Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 23;74(Pt 3):390–393. doi: 10.1107/S2056989018002645

Synthesis and structure of an aryl­tellurenium(II) cation; [4-tert-butyl-2,6-bis­(1-pentyl-1H-benz­imidazol-2-yl-κN 3)phenyl-κC 1]tellurium(II) (1,4-dioxane)tri­iodido­mercurate(II)

Varsha Rani a, Harkesh B Singh a, Ray J Butcher b,*
PMCID: PMC5947810  PMID: 29765730

In the structure of an aryl­tellurenium(II) salt containing a [4-tert-butyl-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phen­yl]tellurium(II) cation and a [HgI3(dioxane)] anion, the cation and anion are linked by a C—H⋯I inter­action.

Keywords: crystal structure; aryl­tellurenium(II) cation; (1,4-dioxane)tri­iodo­mercury(II) anion

Abstract

In the title salt, (C34H41N4Te)[HgI3(C4H8O2)], the aryl­tellurenium [C34H41N4Te]+ cations and [HgI3(dioxane)] anions are linked by a short inter­action between the Te atom and one of the I-atom donors of the anion, as well as through weak C—H⋯I inter­actions. The geometry around the Te atom is T-shaped with the coordination comprising a C atom of the central aromatic ring and two N atom donors of the benzimidazolyl moiety. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å], while the Te—C bond length is 2.071 (4) Å. The N—Te—N bond angle is 150.68 (11)°. The HgII atom of the anion is coordinated by iodide ions from three sides and the fourth coordination site is occupied by an O atom of the solvent mol­ecule (dioxane). Thus, it attains a trigonal–pyrimidal geometry, with O—Hg—I angles ranging of 90.76 (8) and 96.76 (7)° and I—Hg—I angles ranging from 112.41 (1) to 125.10 (1)°. The cations and anions are involved in numerous weak π–π stacking inter­actions involving both the central phenyl ring and two inversion-related benzimidazole moieties, which propagate in the a-axis direction. In addition, there are numerous C—H⋯I inter­actions between the cations and anions, which link them into a complex three-dimensional array.

Chemical context  

Organoselenenium cations have been extensively studied and utilized in the area of synthetic organic chemistry (Back et al., 1999; Singh & Wirth, 2012; Chivers & Laitinen, 2015), bio­logical fields (Mugesh & Singh, 2000; Singh & Wirth, 2012; Bhuyan & Mugesh, 2012) and material science (Manjare et al., 2014; Kremer et al., 2015). Compared to organoselenenium cations, the organotellurenium analogues are less studied. Fujihara et al. (1995) reported the first stable tellurenium cation, [{2,6-(Me2NCH2)2C6H3Te]+[PF6]. After 16 years of preparation, the first structural characterization of the tellurenium cation [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+[Hg2Cl6]2− was demonstrated by Silvestru and co-workers (Beleaga et al., 2011). Recently, we have reported the first examples of selone-stabilized aryl­tellurenium cations, which are synthesized by the reaction of mixed-valent tellurenyl bromide (RTeII–TeIVBr2R) with 1,3-di­butyl­benzimidazolin-2-selone (Yadav et al., 2016). While attempting to prepare a stable organotellurium iodide (2) (see Fig. 1) by the reaction of the mercury complex of 2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­(1-pentyl-1H-benzimidazole) (C34H41N4HgCl) (1) with TeI2, the aryl­tellurenium cation [pent­yl(N^C^N)Te]+·[HgI3] (3) [N^C^N = 5-tert-butyl-1,3-bis­(N-pentyl benzimidazol-2′-yl)phen­yl)] was isolated as a by-product (3% yield) along with the major product, a dimeric aryl­tellurenium cation [C34H41N4Te]+ 2[HgCl2.36I1.64]2− (4). The crystal structure of this compound is reported herein while the synthesis and structures of compounds 1 and 4 will be published elsewhere.graphic file with name e-74-00390-scheme1.jpg

Figure 1.

Figure 1

Reaction scheme.

Structural commentary  

The title complex [C34H41N4Te]+[HgI3(dioxane)] is shown in Fig. 2. It crystallizes in P21/c in the monoclinic crystal system. The asymmetric unit contains one tellurenium cationic unit stabilized by a [HgI3 (dioxane)] counter-anion. The coord­in­ation geometry around the Te atom is T-shaped whereby each Te atom is bonded with the central carbon atom of the aromatic ring and intra­molecularly coordinated with the two N atoms. This coordination gives rise to an octacyclic framework formed by two condensed five-membered rings, which is stable under ambient conditions. The observed Te—C bond length is 2.071 (4) Å, which is comparable with the related NCN pincer-based tellurenium cation in [2,6-{O(CH2CH2)2NCH2}2C6H3Te]+ [Hg2Cl6]2− [2.074 (8) Å; Beleaga et al., 2011]. The Te—N bond lengths are almost equal [2.232 (3) and 2.244 (3) Å]. The Te—N distances are shorter than the sum of the van der Waals radii for Te and N [Σrvdw(Te,N) = 3.61 Å] and longer than the covalent radii [Σrcov(Te,N) = 2.09 Å] (Bondi, 1964). This implies strong intra­molecular Te⋯N inter­actions in the tellurenium cation.

Figure 2.

Figure 2

Diagram showing the atom-labeling scheme for the title compound, [C34H41N4Te]+[HgI3(dioxane)]. The Te⋯I inter­action is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.

In the anion, the mercury atom is coordinated by three iodide ions and one oxygen atom from the solvent mol­ecule (1,4-dioxane), with Hg—I bond lengths of 2.6828 (4), 2.6912 (4) and 2.7321 (3) Å, which are in the range expected for an Hg—I covalent bond (the sum of the covalent radii of Hg and I is 2.71 Å). The Hg—O bond length of 2.730 (3) Å is longer than the sum of their covalent radii (2.15 Å), but shorter than the sum of their van der Waals radii (3.07 Å). This value is in the range found for previous Hg–dioxane structures [2.64 (1) to 2.83 (1) Å; Small, 1982; Frey & Monier, 1971; Crochet & Fromm, 2011]. The O—Hg—I bond angles are 90.76 (8) , 95.08 (7) and 96.76 (7)° and the I—Hg—I bond angles range from 112.41 (1) to 125.10 (1)°. The resulting geometry around the mercury atom is thus trigonal pyramidal with the Hg atom displaced by only 0.2018 (3) Å from the plane of the three I atoms, with the longer Hg—O bond at the apex of this pyramid.

In the 4-tert-butyl-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phenyl ligand, the two pentyl substituents have adopted two different conformations. One has the normal extended zigzag conformation as shown by the N—C—C—C and C—C—C—C torsion angles [−173.8 (3), −173.5 (4) and −174.6 (4)°, respectively] while for the other, these angles are significantly different [−178.7 (4), 171.3 (5) and 66.0 (8), respectively]. In the central aromatic region, both benzimidazole moieties are almost coplanar with the central phenyl ring [dihedral angles of 5.3 (3) and 1.6 (2)°].

Supra­molecular features  

The mol­ecules are involved in numerous weak π–π stacking inter­actions involving both the central phenyl ring and the two benzimidazole moieties (symmetry code −x + 1, −y + 1, −z + 1), which propagate in the a-axis direction, as shown in Fig. 3. The shortest separation, however, is 3.4980 (19) Å between the centroid of one of the outer phenyl rings (C24–C29; symmetry code −x + 2, −y + 1, −z + 1) and the centroid of the moiety made up of the central phenyl ring and one of the imidazole rings (Te1/N1/N3/C1/C2/C7/C13–C18). There is a short inter­action between the Te atom and one of the iodine donors from the anion [Te1⋯I1 = 3.8859 (4) Å]. In addition there are numerous C—H⋯I inter­actions between the cations and anions (Table 1), which link them into a complex three-dimensional array (Fig. 3).

Figure 3.

Figure 3

Packing diagram viewed along the c-axis direction, showing the parallel stacking of the cations. C—H⋯I and Te⋯I inter­actions are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯I1 0.95 3.16 4.086 (4) 164
C8—H8B⋯I2i 0.99 3.08 3.997 (4) 155
C9—H9B⋯I1ii 0.99 3.18 4.095 (4) 155
C30—H30B⋯I1iii 0.99 3.28 4.111 (4) 142
C31—H31B⋯I3iv 0.99 3.20 4.185 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

A survey of the Cambridge Structural Database (web CSD version 1.19 with updates June 2017; Groom et al., 2016) reveals that there is no structure report in the literature for a tellurenium cation with bis-benzimidazole moieties, although an NCN pincer-framework-based tellurenium cation has one hit (Beleaga et al., 2011). There are four reports in the literature of structures involving Hg coordinated to dioxane (BIYPAA, Small, 1982; HGBDOX, Frey & Monier, 1971; VALRUX and VALSAE, Crochet & Fromm, 2011), including one which also contains Hg—I bonds (VALSAE, Crochet & Fromm, 2011).

Synthesis and crystallization  

The reaction scheme for the synthesis of the title compound is shown in Fig. 1. To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (60 ml) was added 0.102 g of TeI2 were added. The reaction mixture was stirred for 24 h at room temperature in an inert atmosphere. The reaction mixture was filtered. The filtrate was evaporated and reduced to 5 mL. Colorless prismatic crystals were obtained from slow evaporation of a1,4-dioxane solution of the compound at room temperature.

Yield 3% (0.035 g). HR–MS: m/z calculated for C34H41N4Te is 635.2394. Found 635.2391. ESI–MS (negative mode): m/z calculated for HgI3: 582.6840. Found 582.6543

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned geometrically, with C—H = ranging from 0.95 to 0.99 Å, and allowed to ride on their parent atoms with U iso(H) = xU eq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula (C34H41N4Te)[HgI3(C4H8O2)]
M r 1302.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.6074 (2), 25.4943 (6), 17.4326 (3)
β (°) 95.152 (2)
V3) 4252.59 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.51
Crystal size (mm) 0.27 × 0.21 × 0.13
 
Data collection
Diffractometer Rigaku CCD dual source
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.238, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 58708, 12625, 11288
R int 0.041
(sin θ/λ)max−1) 0.728
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.080, 1.14
No. of reflections 12625
No. of parameters 448
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.53

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018002645/zs2398sup1.cif

e-74-00390-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002645/zs2398Isup2.hkl

e-74-00390-Isup2.hkl (1,001.2KB, hkl)

CCDC reference: 1823822

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C34H41N4Te)[HgI3(C4H8O2)] F(000) = 2448
Mr = 1302.70 Dx = 2.035 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6074 (2) Å Cell parameters from 22849 reflections
b = 25.4943 (6) Å θ = 2.0–31.3°
c = 17.4326 (3) Å µ = 6.51 mm1
β = 95.152 (2)° T = 100 K
V = 4252.59 (15) Å3 Prism, colorless
Z = 4 0.27 × 0.21 × 0.13 mm

Data collection

Rigaku CCD dual source diffractometer 11288 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tube Rint = 0.041
ω scans θmax = 31.2°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −13→13
Tmin = 0.238, Tmax = 0.567 k = −34→36
58708 measured reflections l = −25→25
12625 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0267P)2 + 9.9235P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.004
12625 reflections Δρmax = 1.45 e Å3
448 parameters Δρmin = −1.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg 0.75646 (2) 0.67318 (2) 0.82692 (2) 0.03297 (5)
I1 0.73560 (3) 0.57972 (2) 0.75006 (2) 0.03369 (7)
I2 0.55214 (3) 0.74060 (2) 0.77764 (2) 0.04473 (8)
I3 0.99100 (3) 0.69905 (2) 0.91390 (2) 0.04466 (8)
O1P 0.6255 (4) 0.63149 (14) 0.94549 (18) 0.0431 (8)
O2P 0.6836 (5) 0.6252 (2) 1.1071 (2) 0.0653 (12)
C1P 0.6860 (6) 0.5855 (2) 0.9821 (3) 0.0491 (13)
H1PA 0.747374 0.568080 0.947248 0.059*
H1PB 0.610890 0.560639 0.992658 0.059*
C2P 0.7689 (6) 0.5994 (3) 1.0559 (3) 0.0519 (13)
H2PA 0.808972 0.567185 1.080570 0.062*
H2PB 0.847183 0.622757 1.044987 0.062*
C3P 0.6282 (8) 0.6717 (3) 1.0710 (4) 0.0686 (19)
H3PA 0.705702 0.695483 1.060347 0.082*
H3PB 0.568885 0.690112 1.106058 0.082*
C4P 0.5428 (6) 0.6587 (3) 0.9969 (3) 0.0525 (14)
H4PA 0.462352 0.636580 1.007958 0.063*
H4PB 0.506000 0.691438 0.972173 0.063*
Te1 0.74063 (2) 0.51396 (2) 0.54923 (2) 0.02140 (5)
N1 0.5897 (3) 0.56893 (13) 0.48474 (18) 0.0236 (6)
N2 0.8934 (3) 0.44789 (13) 0.55087 (18) 0.0237 (6)
N3 0.4931 (3) 0.59799 (13) 0.37156 (18) 0.0244 (6)
N4 1.0026 (3) 0.38656 (13) 0.48812 (18) 0.0241 (6)
C1 0.5772 (4) 0.56054 (15) 0.4084 (2) 0.0228 (7)
C2 0.5088 (4) 0.61244 (15) 0.4987 (2) 0.0247 (7)
C3 0.4854 (4) 0.63775 (18) 0.5677 (3) 0.0324 (9)
H3A 0.526433 0.625558 0.616065 0.039*
C4 0.3999 (5) 0.68122 (18) 0.5620 (3) 0.0364 (10)
H4A 0.383711 0.699948 0.607423 0.044*
C5 0.3358 (5) 0.69872 (19) 0.4909 (3) 0.0387 (10)
H5A 0.275877 0.728408 0.489732 0.046*
C6 0.3578 (5) 0.67387 (17) 0.4230 (3) 0.0334 (9)
H6A 0.314010 0.685579 0.374971 0.040*
C7 0.4471 (4) 0.63077 (15) 0.4278 (2) 0.0259 (8)
C8 0.4633 (4) 0.60656 (16) 0.2885 (2) 0.0267 (8)
H8A 0.543550 0.593917 0.261713 0.032*
H8B 0.453223 0.644667 0.278569 0.032*
C9 0.3321 (4) 0.57888 (17) 0.2554 (2) 0.0288 (8)
H9A 0.250131 0.594283 0.277669 0.035*
H9B 0.337518 0.541345 0.269913 0.035*
C10 0.3127 (4) 0.58365 (19) 0.1674 (2) 0.0322 (9)
H10A 0.318795 0.621078 0.152928 0.039*
H10B 0.389474 0.564727 0.145069 0.039*
C11 0.1732 (5) 0.5616 (2) 0.1334 (3) 0.0397 (11)
H11A 0.096416 0.582704 0.151795 0.048*
H11B 0.163106 0.525180 0.151965 0.048*
C12 0.1598 (6) 0.5616 (2) 0.0453 (3) 0.0506 (13)
H12A 0.070863 0.545423 0.026178 0.076*
H12B 0.237218 0.541619 0.026742 0.076*
H12C 0.162796 0.597783 0.026544 0.076*
C13 0.6514 (4) 0.51672 (15) 0.3791 (2) 0.0225 (7)
C14 0.6451 (4) 0.49851 (16) 0.3031 (2) 0.0250 (7)
H14A 0.583208 0.515082 0.264960 0.030*
C15 0.7270 (4) 0.45675 (16) 0.2818 (2) 0.0237 (7)
C16 0.8152 (4) 0.43160 (15) 0.3391 (2) 0.0246 (7)
H16A 0.871573 0.403114 0.325237 0.029*
C17 0.8217 (4) 0.44771 (15) 0.4163 (2) 0.0221 (7)
C18 0.7395 (4) 0.49037 (14) 0.4355 (2) 0.0215 (7)
C19 0.7261 (4) 0.43807 (17) 0.1985 (2) 0.0275 (8)
C20 0.6176 (5) 0.46742 (19) 0.1444 (2) 0.0337 (9)
H20A 0.636546 0.505170 0.147362 0.050*
H20B 0.523754 0.460497 0.159841 0.050*
H20C 0.623314 0.455319 0.091394 0.050*
C21 0.6910 (6) 0.37930 (19) 0.1935 (3) 0.0427 (11)
H21A 0.604471 0.372690 0.217678 0.064*
H21B 0.767486 0.359149 0.220351 0.064*
H21C 0.678832 0.368573 0.139351 0.064*
C22 0.8719 (5) 0.4479 (2) 0.1713 (3) 0.0402 (11)
H22A 0.894545 0.485269 0.175965 0.060*
H22B 0.872508 0.437028 0.117394 0.060*
H22C 0.941604 0.427499 0.203245 0.060*
C23 0.9077 (4) 0.42570 (14) 0.4821 (2) 0.0223 (7)
C24 0.9865 (4) 0.42250 (15) 0.6039 (2) 0.0232 (7)
C25 1.0173 (4) 0.43169 (16) 0.6829 (2) 0.0263 (8)
H25A 0.972775 0.458794 0.709028 0.032*
C26 1.1166 (4) 0.39891 (17) 0.7210 (2) 0.0302 (8)
H26A 1.141048 0.403739 0.774576 0.036*
C27 1.1814 (4) 0.35895 (17) 0.6821 (2) 0.0304 (8)
H27A 1.247151 0.336915 0.710397 0.036*
C28 1.1528 (4) 0.35036 (16) 0.6033 (2) 0.0281 (8)
H28A 1.198365 0.323620 0.577025 0.034*
C29 1.0539 (4) 0.38315 (15) 0.5655 (2) 0.0236 (7)
C30 1.0625 (4) 0.35688 (16) 0.4263 (2) 0.0277 (8)
H30A 1.160849 0.348098 0.443315 0.033*
H30B 1.062647 0.379541 0.380238 0.033*
C31 0.9845 (5) 0.30670 (16) 0.4042 (2) 0.0308 (9)
H31A 0.886719 0.315002 0.385220 0.037*
H31B 0.982848 0.283726 0.449883 0.037*
C32 1.0563 (6) 0.2783 (2) 0.3413 (3) 0.0481 (13)
H32A 1.157460 0.275633 0.357500 0.058*
H32B 1.045373 0.299530 0.293597 0.058*
C33 0.9982 (7) 0.2230 (3) 0.3236 (4) 0.0668 (18)
H33A 1.057355 0.205345 0.287666 0.080*
H33B 1.003942 0.202324 0.371852 0.080*
C34 0.8516 (8) 0.2232 (3) 0.2892 (4) 0.0698 (18)
H34A 0.826398 0.188126 0.269610 0.105*
H34B 0.841711 0.248498 0.246670 0.105*
H34C 0.789684 0.233200 0.328424 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg 0.03525 (9) 0.03204 (9) 0.03157 (8) −0.00056 (7) 0.00279 (6) −0.00291 (6)
I1 0.03544 (14) 0.03364 (14) 0.03205 (14) 0.00098 (11) 0.00334 (11) −0.00527 (11)
I2 0.04247 (17) 0.02744 (14) 0.0635 (2) 0.00214 (12) 0.00065 (15) 0.00296 (14)
I3 0.04082 (16) 0.04536 (18) 0.04619 (18) −0.00267 (14) −0.00499 (13) −0.01225 (14)
O1P 0.0482 (19) 0.053 (2) 0.0277 (16) 0.0038 (16) 0.0029 (14) 0.0056 (14)
O2P 0.071 (3) 0.094 (3) 0.0289 (18) 0.004 (2) −0.0056 (18) 0.002 (2)
C1P 0.061 (3) 0.049 (3) 0.036 (3) −0.003 (3) −0.003 (2) 0.009 (2)
C2P 0.048 (3) 0.068 (4) 0.038 (3) −0.003 (3) −0.003 (2) 0.013 (3)
C3P 0.079 (5) 0.083 (5) 0.042 (3) 0.013 (4) 0.001 (3) −0.018 (3)
C4P 0.048 (3) 0.072 (4) 0.039 (3) 0.012 (3) 0.007 (2) 0.000 (3)
Te1 0.02258 (11) 0.02243 (11) 0.01920 (10) −0.00065 (9) 0.00201 (8) −0.00145 (9)
N1 0.0245 (15) 0.0244 (16) 0.0216 (15) 0.0020 (13) −0.0003 (12) −0.0026 (12)
N2 0.0256 (15) 0.0259 (16) 0.0197 (14) 0.0010 (13) 0.0020 (12) −0.0012 (12)
N3 0.0244 (15) 0.0264 (16) 0.0221 (15) 0.0016 (13) 0.0010 (12) 0.0024 (12)
N4 0.0247 (15) 0.0232 (15) 0.0243 (15) 0.0022 (12) 0.0012 (12) −0.0006 (12)
C1 0.0221 (17) 0.0243 (18) 0.0223 (17) −0.0017 (14) 0.0034 (13) −0.0005 (14)
C2 0.0232 (17) 0.0243 (18) 0.0264 (18) 0.0011 (14) 0.0017 (14) −0.0004 (14)
C3 0.032 (2) 0.036 (2) 0.030 (2) 0.0043 (18) 0.0048 (16) −0.0031 (17)
C4 0.037 (2) 0.035 (2) 0.039 (2) 0.0091 (19) 0.0088 (19) −0.0087 (19)
C5 0.039 (2) 0.036 (2) 0.041 (2) 0.013 (2) 0.006 (2) −0.002 (2)
C6 0.032 (2) 0.033 (2) 0.036 (2) 0.0047 (18) 0.0031 (17) 0.0045 (18)
C7 0.0255 (18) 0.0245 (18) 0.0281 (19) 0.0016 (15) 0.0039 (15) −0.0010 (15)
C8 0.0297 (19) 0.0264 (19) 0.0241 (18) 0.0024 (16) 0.0034 (15) 0.0070 (15)
C9 0.0267 (19) 0.035 (2) 0.0250 (18) 0.0000 (16) 0.0023 (15) 0.0045 (16)
C10 0.032 (2) 0.042 (2) 0.0234 (18) 0.0032 (18) 0.0037 (16) 0.0030 (17)
C11 0.035 (2) 0.056 (3) 0.027 (2) −0.003 (2) −0.0016 (17) 0.002 (2)
C12 0.053 (3) 0.068 (4) 0.029 (2) 0.000 (3) −0.003 (2) 0.001 (2)
C13 0.0205 (16) 0.0227 (17) 0.0248 (17) −0.0014 (14) 0.0050 (13) −0.0006 (14)
C14 0.0226 (17) 0.0292 (19) 0.0230 (17) −0.0020 (15) 0.0011 (14) 0.0015 (14)
C15 0.0241 (17) 0.0299 (19) 0.0169 (16) −0.0014 (15) 0.0008 (13) 0.0011 (14)
C16 0.0271 (18) 0.0232 (18) 0.0234 (17) 0.0022 (15) 0.0026 (14) −0.0033 (14)
C17 0.0229 (17) 0.0223 (17) 0.0209 (17) −0.0019 (14) 0.0010 (13) 0.0011 (13)
C18 0.0236 (17) 0.0207 (17) 0.0204 (16) −0.0022 (14) 0.0028 (13) 0.0001 (13)
C19 0.0274 (19) 0.033 (2) 0.0216 (17) 0.0010 (16) 0.0011 (14) −0.0054 (15)
C20 0.032 (2) 0.048 (3) 0.0198 (18) 0.0035 (19) 0.0007 (16) −0.0041 (17)
C21 0.054 (3) 0.040 (3) 0.033 (2) 0.002 (2) −0.002 (2) −0.015 (2)
C22 0.029 (2) 0.065 (3) 0.027 (2) 0.001 (2) 0.0046 (17) −0.005 (2)
C23 0.0254 (17) 0.0214 (17) 0.0200 (16) −0.0004 (14) 0.0016 (13) 0.0020 (13)
C24 0.0229 (17) 0.0234 (18) 0.0229 (17) −0.0023 (14) 0.0000 (13) 0.0031 (14)
C25 0.0239 (18) 0.031 (2) 0.0238 (18) −0.0040 (15) 0.0023 (14) 0.0003 (15)
C26 0.032 (2) 0.036 (2) 0.0222 (18) −0.0047 (17) −0.0014 (15) 0.0053 (16)
C27 0.0265 (19) 0.033 (2) 0.032 (2) 0.0013 (16) 0.0002 (16) 0.0073 (17)
C28 0.0282 (19) 0.0241 (19) 0.032 (2) 0.0035 (16) 0.0010 (16) 0.0039 (16)
C29 0.0225 (17) 0.0242 (18) 0.0241 (17) −0.0018 (14) 0.0029 (14) 0.0044 (14)
C30 0.0308 (19) 0.0263 (19) 0.0266 (18) 0.0050 (16) 0.0062 (15) −0.0016 (15)
C31 0.038 (2) 0.0251 (19) 0.030 (2) −0.0003 (17) 0.0081 (17) −0.0023 (16)
C32 0.051 (3) 0.043 (3) 0.053 (3) −0.007 (2) 0.019 (2) −0.024 (2)
C33 0.069 (4) 0.056 (4) 0.076 (4) 0.008 (3) 0.005 (3) −0.036 (3)
C34 0.080 (5) 0.056 (4) 0.070 (4) −0.014 (3) −0.006 (4) −0.013 (3)

Geometric parameters (Å, º)

Hg—I3 2.6828 (4) C11—H11A 0.9900
Hg—I2 2.6912 (4) C11—H11B 0.9900
Hg—O1P 2.730 (3) C12—H12A 0.9800
Hg—I1 2.7321 (3) C12—H12B 0.9800
O1P—C4P 1.429 (6) C12—H12C 0.9800
O1P—C1P 1.433 (6) C13—C14 1.400 (5)
O2P—C3P 1.424 (8) C13—C18 1.409 (5)
O2P—C2P 1.425 (7) C14—C15 1.394 (6)
C1P—C2P 1.494 (7) C14—H14A 0.9500
C1P—H1PA 0.9900 C15—C16 1.405 (5)
C1P—H1PB 0.9900 C15—C19 1.527 (5)
C2P—H2PA 0.9900 C16—C17 1.404 (5)
C2P—H2PB 0.9900 C16—H16A 0.9500
C3P—C4P 1.504 (8) C17—C18 1.402 (5)
C3P—H3PA 0.9900 C17—C23 1.464 (5)
C3P—H3PB 0.9900 C19—C20 1.536 (6)
C4P—H4PA 0.9900 C19—C21 1.536 (6)
C4P—H4PB 0.9900 C19—C22 1.540 (6)
Te1—C18 2.071 (4) C20—H20A 0.9800
Te1—N2 2.232 (3) C20—H20B 0.9800
Te1—N1 2.244 (3) C20—H20C 0.9800
N1—C1 1.343 (5) C21—H21A 0.9800
N1—C2 1.389 (5) C21—H21B 0.9800
N2—C23 1.344 (5) C21—H21C 0.9800
N2—C24 1.387 (5) C22—H22A 0.9800
N3—C1 1.372 (5) C22—H22B 0.9800
N3—C7 1.391 (5) C22—H22C 0.9800
N3—C8 1.467 (5) C24—C29 1.396 (5)
N4—C23 1.349 (5) C24—C25 1.403 (5)
N4—C29 1.397 (5) C25—C26 1.391 (6)
N4—C30 1.475 (5) C25—H25A 0.9500
C1—C13 1.443 (5) C26—C27 1.400 (6)
C2—C3 1.401 (6) C26—H26A 0.9500
C2—C7 1.402 (5) C27—C28 1.394 (6)
C3—C4 1.378 (6) C27—H27A 0.9500
C3—H3A 0.9500 C28—C29 1.386 (5)
C4—C5 1.406 (7) C28—H28A 0.9500
C4—H4A 0.9500 C30—C31 1.515 (6)
C5—C6 1.376 (6) C30—H30A 0.9900
C5—H5A 0.9500 C30—H30B 0.9900
C6—C7 1.392 (6) C31—C32 1.529 (6)
C6—H6A 0.9500 C31—H31A 0.9900
C8—C9 1.513 (6) C31—H31B 0.9900
C8—H8A 0.9900 C32—C33 1.538 (8)
C8—H8B 0.9900 C32—H32A 0.9900
C9—C10 1.534 (5) C32—H32B 0.9900
C9—H9A 0.9900 C33—C34 1.481 (9)
C9—H9B 0.9900 C33—H33A 0.9900
C10—C11 1.524 (6) C33—H33B 0.9900
C10—H10A 0.9900 C34—H34A 0.9800
C10—H10B 0.9900 C34—H34B 0.9800
C11—C12 1.529 (6) C34—H34C 0.9800
I3—Hg—I2 125.097 (12) C11—C12—H12C 109.5
I3—Hg—O1P 95.08 (7) H12A—C12—H12C 109.5
I2—Hg—O1P 96.76 (7) H12B—C12—H12C 109.5
I3—Hg—I1 120.825 (12) C14—C13—C18 118.3 (3)
I2—Hg—I1 112.406 (11) C14—C13—C1 127.6 (4)
O1P—Hg—I1 90.76 (8) C18—C13—C1 114.0 (3)
C4P—O1P—C1P 110.1 (4) C15—C14—C13 121.8 (4)
C4P—O1P—Hg 127.3 (3) C15—C14—H14A 119.1
C1P—O1P—Hg 117.4 (3) C13—C14—H14A 119.1
C3P—O2P—C2P 108.7 (4) C14—C15—C16 118.6 (3)
O1P—C1P—C2P 110.7 (5) C14—C15—C19 122.4 (3)
O1P—C1P—H1PA 109.5 C16—C15—C19 119.0 (3)
C2P—C1P—H1PA 109.5 C17—C16—C15 121.3 (4)
O1P—C1P—H1PB 109.5 C17—C16—H16A 119.3
C2P—C1P—H1PB 109.5 C15—C16—H16A 119.3
H1PA—C1P—H1PB 108.1 C18—C17—C16 118.6 (3)
O2P—C2P—C1P 110.9 (5) C18—C17—C23 113.6 (3)
O2P—C2P—H2PA 109.5 C16—C17—C23 127.8 (3)
C1P—C2P—H2PA 109.5 C17—C18—C13 121.3 (3)
O2P—C2P—H2PB 109.5 C17—C18—Te1 119.9 (3)
C1P—C2P—H2PB 109.5 C13—C18—Te1 118.7 (3)
H2PA—C2P—H2PB 108.1 C15—C19—C20 112.2 (3)
O2P—C3P—C4P 110.4 (5) C15—C19—C21 109.9 (3)
O2P—C3P—H3PA 109.6 C20—C19—C21 107.9 (4)
C4P—C3P—H3PA 109.6 C15—C19—C22 108.3 (3)
O2P—C3P—H3PB 109.6 C20—C19—C22 108.5 (4)
C4P—C3P—H3PB 109.6 C21—C19—C22 110.0 (4)
H3PA—C3P—H3PB 108.1 C19—C20—H20A 109.5
O1P—C4P—C3P 110.8 (5) C19—C20—H20B 109.5
O1P—C4P—H4PA 109.5 H20A—C20—H20B 109.5
C3P—C4P—H4PA 109.5 C19—C20—H20C 109.5
O1P—C4P—H4PB 109.5 H20A—C20—H20C 109.5
C3P—C4P—H4PB 109.5 H20B—C20—H20C 109.5
H4PA—C4P—H4PB 108.1 C19—C21—H21A 109.5
C18—Te1—N2 74.93 (13) C19—C21—H21B 109.5
C18—Te1—N1 75.77 (13) H21A—C21—H21B 109.5
N2—Te1—N1 150.68 (11) C19—C21—H21C 109.5
C1—N1—C2 107.4 (3) H21A—C21—H21C 109.5
C1—N1—Te1 113.2 (2) H21B—C21—H21C 109.5
C2—N1—Te1 139.2 (3) C19—C22—H22A 109.5
C23—N2—C24 106.6 (3) C19—C22—H22B 109.5
C23—N2—Te1 115.2 (2) H22A—C22—H22B 109.5
C24—N2—Te1 138.1 (3) C19—C22—H22C 109.5
C1—N3—C7 107.4 (3) H22A—C22—H22C 109.5
C1—N3—C8 128.3 (3) H22B—C22—H22C 109.5
C7—N3—C8 124.1 (3) N2—C23—N4 111.4 (3)
C23—N4—C29 107.4 (3) N2—C23—C17 116.2 (3)
C23—N4—C30 128.9 (3) N4—C23—C17 132.4 (3)
C29—N4—C30 123.1 (3) N2—C24—C29 108.4 (3)
N1—C1—N3 110.5 (3) N2—C24—C25 130.0 (4)
N1—C1—C13 118.1 (3) C29—C24—C25 121.6 (4)
N3—C1—C13 131.5 (3) C26—C25—C24 116.3 (4)
N1—C2—C3 130.9 (4) C26—C25—H25A 121.8
N1—C2—C7 108.1 (3) C24—C25—H25A 121.8
C3—C2—C7 121.0 (4) C25—C26—C27 121.4 (4)
C4—C3—C2 116.6 (4) C25—C26—H26A 119.3
C4—C3—H3A 121.7 C27—C26—H26A 119.3
C2—C3—H3A 121.7 C28—C27—C26 122.4 (4)
C3—C4—C5 122.1 (4) C28—C27—H27A 118.8
C3—C4—H4A 119.0 C26—C27—H27A 118.8
C5—C4—H4A 119.0 C29—C28—C27 116.1 (4)
C6—C5—C4 121.6 (4) C29—C28—H28A 122.0
C6—C5—H5A 119.2 C27—C28—H28A 122.0
C4—C5—H5A 119.2 C28—C29—C24 122.2 (4)
C5—C6—C7 116.9 (4) C28—C29—N4 131.6 (4)
C5—C6—H6A 121.6 C24—C29—N4 106.2 (3)
C7—C6—H6A 121.6 N4—C30—C31 113.8 (3)
N3—C7—C6 131.6 (4) N4—C30—H30A 108.8
N3—C7—C2 106.6 (3) C31—C30—H30A 108.8
C6—C7—C2 121.8 (4) N4—C30—H30B 108.8
N3—C8—C9 112.9 (3) C31—C30—H30B 108.8
N3—C8—H8A 109.0 H30A—C30—H30B 107.7
C9—C8—H8A 109.0 C30—C31—C32 109.7 (4)
N3—C8—H8B 109.0 C30—C31—H31A 109.7
C9—C8—H8B 109.0 C32—C31—H31A 109.7
H8A—C8—H8B 107.8 C30—C31—H31B 109.7
C8—C9—C10 111.5 (3) C32—C31—H31B 109.7
C8—C9—H9A 109.3 H31A—C31—H31B 108.2
C10—C9—H9A 109.3 C31—C32—C33 113.6 (5)
C8—C9—H9B 109.3 C31—C32—H32A 108.9
C10—C9—H9B 109.3 C33—C32—H32A 108.9
H9A—C9—H9B 108.0 C31—C32—H32B 108.9
C11—C10—C9 112.6 (4) C33—C32—H32B 108.9
C11—C10—H10A 109.1 H32A—C32—H32B 107.7
C9—C10—H10A 109.1 C34—C33—C32 113.1 (6)
C11—C10—H10B 109.1 C34—C33—H33A 109.0
C9—C10—H10B 109.1 C32—C33—H33A 109.0
H10A—C10—H10B 107.8 C34—C33—H33B 109.0
C10—C11—C12 112.5 (4) C32—C33—H33B 109.0
C10—C11—H11A 109.1 H33A—C33—H33B 107.8
C12—C11—H11A 109.1 C33—C34—H34A 109.5
C10—C11—H11B 109.1 C33—C34—H34B 109.5
C12—C11—H11B 109.1 H34A—C34—H34B 109.5
H11A—C11—H11B 107.8 C33—C34—H34C 109.5
C11—C12—H12A 109.5 H34A—C34—H34C 109.5
C11—C12—H12B 109.5 H34B—C34—H34C 109.5
H12A—C12—H12B 109.5
C4P—O1P—C1P—C2P −55.9 (6) C15—C16—C17—C23 −179.9 (4)
Hg—O1P—C1P—C2P 100.4 (4) C16—C17—C18—C13 0.3 (5)
C3P—O2P—C2P—C1P −59.8 (6) C23—C17—C18—C13 179.3 (3)
O1P—C1P—C2P—O2P 58.5 (6) C16—C17—C18—Te1 178.0 (3)
C2P—O2P—C3P—C4P 59.4 (7) C23—C17—C18—Te1 −3.0 (4)
C1P—O1P—C4P—C3P 55.9 (7) C14—C13—C18—C17 1.5 (5)
Hg—O1P—C4P—C3P −97.5 (5) C1—C13—C18—C17 −178.4 (3)
O2P—C3P—C4P—O1P −58.5 (7) C14—C13—C18—Te1 −176.3 (3)
C2—N1—C1—N3 1.5 (4) C1—C13—C18—Te1 3.9 (4)
Te1—N1—C1—N3 −174.9 (2) C14—C15—C19—C20 −4.6 (5)
C2—N1—C1—C13 −179.5 (3) C16—C15—C19—C20 176.5 (4)
Te1—N1—C1—C13 4.2 (4) C14—C15—C19—C21 −124.6 (4)
C7—N3—C1—N1 −1.8 (4) C16—C15—C19—C21 56.4 (5)
C8—N3—C1—N1 173.3 (4) C14—C15—C19—C22 115.2 (4)
C7—N3—C1—C13 179.3 (4) C16—C15—C19—C22 −63.8 (5)
C8—N3—C1—C13 −5.6 (7) C24—N2—C23—N4 1.5 (4)
C1—N1—C2—C3 −179.8 (4) Te1—N2—C23—N4 179.4 (2)
Te1—N1—C2—C3 −5.0 (7) C24—N2—C23—C17 −178.1 (3)
C1—N1—C2—C7 −0.6 (4) Te1—N2—C23—C17 −0.1 (4)
Te1—N1—C2—C7 174.2 (3) C29—N4—C23—N2 −0.3 (4)
N1—C2—C3—C4 178.9 (4) C30—N4—C23—N2 −171.4 (4)
C7—C2—C3—C4 −0.2 (6) C29—N4—C23—C17 179.2 (4)
C2—C3—C4—C5 1.7 (7) C30—N4—C23—C17 8.1 (7)
C3—C4—C5—C6 −1.4 (8) C18—C17—C23—N2 1.9 (5)
C4—C5—C6—C7 −0.4 (7) C16—C17—C23—N2 −179.1 (4)
C1—N3—C7—C6 −178.2 (4) C18—C17—C23—N4 −177.6 (4)
C8—N3—C7—C6 6.5 (7) C16—C17—C23—N4 1.4 (7)
C1—N3—C7—C2 1.3 (4) C23—N2—C24—C29 −2.1 (4)
C8—N3—C7—C2 −174.0 (3) Te1—N2—C24—C29 −179.3 (3)
C5—C6—C7—N3 −178.7 (4) C23—N2—C24—C25 177.3 (4)
C5—C6—C7—C2 1.9 (6) Te1—N2—C24—C25 0.1 (7)
N1—C2—C7—N3 −0.5 (4) N2—C24—C25—C26 179.7 (4)
C3—C2—C7—N3 178.9 (4) C29—C24—C25—C26 −1.0 (6)
N1—C2—C7—C6 179.1 (4) C24—C25—C26—C27 −0.2 (6)
C3—C2—C7—C6 −1.6 (6) C25—C26—C27—C28 1.4 (6)
C1—N3—C8—C9 93.8 (5) C26—C27—C28—C29 −1.2 (6)
C7—N3—C8—C9 −91.8 (5) C27—C28—C29—C24 0.0 (6)
N3—C8—C9—C10 −173.8 (3) C27—C28—C29—N4 178.4 (4)
C8—C9—C10—C11 −173.5 (4) N2—C24—C29—C28 −179.4 (4)
C9—C10—C11—C12 −174.6 (4) C25—C24—C29—C28 1.2 (6)
N1—C1—C13—C14 174.8 (4) N2—C24—C29—N4 1.9 (4)
N3—C1—C13—C14 −6.4 (7) C25—C24—C29—N4 −177.6 (3)
N1—C1—C13—C18 −5.3 (5) C23—N4—C29—C28 −179.6 (4)
N3—C1—C13—C18 173.5 (4) C30—N4—C29—C28 −7.9 (6)
C18—C13—C14—C15 −2.5 (6) C23—N4—C29—C24 −1.0 (4)
C1—C13—C14—C15 177.3 (4) C30—N4—C29—C24 170.7 (3)
C13—C14—C15—C16 1.8 (6) C23—N4—C30—C31 −92.9 (5)
C13—C14—C15—C19 −177.2 (4) C29—N4—C30—C31 97.3 (4)
C14—C15—C16—C17 0.0 (6) N4—C30—C31—C32 −178.7 (4)
C19—C15—C16—C17 179.0 (4) C30—C31—C32—C33 171.3 (5)
C15—C16—C17—C18 −1.0 (6) C31—C32—C33—C34 66.0 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···I1 0.95 3.16 4.086 (4) 164
C8—H8B···I2i 0.99 3.08 3.997 (4) 155
C9—H9B···I1ii 0.99 3.18 4.095 (4) 155
C30—H30B···I1iii 0.99 3.28 4.111 (4) 142
C31—H31B···I3iv 0.99 3.20 4.185 (4) 172

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+3/2.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grants 1205608 and CHE0619278. Department of Science and Technology, Ministry of Science and Technology grant J. C. Bose National Fellowship to H. B. Singh. Council of Scientific and Industrial Research grant Senior Research Fellowship to V. Rani.

References

  1. Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.
  2. Beleaga, A., Bojan, V. R., Pöllnitz, A., Raţ, C. I. & Silvestru, C. (2011). Dalton Trans. 40, 8830–8838. [DOI] [PubMed]
  3. Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds, in Organoselenium Chemistry, edited by T. Wirth, p. 361. Hoboken: John Wiley & Sons, Inc.
  4. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  5. Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739. [DOI] [PubMed]
  6. Crochet, A. & Fromm, K. M. (2011). Z. Anorg. Allg. Chem. 637, 2089–2092.
  7. Frey, M. & Monier, J.-C. (1971). Acta Cryst. B27, 2487–2490.
  8. Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387. [DOI] [PubMed]
  11. Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998. [DOI] [PubMed]
  12. Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.
  13. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, The Woodlands, Texas, USA.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts, Organoselenium Chemistry, edited by T. Wirth. p. 321. Hoboken: John Wiley & Sons, Inc.
  18. Small, R. W. H. (1982). Acta Cryst. B38, 2886–2887.
  19. Yadav, S., Raju, S., Singh, H. B. & Butcher, R. J. (2016). Dalton Trans. 45, 8458–8467. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018002645/zs2398sup1.cif

e-74-00390-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002645/zs2398Isup2.hkl

e-74-00390-Isup2.hkl (1,001.2KB, hkl)

CCDC reference: 1823822

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES