Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 23;74(Pt 3):385–389. doi: 10.1107/S2056989018002499

Crystal structure and Hirshfeld surface analysis of the naturally occurring cassane-type diterpenoid, 6β-cinnamoyl-7β-hy­droxy­vouacapen-5α-ol

K Osahon Ogbeide a, Rajesh Kumar b, Mujeeb-Ur-Rehman b, Bodunde Owolabi c, Abiodun Falodun d, M Iqbal Choudhary b, Sammer Yousuf b,*
PMCID: PMC5947809  PMID: 29765729

The title compound, a cassane-type diterpenoid, was isolated from a medicinally important plant, Caesalpinia pulcherrima (Fabaceae). In the mol­ecule, the three cyclo­hexane rings are trans-fused and adopt chair, chair and half chair conformations.

Keywords: crystal structure, Caesalpinia pulcherrima, cassane-type diterpenoids, Hirshfeld surface analysis, electrostatic potential

Abstract

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl 3-phenyl­prop-2-enoate}, was isolated from a medicinally important plant, Caesalpinia pulcherrima (Fabaceae). In the mol­ecule, three cyclo­hexane rings are trans-fused and adopt chair, chair and half-chair conformations. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. The tapes are further linked into a double-tape structure through C—H⋯π inter­actions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H⋯H (65.5%), C⋯H (18.7%), O⋯H (14.5%) and C⋯O (0.3%).

Chemical context  

Caesalpinia pulcherrima (Fabaceae) is a decorative evergreen plant widely used for the treatment of various illnesses (Roach et al., 2003). It is commonly known as Gulmohor, Krishnachura and Mayirkonnai, respectively, in Hindi, Bengali and Tamil. Herbalists in the Amazon tropical rain forest have long known some of the medicinal uses of C. pulcherrima, known locally as ayoowiri (Patel et al., 2010). The plant is also known to be used for the treatment of inflammation, earache, muscular and sore pain and cardiovascular disorders and as an anti­malarial, vermifuge and anti­pyretic agent (Patel et al., 2010; Roach et al., 2003). The natural constituents commonly known as cassane-type diterpenoids extracted from C. pulcherrima have been reported by Pranithanchai et al. (2009) and Rao et al. (2005). Cassane-type diterpenoids represent a class of pharmaceutically important natural products having various biological activities. The current study deals with the isolation, single-crystal X-ray diffraction and Hirshfeld surface analysis of the title compound, a naturally occurring cassane-type diterpenoid.

Structural commentary  

The title compound is composed of three trans-fused cyclo­hexane rings, A (C1–C5/C10), B (C5–C10) and C (C8/C9/C11–C14), having chair, chair and half-chair conformations, respectively; the puckering parameters are Q = 0.561 (3) Å, θ = 0.0 (3)° and φ = 300 (132)° for ring A, Q = 0.555 (2) Å, θ = 4.4 (2)° and φ = 319 (4)° for ring B, and Q = 0.456 (2) Å, θ = 45.9 (3)° and φ = 17.7 (4)° for ring C (Fig. 1). The fused rings have trans-oriented hydroxyl and methyl groups attached at atoms C5 and C10, respectively, along the junction of rings A and B, with an O1—C5—C10—C19 torsion angle of −174.41 (18)°. The furan (O2/C12/C13/C15/C16) ring is essentially planar with the C12=C13 and C15=C16 double bonds having the same length (1.343 Å). The dihedral angle between the furan ring and the phenyl C24–C29 ring of the cinnamoyl moiety is 82.14 (13)°. The absolute configurations of the stereogenic centers at positions 5, 6, 7, 8, 9, 10 and 14 are established as R, R, R, S, S, R and R, respectively, on the basis of the reported structure by Fun et al. (2010). In the mol­ecule, an intra­molecular C—H⋯O inter­action (C17—H17C⋯O3; Table 1) forms an S(6) ring motif.graphic file with name e-74-00385-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structures of the title compound, showing atom-labelling scheme with displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O inter­action is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the O2/C12–C16 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.84 2.16 2.924 (2) 151
C3—H3ACg1ii 0.98 2.94 3.896 (3) 163
C17—H17C⋯O3 0.98 2.40 3.091 (3) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules are linked via O—H⋯O hydrogen bonds (O5—H5⋯O2i; symmetry code as in Table 1), forming chains along the b-axis direction (Fig. 2). The chains are further linked into a double-chain structure through C—H⋯π inter­actions (C3—H3ACg1ii; symmetry code as in Table 1) involving the furan ring.

Figure 2.

Figure 2

A packing diagram of the title compound. The O—H⋯O and C—H⋯O inter­actions are shown as dashed lines. H atoms except for the methyl group involved in the C—H⋯O hydrogen bond and the OH groups have been omitted.

Hydrogen bonding and Hirshfeld surface analysis  

The Hishfeld surface mapped over d norm (McKinnon et al., 2004; Spackman & Jayatilaka, 2009) for the title compound is depicted in Fig. 3. The red areas on the surface indicate short contacts as compared to the sum of the Van der Waals (vdW) radii, while the blue indicate long contacts and white area indicate contacts with distances equal to the sum of the vdW radii. The red highlighted area shows the O—H⋯O hydrogen bond, which is responsible for connecting mol­ecules to each other. The contribution of the H⋯H contacts to the crystal packing is 65.5%, and C⋯H, O⋯H and C⋯O contributions are 18.7, 14.5 and 0.3%, respectively. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 4. The red region indicates atoms having potential to be hydrogen-bond acceptors with negative electrostatic potential, while the blue shows potential to be hydrogen-bond donors with positive electrostatic potential. Fig. 5 shows the Hishfeld surface mapped over shape-index and two-dimensional fingerprint plots are given in Fig. 6.

Figure 3.

Figure 3

Hirshfeld surface over d norm generated for the title compound and neighbouring mol­ecules linked via O—H⋯O hydrogen bonds (dashed lines). [Symmetry codes: (i) x, y + 1, z; (iii) x, y − 1, z.]

Figure 4.

Figure 4

Electrostatic potential surface generated incorporated with Hirshfeld surface for compound (I).

Figure 5.

Figure 5

Hirshfeld surface mapped over shape-index calculated for the title compound.

Figure 6.

Figure 6

Two-dimensional fingerprint plots for compound (I).

Database survey  

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for a common fragment composed of three trans-fused six-membered rings and one planar furan ring shows 12 hits: Refcodes CSLPIN10 (Birnbaum et al., 1969), DUTJIM, DUVCON (Fun et al., 2010), EGAYIU, EGAYUG, EGAZAN, and EGAZER (Jiang et al., 2002), MEYREN, MEYRIR, MEYROX and MEYRUD (Jiang et al., 2001), and POPNIR (Kitagawa et al., 1994). All of the hits are of the same class of compounds as the title compound, i.e. cassane-type diterpenoids, with different substitution patterns on the fused rings.

Isolation and crystallization  

The powdered stem bark (2.5 kg) of C. pulcherrima was extracted with methanol (7.5 l) by cold maceration for four days, followed by filteration and concentration using a rotary evaporator under reduced pressure at 228 K to obtain the crude plant extract (200 g). The crude extract was further fractionated by silica gel chromatography first using n-hexane (9.4 l) and then with increasing polarities of solvents [n-hexa­ne:ethyl­acetate (1:1) (12.5 l), ethyl acetate (8.2 l), ethyl acetate:methanol (1:1) (13 l) and finally with methanol (7 l)]. Concentration of fractions in vacuo gave five major fractions of 0.45, 38.81, 25.75, 127.73 and 4.18 g after elution from n-hexane, n-hexa­ne:ethyl acetate (1:1), ethyl acetate, ethyl acetate:methanol (1:1) and methanol, respectively. The dried n-hexa­ne:ethyl­acetate (1:1) fraction was re-chromatographed by column chromatography over silica gel using increasing proportions of ethyl acetate in n-hexane (starting from 100% n-hexa­ne) as eluents to afford twelve sub-fractions. One sub-fraction, CP93-123 (6 g), obtained after elution from n-hexa­ne:ethyl acetate (9:1), was re-fractionated on silica gel with n-hexa­ne:ethyl acetate (100:0 to 80:20) to give three sub fractions (CP93-123-A, -B and -C). The sub fraction CP93-123A was suspended in n-hexa­ne:ethyl acetate (97:3). A white crystalline product was obtained, which was filtered and dried to give the title compound (yield 74 mg, 3.7 × 10−4%). Single crystals of the title compound were obtained by slow evaporation of an ethanol solution at 296 K.

Data collection and Refinement  

Crystal data, refinement results are summarized in Table 2. All H atoms were placed geometrically (C—H = 0.95–1.00 Å and O—H = 0.84 Å) and were refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(O). Since a partial racemic twin of the crystal was suggested from a Flack parameter of 0.17 (7) (Parsons et al., 2013), a twin treatment was adopted in the final refinement. The BASF parameter refined to 0.0 (2). It is, therefore, uncertain whether the crystal used was an inversion twin or not.

Table 2. Experimental details.

Crystal data
Chemical formula C29H36O5
M r 464.58
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 12.1129 (3), 7.8973 (2), 12.9253 (3)
β (°) 94.930 (1)
V3) 1231.85 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.67
Crystal size (mm) 0.17 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 21754, 4526, 4183
R int 0.049
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.085, 1.00
No. of reflections 4526
No. of parameters 314
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.0 (2)

Computer programs: APEX2 and SAINT (Bruker, 2000), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018002499/is5486sup1.cif

e-74-00385-sup1.cif (653.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002499/is5486Isup2.hkl

e-74-00385-Isup2.hkl (360.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002499/is5486Isup3.cml

CCDC reference: 1823530

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C29H36O5 F(000) = 500
Mr = 464.58 Dx = 1.253 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 12.1129 (3) Å Cell parameters from 9975 reflections
b = 7.8973 (2) Å θ = 3.4–68.3°
c = 12.9253 (3) Å µ = 0.67 mm1
β = 94.930 (1)° T = 100 K
V = 1231.85 (5) Å3 Plate, colourless
Z = 2 0.17 × 0.13 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.049
φ and ω scans θmax = 68.3°, θmin = 3.4°
21754 measured reflections h = −14→14
4526 independent reflections k = −9→9
4183 reflections with I > 2σ(I) l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2131P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.19 e Å3
4526 reflections Δρmin = −0.21 e Å3
314 parameters Absolute structure: Refined as an inversion twin
1 restraint Absolute structure parameter: 0.0 (2)

Special details

Experimental. 1H-NMR (400 MHz C3D6O): 7.71(m), 7.62(m), 7.41(m), 7.41(m), 7.29(d, J = 1.6 Hz), 6.58(d, J = 16 Hz), 6.23(d,J = 1.6Hz), 5.65(d, J = 4Hz), 4.28(m), 3.04(q, J = 12,6.4 Hz), 2.48(m), 2.48(m), 1.97(m), 1.86(T, J = 12.8), 1.02(m), 1.72(m), 1.41(m), 1.65(m), 1.40(m), 1.46(s), 1.19(s), 1.10(m), 1.04(d, J = 7.2). 13C-NMR (300 MHz C3D6O): 166.9, 150.23, 145.11, 141.3, 135.5, 131.1, 129.8,129.0, 120.1, 122.9, 110.5, 78.04, 74.50, 68.93, 41.88, 39.97, 39.10, 38.43, 38.02, 35.52, 28.25, 28.18, 25.81, 22.44, 19.04, 17.77, 17.45. IR: (cm-1) 3592.0, 3058.8, 2934.9, 2866.8, 1713.9, 1639.7, 1577.8, 1503.1, 1456.6, 1391.8, 1310.3, 1280.8, 1168.4, 1058.3, 1008.2, 979.7, 909.7 863.8, 765.9, 723.1, 687.4.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.51780 (13) 0.1960 (2) 0.12545 (11) 0.0191 (4)
H1 0.583625 0.166840 0.119366 0.029*
O2 0.22809 (14) −0.4687 (2) −0.01284 (13) 0.0223 (4)
O3 0.31947 (13) 0.1907 (2) 0.31852 (11) 0.0176 (3)
O4 0.28626 (16) 0.4678 (2) 0.34903 (15) 0.0300 (4)
O5 0.19074 (13) 0.2782 (2) 0.14554 (12) 0.0190 (4)
H5 0.187516 0.371232 0.113926 0.029*
C1 0.5738 (2) −0.1463 (3) 0.19336 (19) 0.0223 (5)
H1A 0.563465 −0.270610 0.191241 0.027*
H1B 0.596970 −0.110358 0.125098 0.027*
C2 0.6658 (2) −0.1033 (4) 0.2771 (2) 0.0281 (6)
H2A 0.646674 −0.150083 0.344371 0.034*
H2B 0.735565 −0.157536 0.259730 0.034*
C3 0.6840 (2) 0.0864 (4) 0.2882 (2) 0.0266 (6)
H3A 0.711327 0.130558 0.223380 0.032*
H3B 0.742076 0.107536 0.345374 0.032*
C4 0.57779 (19) 0.1850 (3) 0.31052 (18) 0.0203 (5)
C5 0.48332 (19) 0.1330 (3) 0.22378 (17) 0.0159 (5)
C6 0.37500 (19) 0.2335 (3) 0.22738 (17) 0.0157 (5)
H6 0.392800 0.357187 0.229305 0.019*
C7 0.29530 (18) 0.1976 (3) 0.13233 (16) 0.0150 (5)
H7 0.326559 0.247100 0.069884 0.018*
C8 0.27205 (19) 0.0105 (3) 0.11248 (17) 0.0144 (5)
H8 0.232224 −0.032713 0.171772 0.017*
C9 0.38119 (18) −0.0920 (3) 0.11139 (16) 0.0141 (5)
H9 0.419571 −0.052008 0.050411 0.017*
C10 0.46211 (19) −0.0615 (3) 0.21063 (17) 0.0162 (5)
C11 0.35761 (19) −0.2846 (3) 0.09546 (18) 0.0195 (5)
H11A 0.421988 −0.339792 0.067248 0.023*
H11B 0.346108 −0.337965 0.163002 0.023*
C12 0.25746 (19) −0.3084 (3) 0.02252 (17) 0.0174 (5)
C13 0.1808 (2) −0.1948 (3) −0.01287 (18) 0.0169 (5)
C14 0.19243 (19) −0.0105 (3) 0.01221 (18) 0.0170 (5)
H14 0.117939 0.033202 0.027082 0.020*
C15 0.09710 (19) −0.2868 (3) −0.07485 (19) 0.0214 (5)
H15 0.031927 −0.241267 −0.110517 0.026*
C16 0.1288 (2) −0.4498 (3) −0.0727 (2) 0.0240 (5)
H16 0.088574 −0.539445 −0.107408 0.029*
C17 0.5565 (2) 0.1516 (3) 0.42506 (18) 0.0252 (6)
H17A 0.612996 0.209595 0.470912 0.038*
H17B 0.559908 0.029565 0.438823 0.038*
H17C 0.482962 0.194371 0.438008 0.038*
C18 0.6012 (2) 0.3760 (3) 0.3034 (2) 0.0274 (6)
H18A 0.540690 0.439604 0.330854 0.041*
H18B 0.606793 0.407338 0.230669 0.041*
H18C 0.671040 0.402637 0.344118 0.041*
C19 0.4136 (2) −0.1444 (3) 0.30596 (17) 0.0194 (5)
H19A 0.444707 −0.088795 0.369703 0.029*
H19B 0.432678 −0.265020 0.308648 0.029*
H19C 0.332817 −0.131699 0.299626 0.029*
C20 0.2289 (2) 0.0857 (3) −0.08241 (18) 0.0218 (5)
H20A 0.225048 0.207822 −0.069787 0.033*
H20B 0.179661 0.056395 −0.143969 0.033*
H20C 0.305132 0.054200 −0.093813 0.033*
C21 0.2732 (2) 0.3200 (3) 0.36808 (18) 0.0204 (5)
C22 0.2066 (2) 0.2519 (4) 0.44928 (18) 0.0221 (6)
H22 0.205628 0.133757 0.462953 0.026*
C23 0.1479 (2) 0.3580 (4) 0.50308 (18) 0.0235 (6)
H23 0.153196 0.474847 0.486769 0.028*
C24 0.0756 (2) 0.3140 (4) 0.58504 (19) 0.0242 (6)
C25 0.0608 (2) 0.1487 (4) 0.61904 (19) 0.0283 (6)
H25 0.098725 0.058097 0.589145 0.034*
C26 −0.0092 (2) 0.1158 (4) 0.6966 (2) 0.0329 (7)
H26 −0.019633 0.002787 0.719015 0.039*
C27 −0.0638 (2) 0.2486 (5) 0.7412 (2) 0.0361 (8)
H27 −0.111276 0.226126 0.794396 0.043*
C28 −0.0492 (2) 0.4132 (4) 0.7086 (2) 0.0335 (7)
H28 −0.086528 0.503687 0.739264 0.040*
C29 0.0199 (2) 0.4457 (4) 0.6310 (2) 0.0290 (6)
H29 0.029684 0.558944 0.608671 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0156 (8) 0.0276 (9) 0.0152 (8) 0.0023 (7) 0.0070 (6) 0.0042 (7)
O2 0.0289 (9) 0.0153 (9) 0.0219 (9) 0.0013 (7) −0.0027 (7) 0.0011 (7)
O3 0.0202 (8) 0.0201 (8) 0.0138 (7) 0.0030 (7) 0.0085 (6) 0.0012 (7)
O4 0.0332 (11) 0.0233 (10) 0.0361 (10) −0.0011 (8) 0.0176 (9) −0.0085 (8)
O5 0.0184 (9) 0.0168 (8) 0.0224 (8) 0.0066 (7) 0.0055 (7) 0.0035 (7)
C1 0.0210 (13) 0.0254 (13) 0.0201 (12) 0.0091 (10) −0.0012 (10) −0.0019 (10)
C2 0.0227 (13) 0.0350 (15) 0.0256 (13) 0.0130 (12) −0.0047 (11) −0.0087 (12)
C3 0.0183 (12) 0.0369 (16) 0.0238 (13) 0.0043 (11) −0.0027 (10) −0.0051 (11)
C4 0.0183 (11) 0.0245 (13) 0.0179 (11) 0.0006 (11) 0.0010 (9) −0.0016 (11)
C5 0.0167 (11) 0.0210 (12) 0.0107 (10) 0.0020 (9) 0.0054 (9) 0.0020 (9)
C6 0.0185 (11) 0.0159 (12) 0.0137 (10) −0.0002 (9) 0.0078 (9) 0.0026 (9)
C7 0.0151 (11) 0.0157 (11) 0.0149 (10) 0.0051 (10) 0.0060 (9) 0.0032 (10)
C8 0.0152 (11) 0.0164 (12) 0.0122 (10) 0.0021 (9) 0.0046 (9) 0.0040 (9)
C9 0.0161 (11) 0.0156 (11) 0.0111 (10) 0.0038 (9) 0.0039 (8) 0.0015 (9)
C10 0.0189 (12) 0.0168 (12) 0.0131 (10) 0.0042 (9) 0.0022 (9) 0.0004 (9)
C11 0.0240 (12) 0.0191 (12) 0.0151 (10) 0.0053 (11) −0.0004 (9) 0.0017 (10)
C12 0.0228 (12) 0.0160 (11) 0.0141 (10) 0.0004 (10) 0.0049 (9) 0.0014 (10)
C13 0.0164 (11) 0.0187 (12) 0.0162 (11) −0.0003 (9) 0.0054 (9) 0.0029 (9)
C14 0.0138 (11) 0.0172 (12) 0.0201 (11) 0.0034 (9) 0.0027 (9) 0.0017 (9)
C15 0.0161 (11) 0.0239 (13) 0.0241 (12) −0.0018 (10) 0.0007 (9) 0.0031 (11)
C16 0.0242 (13) 0.0218 (13) 0.0254 (13) −0.0047 (11) −0.0021 (10) 0.0014 (11)
C17 0.0281 (14) 0.0306 (15) 0.0165 (11) 0.0030 (11) −0.0007 (10) −0.0044 (10)
C18 0.0245 (13) 0.0267 (15) 0.0307 (14) −0.0021 (11) 0.0010 (11) −0.0034 (11)
C19 0.0291 (13) 0.0169 (12) 0.0121 (10) 0.0043 (10) 0.0014 (10) 0.0024 (9)
C20 0.0290 (13) 0.0179 (12) 0.0175 (12) −0.0022 (11) −0.0043 (10) 0.0042 (9)
C21 0.0181 (12) 0.0257 (14) 0.0178 (12) 0.0002 (10) 0.0038 (10) −0.0049 (10)
C22 0.0197 (12) 0.0314 (15) 0.0154 (11) 0.0009 (10) 0.0030 (10) −0.0026 (10)
C23 0.0179 (12) 0.0354 (15) 0.0172 (12) −0.0010 (11) 0.0014 (10) −0.0058 (11)
C24 0.0134 (12) 0.0434 (17) 0.0157 (11) −0.0003 (11) 0.0001 (10) −0.0073 (11)
C25 0.0214 (13) 0.0448 (18) 0.0186 (12) 0.0038 (11) 0.0012 (10) −0.0045 (12)
C26 0.0265 (14) 0.0487 (18) 0.0235 (13) −0.0032 (13) 0.0030 (11) 0.0043 (13)
C27 0.0252 (14) 0.064 (2) 0.0198 (13) 0.0011 (14) 0.0094 (11) −0.0011 (13)
C28 0.0213 (13) 0.054 (2) 0.0265 (14) 0.0029 (13) 0.0071 (11) −0.0092 (14)
C29 0.0194 (13) 0.0432 (18) 0.0247 (13) 0.0005 (12) 0.0045 (11) −0.0060 (13)

Geometric parameters (Å, º)

O1—C5 1.459 (3) C11—H11B 0.9900
O1—H1 0.8400 C12—C13 1.343 (3)
O2—C16 1.381 (3) C13—C15 1.435 (3)
O2—C12 1.383 (3) C13—C14 1.495 (3)
O3—C21 1.352 (3) C14—C20 1.536 (3)
O3—C6 1.446 (3) C14—H14 1.0000
O4—C21 1.206 (3) C15—C16 1.343 (4)
O5—C7 1.441 (3) C15—H15 0.9500
O5—H5 0.8400 C16—H16 0.9500
C1—C2 1.524 (3) C17—H17A 0.9800
C1—C10 1.543 (3) C17—H17B 0.9800
C1—H1A 0.9900 C17—H17C 0.9800
C1—H1B 0.9900 C18—H18A 0.9800
C2—C3 1.520 (4) C18—H18B 0.9800
C2—H2A 0.9900 C18—H18C 0.9800
C2—H2B 0.9900 C19—H19A 0.9800
C3—C4 1.552 (3) C19—H19B 0.9800
C3—H3A 0.9900 C19—H19C 0.9800
C3—H3B 0.9900 C20—H20A 0.9800
C4—C18 1.539 (4) C20—H20B 0.9800
C4—C17 1.547 (3) C20—H20C 0.9800
C4—C5 1.586 (3) C21—C22 1.479 (3)
C5—C6 1.538 (3) C22—C23 1.333 (3)
C5—C10 1.564 (3) C22—H22 0.9500
C6—C7 1.522 (3) C23—C24 1.472 (3)
C6—H6 1.0000 C23—H23 0.9500
C7—C8 1.522 (3) C24—C25 1.394 (4)
C7—H7 1.0000 C24—C29 1.400 (4)
C8—C9 1.551 (3) C25—C26 1.392 (4)
C8—C14 1.556 (3) C25—H25 0.9500
C8—H8 1.0000 C26—C27 1.392 (4)
C9—C11 1.558 (3) C26—H26 0.9500
C9—C10 1.565 (3) C27—C28 1.383 (5)
C9—H9 1.0000 C27—H27 0.9500
C10—C19 1.555 (3) C28—C29 1.385 (4)
C11—C12 1.483 (3) C28—H28 0.9500
C11—H11A 0.9900 C29—H29 0.9500
C5—O1—H1 109.5 C13—C12—O2 110.4 (2)
C16—O2—C12 105.83 (18) C13—C12—C11 129.5 (2)
C21—O3—C6 116.78 (18) O2—C12—C11 120.0 (2)
C7—O5—H5 109.5 C12—C13—C15 106.7 (2)
C2—C1—C10 113.4 (2) C12—C13—C14 121.8 (2)
C2—C1—H1A 108.9 C15—C13—C14 131.5 (2)
C10—C1—H1A 108.9 C13—C14—C20 109.7 (2)
C2—C1—H1B 108.9 C13—C14—C8 108.94 (19)
C10—C1—H1B 108.9 C20—C14—C8 114.22 (19)
H1A—C1—H1B 107.7 C13—C14—H14 107.9
C3—C2—C1 112.2 (2) C20—C14—H14 107.9
C3—C2—H2A 109.2 C8—C14—H14 107.9
C1—C2—H2A 109.2 C16—C15—C13 106.7 (2)
C3—C2—H2B 109.2 C16—C15—H15 126.7
C1—C2—H2B 109.2 C13—C15—H15 126.7
H2A—C2—H2B 107.9 C15—C16—O2 110.4 (2)
C2—C3—C4 113.4 (2) C15—C16—H16 124.8
C2—C3—H3A 108.9 O2—C16—H16 124.8
C4—C3—H3A 108.9 C4—C17—H17A 109.5
C2—C3—H3B 108.9 C4—C17—H17B 109.5
C4—C3—H3B 108.9 H17A—C17—H17B 109.5
H3A—C3—H3B 107.7 C4—C17—H17C 109.5
C18—C4—C17 105.7 (2) H17A—C17—H17C 109.5
C18—C4—C3 108.7 (2) H17B—C17—H17C 109.5
C17—C4—C3 107.6 (2) C4—C18—H18A 109.5
C18—C4—C5 109.7 (2) C4—C18—H18B 109.5
C17—C4—C5 117.6 (2) H18A—C18—H18B 109.5
C3—C4—C5 107.32 (19) C4—C18—H18C 109.5
O1—C5—C6 99.16 (17) H18A—C18—H18C 109.5
O1—C5—C10 107.26 (18) H18B—C18—H18C 109.5
C6—C5—C10 112.19 (19) C10—C19—H19A 109.5
O1—C5—C4 106.52 (18) C10—C19—H19B 109.5
C6—C5—C4 114.24 (19) H19A—C19—H19B 109.5
C10—C5—C4 115.66 (18) C10—C19—H19C 109.5
O3—C6—C7 107.87 (17) H19A—C19—H19C 109.5
O3—C6—C5 111.22 (17) H19B—C19—H19C 109.5
C7—C6—C5 111.28 (18) C14—C20—H20A 109.5
O3—C6—H6 108.8 C14—C20—H20B 109.5
C7—C6—H6 108.8 H20A—C20—H20B 109.5
C5—C6—H6 108.8 C14—C20—H20C 109.5
O5—C7—C8 107.28 (18) H20A—C20—H20C 109.5
O5—C7—C6 108.97 (18) H20B—C20—H20C 109.5
C8—C7—C6 114.34 (19) O4—C21—O3 124.5 (2)
O5—C7—H7 108.7 O4—C21—C22 125.8 (2)
C8—C7—H7 108.7 O3—C21—C22 109.6 (2)
C6—C7—H7 108.7 C23—C22—C21 119.4 (2)
C7—C8—C9 111.26 (18) C23—C22—H22 120.3
C7—C8—C14 109.65 (18) C21—C22—H22 120.3
C9—C8—C14 113.85 (17) C22—C23—C24 127.1 (3)
C7—C8—H8 107.3 C22—C23—H23 116.4
C9—C8—H8 107.3 C24—C23—H23 116.4
C14—C8—H8 107.3 C25—C24—C29 118.9 (2)
C8—C9—C11 111.34 (18) C25—C24—C23 123.3 (2)
C8—C9—C10 112.74 (17) C29—C24—C23 117.9 (3)
C11—C9—C10 110.70 (18) C26—C25—C24 120.3 (3)
C8—C9—H9 107.3 C26—C25—H25 119.8
C11—C9—H9 107.3 C24—C25—H25 119.8
C10—C9—H9 107.3 C27—C26—C25 119.9 (3)
C1—C10—C19 109.14 (19) C27—C26—H26 120.1
C1—C10—C5 107.69 (19) C25—C26—H26 120.1
C19—C10—C5 113.40 (18) C28—C27—C26 120.3 (3)
C1—C10—C9 108.06 (17) C28—C27—H27 119.9
C19—C10—C9 109.40 (18) C26—C27—H27 119.9
C5—C10—C9 109.01 (18) C27—C28—C29 119.8 (3)
C12—C11—C9 109.77 (19) C27—C28—H28 120.1
C12—C11—H11A 109.7 C29—C28—H28 120.1
C9—C11—H11A 109.7 C28—C29—C24 120.9 (3)
C12—C11—H11B 109.7 C28—C29—H29 119.6
C9—C11—H11B 109.7 C24—C29—H29 119.6
H11A—C11—H11B 108.2
C10—C1—C2—C3 −56.4 (3) C4—C5—C10—C9 −170.95 (17)
C1—C2—C3—C4 56.2 (3) C8—C9—C10—C1 −171.20 (19)
C2—C3—C4—C18 −171.4 (2) C11—C9—C10—C1 63.3 (2)
C2—C3—C4—C17 74.6 (3) C8—C9—C10—C19 70.1 (2)
C2—C3—C4—C5 −52.8 (3) C11—C9—C10—C19 −55.4 (2)
C18—C4—C5—O1 52.4 (2) C8—C9—C10—C5 −54.4 (2)
C17—C4—C5—O1 173.2 (2) C11—C9—C10—C5 −179.89 (18)
C3—C4—C5—O1 −65.5 (2) C8—C9—C11—C12 36.7 (2)
C18—C4—C5—C6 −56.0 (2) C10—C9—C11—C12 162.98 (17)
C17—C4—C5—C6 64.8 (3) C16—O2—C12—C13 0.1 (2)
C3—C4—C5—C6 −173.9 (2) C16—O2—C12—C11 176.0 (2)
C18—C4—C5—C10 171.51 (19) C9—C11—C12—C13 −12.6 (3)
C17—C4—C5—C10 −67.7 (3) C9—C11—C12—O2 172.36 (19)
C3—C4—C5—C10 53.6 (3) O2—C12—C13—C15 −0.1 (3)
C21—O3—C6—C7 −98.4 (2) C11—C12—C13—C15 −175.5 (2)
C21—O3—C6—C5 139.3 (2) O2—C12—C13—C14 −179.1 (2)
O1—C5—C6—O3 178.25 (17) C11—C12—C13—C14 5.5 (4)
C10—C5—C6—O3 65.3 (2) C12—C13—C14—C20 103.5 (2)
C4—C5—C6—O3 −68.9 (2) C15—C13—C14—C20 −75.2 (3)
O1—C5—C6—C7 58.0 (2) C12—C13—C14—C8 −22.2 (3)
C10—C5—C6—C7 −55.0 (2) C15—C13—C14—C8 159.1 (2)
C4—C5—C6—C7 170.81 (19) C7—C8—C14—C13 173.58 (18)
O3—C6—C7—O5 50.8 (2) C9—C8—C14—C13 48.2 (2)
C5—C6—C7—O5 173.09 (18) C7—C8—C14—C20 50.6 (2)
O3—C6—C7—C8 −69.2 (2) C9—C8—C14—C20 −74.8 (3)
C5—C6—C7—C8 53.1 (2) C12—C13—C15—C16 0.0 (3)
O5—C7—C8—C9 −172.61 (16) C14—C13—C15—C16 178.9 (2)
C6—C7—C8—C9 −51.7 (2) C13—C15—C16—O2 0.0 (3)
O5—C7—C8—C14 60.5 (2) C12—O2—C16—C15 −0.1 (3)
C6—C7—C8—C14 −178.51 (17) C6—O3—C21—O4 −9.1 (3)
C7—C8—C9—C11 177.74 (18) C6—O3—C21—C22 171.78 (18)
C14—C8—C9—C11 −57.7 (2) O4—C21—C22—C23 5.2 (4)
C7—C8—C9—C10 52.6 (2) O3—C21—C22—C23 −175.7 (2)
C14—C8—C9—C10 177.15 (19) C21—C22—C23—C24 178.9 (2)
C2—C1—C10—C19 −70.0 (3) C22—C23—C24—C25 1.2 (4)
C2—C1—C10—C5 53.5 (3) C22—C23—C24—C29 −179.2 (2)
C2—C1—C10—C9 171.1 (2) C29—C24—C25—C26 0.7 (4)
O1—C5—C10—C1 64.7 (2) C23—C24—C25—C26 −179.7 (2)
C6—C5—C10—C1 172.59 (17) C24—C25—C26—C27 −0.7 (4)
C4—C5—C10—C1 −53.9 (2) C25—C26—C27—C28 0.3 (4)
O1—C5—C10—C19 −174.41 (18) C26—C27—C28—C29 0.1 (4)
C6—C5—C10—C19 −66.6 (2) C27—C28—C29—C24 −0.1 (4)
C4—C5—C10—C19 66.9 (3) C25—C24—C29—C28 −0.3 (4)
O1—C5—C10—C9 −52.3 (2) C23—C24—C29—C28 −179.9 (2)
C6—C5—C10—C9 55.6 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the O2/C12–C16 furan ring.

D—H···A D—H H···A D···A D—H···A
O5—H5···O2i 0.84 2.16 2.924 (2) 151
C3—H3A···Cg1ii 0.98 2.94 3.896 (3) 163
C17—H17C···O3 0.98 2.40 3.091 (3) 127

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z.

Funding Statement

This work was funded by University of Benin grant . The World Academy of Sciences grant 3240287190 to K. Osahon Ogbeide. University of Karachi grant .

References

  1. Birnbaum, K. B. & Ferguson, G. (1969). Acta Cryst. B25, 720–730.
  2. Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059–o2060. [DOI] [PMC free article] [PubMed]
  5. Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. (2001). J. Nat. Prod. 64, 1266–1272. [DOI] [PubMed]
  6. Jiang, R. W., Ma, S. C., He, Z. D., Huang, X. S., But, P. P. H., Wang, H., Chan, S., Ooi, V. E., Xu, H. & Mak, T. C. W. (2002). Bioorg. Med. Chem. 10, 2161–2170. [DOI] [PubMed]
  7. Kitagawa, I., Simanjuntak, P., Watano, T., Shibuya, H., Fujii, S., Yamagata, Y. & Kobayashi, M. (1994). Chem. Pharm. Bull. 42, 1798–1802.
  8. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Patel, S. S., Verma, N. K., Chatterjee, C. & Gauthaman, K. (2010). Int. J. Appl. Res. Nat. Prod, 3, 1–5.
  11. Pranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. & Chantrapromma, K. (2009). Phytochemistry, 70, 300–304. [DOI] [PubMed]
  12. Rao, Y. K., Fang, S. H. & Tzeng, Y. M. (2005). J. Ethnopharmacol. 100, 249–253. [DOI] [PubMed]
  13. Roach, J. S., McLean, S., Reynolds, W. F. & Tinto, W. F. (2003). J. Nat. Prod. 66, 1378–1381. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  18. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018002499/is5486sup1.cif

e-74-00385-sup1.cif (653.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002499/is5486Isup2.hkl

e-74-00385-Isup2.hkl (360.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002499/is5486Isup3.cml

CCDC reference: 1823530

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES