 115.1 (3) C7—N5—C8 115.0 (3)
C10—C11—H11A 109.5 C7—N5—H5A 122.5
C10—C11—H11B 109.5 C8—N5—H5A 122.5
H11A—C11—H11B 109.5 C12—O1—C10 115.3 (2)
C10—C11—H11C 109.5 C17—O2—C18 117.1 (3)
N1—C1—C2—C3 −2.2 (6) C2—C1—N1—C5 2.8 (6)
C1—C2—C3—C4 −0.9 (6) C4—C5—N1—C1 −0.4 (5)
C2—C3—C4—C5 3.0 (5) N4—C6—N2—N3 −0.8 (3)
C2—C3—C4—C6 −175.7 (3) C4—C6—N2—N3 −179.3 (3)
C3—C4—C5—N1 −2.5 (5) N4—C7—N3—N2 −0.2 (4)
C6—C4—C5—N1 176.2 (3) N5—C7—N3—N2 179.3 (3)
C3—C4—C6—N2 166.1 (3) N4—C7—N3—C10 −176.5 (3)
C5—C4—C6—N2 −12.5 (5) N5—C7—N3—C10 3.0 (5)
C3—C4—C6—N4 −12.4 (5) C6—N2—N3—C7 0.5 (3)
C5—C4—C6—N4 169.0 (3) C6—N2—N3—C10 177.0 (3)
N5—C8—C9—C10 68.7 (3) O1—C10—N3—C7 −101.2 (4)
C13—C8—C9—C10 −53.3 (4) C11—C10—N3—C7 142.3 (4)
C8—C9—C10—O1 67.4 (3) C9—C10—N3—C7 16.6 (4)
C8—C9—C10—N3 −50.5 (3) O1—C10—N3—N2 83.0 (4)
C8—C9—C10—C11 −173.8 (3) C11—C10—N3—N2 −33.5 (4)
O1—C12—C13—C14 −177.8 (3) C9—C10—N3—N2 −159.2 (3)
C17—C12—C13—C14 2.6 (5) N3—C7—N4—C6 −0.2 (4)
O1—C12—C13—C8 2.9 (5) N5—C7—N4—C6 −179.7 (3)
C17—C12—C13—C8 −176.7 (3) N2—C6—N4—C7 0.7 (4)
N5—C8—C13—C12 −98.3 (4) C4—C6—N4—C7 179.2 (3)
C9—C8—C13—C12 20.1 (4) N4—C7—N5—C8 −166.6 (3)
N5—C8—C13—C14 82.4 (4) N3—C7—N5—C8 14.0 (5)
C9—C8—C13—C14 −159.2 (3) C13—C8—N5—C7 70.4 (4)
C12—C13—C14—C15 −0.7 (5) C9—C8—N5—C7 −48.7 (4)
C8—C13—C14—C15 178.6 (3) C13—C12—O1—C10 9.4 (4)
C13—C14—C15—C16 −0.7 (6) C17—C12—O1—C10 −171.0 (3)
C14—C15—C16—C17 0.3 (6) N3—C10—O1—C12 71.7 (3)
C15—C16—C17—O2 179.6 (4) C11—C10—O1—C12 −168.4 (3)
C15—C16—C17—C12 1.5 (5) C9—C10—O1—C12 −43.9 (4)
C13—C12—C17—O2 178.7 (3) C16—C17—O2—C18 2.8 (5)
O1—C12—C17—O2 −0.9 (4) C12—C17—O2—C18 −179.0 (3)
C13—C12—C17—C16 −3.0 (5) C19—C18—O2—C17 −179.6 (4)
O1—C12—C17—C16 177.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5A···N1i 0.86 2.13 2.907 (4) 149

Symmetry code: (i) −x+1/2, −y+3/2, z−1/2.

References

  1. Atalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o2119–o2121.
  2. Deres, K., Schröder, C. H., Paessens, A., Goldmann, S., Hacker, H. J., Weber, O., Krämer, T., Niewöhner, U., Pleiss, U., Stoltefuss, J., Graef, E., Koletzki, D., Masantschek, R. N. A., Reimann, A., Jaeger, R., Gross, R., Beckermann, B., Schlemmer, K. H., Haebich, D. & Rübsamen-Waigmann, H. (2003). Science, 299, 893–896. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.
  7. Huang, S. (2009). Acta Cryst. E65, o2671. [DOI] [PMC free article] [PubMed]
  8. Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220. [DOI] [PMC free article] [PubMed]
  9. Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. [DOI] [PubMed]
  10. Kettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92. [DOI] [PMC free article] [PubMed]
  11. Şen, F., Çapan, İ., Dinçer, M. & Çukurovalı, A. (2018). J. Mol. Struct. 1155, 278–287.
  12. Şen, F., Dinçer, M., Yilmaz, I. & Cukurovali, A. (2017a). J. Mol. Struct. 1137, 193–205.
  13. Şen, F., Kansiz, S. & Uçar, İ. (2017b). Acta Cryst. C73, 517–524. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2002). IPDS 2 User Manual. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Svetlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073–4076. [DOI] [PubMed]
  18. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Avustralia.
  19. Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018002621/xu5917sup1.cif

e-74-00367-sup1.cif (301.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002621/xu5917Isup2.hkl

e-74-00367-Isup2.hkl (289.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002621/xu5917Isup3.cml

CCDC reference: 1820439

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES