Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 28;74(Pt 3):400–405. doi: 10.1107/S2056989018002955

Crystal structure and conformational analysis of doxorubicin nitrate

Logesh Mathivathanan a,*, Guang Yang a,b, Fenfei Leng a, Raphael G Raptis a
PMCID: PMC5947812  PMID: 29765732

The conformations of the two free doxorubicin (DoxH+) cations present in the crystal structure of the title compound and (Dox) bound to proteins and DNA are compared.

Keywords: doxorubicin, anthracycline, conformation, inter­calation, crystal structure

Abstract

Crystal structure determination of doxorubicin nitrate, (DoxH)NO3, systematic name (7S,9S)-7-{[(2R,4S,5S,6S)-4-azaniumyl-5-hy­droxy-6-methyl­oxan-2-yl]­oxy}-6,9,11-trihy­droxy-9-(2-hy­droxy­acet­yl)-4-meth­oxy-8,10-di­hydro-7H-tetra­cen-5,12-dione nitrate, shows two formula units present in the asymmetric unit. In the crystal lattice, hydrogen-bonded pairs of (DoxH+) cations and segregation of the aglycone and sugar moieties are observed. Inspection of mol­ecular overlays reveals that the conformation of (DoxH)NO3 resembles that of DNA-inter­calated, but not of protein-docked (DoxH)+. The structure was refined as a two-component twin.

Chemical context  

Since its discovery and isolation by genetic mutation of Streptomyces peucetius in 1969 (Arcamone et al., 1969), the anthracycline anti­biotic doxorubicin [(Dox); trade name adriamycin] has become one of the most potent and widely used drugs in cancer chemotherapy (Denel-Bobrowska & Marczak, 2017; Cagel et al., 2017; Cappetta et al., 2018). Extensive studies of the anti­cancer activities of doxorubicin (Weiss, 1992; Shafei et al., 2017) have led to FDA approval for the treatment of cancer forms, such as breast (Shafei et al., 2017), ovarian (Duggan & Keating, 2011) and small-cell lung cancer (López-González et al., 2013). The anti­cancer action of doxorubicin is a consequence of its inter­calation into base pairs of double-stranded DNA and subsequent inhibition of human DNA topoisomerase II (Arcamone, 1981; Liu, 1989; Chaires, 1998; Yang & Wang, 1999; Jung & Reszka, 2001). Although a few crystal structures of doxorubicin bound to DNA, enzymes and proteins have been reported, to the best of our knowledge, there is no crystal structure determination of doxorubicin itself in the literature. A Cambridge Structural Database (CSD version 5.38; Groom et al., 2016) search for the doxorubicin skeleton structure gave only two hits for hydro­chloride salts of N- and O-substituted variants [CSD entries ADRMVL (Eckle & Stezowski, 1980) and BUJZIP (Eckle & Stezowski, 1983)]. Even for daunorubicin (also known as daunomycin), a closely related anthracycline anti­biotic, only the crystal structures of its hydro­chloride solvates have been reported (Neidle & Taylor, 1977; Courseille et al., 1979). In the absence of a high-resolution crystal structure, researchers have so far relied on computational and solution studies to ascertain the preferred conformational geometry of (Dox) (Zhu et al., 2010; Agrawal et al., 2009; Barthwal et al., 2008).graphic file with name e-74-00400-scheme1.jpg

In order to probe and improve the activity of (Dox), several derivatives have been studied (Post et al., 2005). Metal complexation to doxorubicin is known to alter its pharmaceutical activity and several Fe, Mn, Pt and Sn derivatives of the anthracycline have been studied with regard to their anti­cancer activities (Ming, 2003). (DoxH)+-functionalized iron oxide nanoparticles have been studied as cancer thera­nostics (Yu et al., 2008). With a similar objective, we have attempted to coordinate Ag+ to (Dox). However, mixing stoichiometric amounts of (DoxH)Cl and AgNO3 in the presence of Et3N yielded only the nitrate derivative of (Dox) as (DoxH)NO3 in crystalline form. In this article, we report the 0.80 Å resolution crystal structure determination of doxorubicin nitrate and analyze and compare conformational details.

Structural commentary  

The title compound crystallizes in the chiral monoclinic P21 space group with two protonated doxorubicin cations (DoxH+) and two nitrate anions in the asymmetric unit. The (DoxH)+ cations consist of an aglycone, containing three approximately planar fused rings (the root-mean-square deviations of the six rings in the asymmetric unit are between 0.009 and 0.027 Å, BD; the atom-numbering scheme and ring labels are shown in the scheme), and a sugar moiety in a chair conformation attached to ring A. Two nitrate ions hold pairs of cations with their fused rings at an approximately right angle to each other [86.4 (4)° between C1–C20 and N62(O64–O66)]. The two cations present in the asymmetric unit are rather similar, exhibiting insignificant differences (Fig. 1).

Figure 1.

Figure 1

Mol­ecular structure of (DoxH)+ showing the atom-labeling scheme. Only one of the mol­ecules present in the asymmetric unit is shown, with displacement ellipsoids drawn at the 40% probability level. H atoms are not presented for clarity. Inset: Mol­ecular overlay of the two crystallographically independent (DoxH)+ moieties present in the asymmetric unit. The molecular overlay was performed using the function available within the Discovery Studio Visualizer Suite. The target chosen was one of the (Dox) units from the crystal structure, with the H atoms ignored.

In 2010, Zhu and co-workers published a detailed conformational analysis of anthracycline anti­biotics, including doxorubicin, based on previously published (Dox)–protein and (Dox)–DNA complexes as well as DFT calculations (Zhu et al., 2010). The analysis identified three important doxorubicin conformational domains: (1) the aromatic ring system, (2) the functional group at C9 and (3) at C7 relating to the aminal linkage:

(1) The aromatic anthracycline ring system does not vary significantly in any of the DNA-bound (Dox) structures and in the structure in this study. A somewhat more pronounced variation is encountered in protein-bound-(Dox), such as the one in 4dx7 or 4mra (vide infra). Based on the B3LYP level of theory, Zhu et al. have proposed four types of stable conformational isomers, with type I tautomer – forming two hydrogen bonds between C5—O and C6—OH and between C12—O and C11—OH – being the preferred one. The crystal structure in the present report confirms this prediction.

(2) The C8 carbon can either be above or below the anthracycline planes; in this structure, C8 is above the plane and the C19—C20—C7—C8 torsion angles are 16.6 (6)° and 17.5 (7)° (Table 1). This is in the expected range for an inter­calating (Dox), but significantly deviates from that found in a protein-bound (Dox). The conformation at C9 is similar to that at C8, as C9 is almost coplanar the anthracycline plane [C20—C19—C10—C9 torsion angles are 18.9 (6) and 19.2 (6)°]. More dramatic variations between the conformations of C8 and C9 are observed in the protein-bound (Dox) (5mra), where their torsion angles are 47.75 and −49.70°, respectively. According to a study based on resonant mol­ecular dynamic calculations and NMR experiments, the conformation with a C7—O7—C1*—C2* torsion angle of 142–143° was found to be biologically relevant (Barthwal et al., 2008; Agrawal et al., 2009). However, this seems to be only applicable to DNA-inter­calated (Dox). Protein-bound (Dox) have a wider range of torsion angles, for example, 88.43° in sorcin-bound (Dox), to 150.82° in AcrB-bound (Dox). The (Dox) structure in the present study has torsion angles of 161.6 (5) and 162.6 (4)°.

Table 1. Conformational parameters (°) of one of the (DoxH)+ cations present in the title compound, (DoxH)NO3, and representative examples from the literature.

  (DoxH)NO3 AcrB-(Dox) (4dx7)a Sorcin-(Dox) (5mra)b DNA-(Dox) (1p20)c
C7—O7—C1*—C2* 161.6 (5), 162.6 (4) 150.82 88.43 144.36
C8 conformation C19—C20—C7—C8 16.6 (6), 17.5 (7) −18.93 47.75 8.92
C9 conformation C20—C19—C10—C9 18.9 (6), 19.2 (6) −9.27 −49.70 22.91
O7—N3* 7.947 (1), 8.042 (1) 7.636 6.433 6.481

Notes: (a) Eicher et al. (2012); b Genovese et al. (2017); c Howerton et al. (2003).

(3) The C7-connected daunosamine is the most flexible conformational entity in (Dox). The N3*—O7(C5) distance (2.74–8.50 Å) determines the conformational diversity. In the present structure, the corresponding distances are 7.947 (1) and 8.042 (2) Å, which are on the longer end of the spectrum. The presence of the nitrate ions between the two (Dox) fragments of the asymmetric unit influences this distance greatly.

Supra­molecular features  

The ammonium group forms hydrogen bonds with nitrate counter-ions with N⋯O distances of 2.836 (8), 2.876 (9) and 2.865 (8) Å (Table 2). The crystal structure is further stabilized by an extensive network of inter- and intra­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 2), in addition to two inter­molecular π–π inter­actions between the C and D rings of the aglycone moiety [centroid-to-centroid distances: 3.526 (3) and 3.694 (4) Å, Figs. 2 and 3] and a C—H⋯π inter­action with Cg2 [Cg2 is the centroid of the C1–C4/C15/C16 ring; C⋯Cg distance 3.556 (7) Å].

Table 2. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C4/C15/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O5 0.82 1.81 2.526 (6) 146
O11—H11⋯O12 0.82 1.80 2.526 (6) 146
O14—H14⋯O65i 0.82 2.07 2.779 (9) 145
N3*—H3*A⋯O13ii 0.89 2.00 2.874 (7) 167
N3*—H3*C⋯O63 0.89 1.99 2.865 (8) 168
O41—H41⋯O42 0.82 1.82 2.537 (6) 146
O44—H44⋯O14iii 0.82 2.08 2.888 (6) 168
O55—H55⋯O4* 0.82 1.93 2.724 (6) 163
N54—H54A⋯O43iv 0.89 2.18 2.890 (7) 136
N54—H54A⋯O44iv 0.89 2.05 2.843 (7) 147
N54—H54B⋯O62 0.89 1.99 2.836 (8) 159
N54—H54C⋯O64 0.89 2.05 2.876 (9) 155
C38—H38BCg2v 0.97 2.64 3.556 (7) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Mol­ecular packing diagram of (DoxH)NO3 viewed parallel to the crystallographic a axis.

Figure 3.

Figure 3

Representation highlighting the π–π inter­actions between C and D rings of the aglycone moieties. Turquoise spheres indicate centroids.

Database survey  

Table 3 lists the published crystal structures of macromolecules with (Dox) as the ligand (DM2 ligand code in PDB; Berman et al., 2000). To analyze the significance of the new (DoxH)NO3 crystal structure, structural comparisons were made by performing mol­ecular overlays (Dassault Systèmes BIOVIA, 2017) of the current structure with published (Dox)-bound protein/DNA structures, which resulted in the following observations: (1) The most important functional groups are, understandably, the amino group of the daunosamine moiety and the hydroxyl group of the glycolic site; (2) (Dox) binds in the DNA minor groove and (3) while the crystal structure reported here is by and large quite similar to the one of (Dox) bound in DNA, significant conformational differences are prominent in comparison to protein-bound (Dox), mainly because of differences in hydrogen-bond donors present in proteins.

Table 3. Selected RCSB-PDB entries with (Dox) (DM2) as the ligand.

PDB accession (Reference) Macromolecule(s) Resolution (Å)
5MRA (Genovese et al., 2017) Sorcin (protein) 3.74
4ZVM (Leung & Shilton, 2015) Ribsyldi­hydro­nicotinamide de­hydrogenase 1.97
4DX7 (Eicher et al., 2012) Acriflavine resistance protein B (protein) DARPIN (protein) 2.25
2DR6 (Murakami et al., 2006) AcrB (protein) 3.3
1P20 (Howerton et al., 2003) DNA 1.34
1I1E (Eswaramoorthy et al., 2001) Botulinium Neurotoxin Type B (protein) 2.5
151D (Lipscomb et al., 1994) DNA 1.4
1DA9 (Leonard et al., 1993) DNA 1.7
1D12 (Frederick et al., 1990) DNA 1.7

Binding of (Dox) to sorcin, a calcium-binding protein that causes multidrug resistance (MDR) in human tumors, impairs cell death. Sorcin is overexpressed in human tumors and MDR cancers. Two sites, designated as pocket 1 and pocket 2, were found to bind (Dox), which was modeled satisfactorily at pocket 1, but not at pocket 2. The mol­ecular overlay in Fig. 4 a shows the significant differences in the conformation: meth­oxy and the glycolic units are significantly rotated from their native state. On the contrary, DNA-bound (inter­calated) (Dox) and (Dox) in this study do not differ significantly in their conformations, as shown in (Dox)-1p20 in Fig. 4 below.

Figure 4.

Figure 4

Representative mol­ecular overlays of doxorubicin from this study (purple) and the ones from the literature.

In another study, three mol­ecules of (Dox) were found to bind the AcrB protein (PDB accession 4dx7; Eicher et al., 2012). Although the conformational differences are not as stark as they were in sorcin, the rotation now being about the bond between glycol-O carbon and the A ring [(Dox)-4dx7 in Fig. 5]. In the neurotoxin BoNT/B-(Dox) complex, O13 and O14 of the aglycone inter­act with the toxin and is stacked between Trp1261 and His1240 (Eswaramoorthy et al., 2001). All the O and H atoms of the structure are hydrogen-bonded with various amino acid residues of the neurotoxin. The conformational changes in this complex are minimal, similar to DNA-bound (Dox).

Synthesis and crystallization  

By mixing an ethano­lic solution of doxorubicin hydro­chloride (3 mg, 0.005 mmol), abbreviated as (DoxH)Cl, Et3N and an MeCN solution of AgNO3 (1.7 mg, 0.01 mmol), an orange solution was obtained. This was allowed to evaporate to near dryness to afford an orange powder. The orange powder was then dissolved in EtOH. After filtration, the filtrate was layered with Et2O. Red sheet-like crystals of (DoxH)NO3 were obtained in two weeks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined using a riding model: O—H = 0.82, N—H = 0.89 and C—H = 0.93–0.98 Å with U iso(H) = 1.2 or 1.5U eq(parent atom). The structure was refined as a two-component twin (matrix to transform one domain into the other: (Inline graphic 0 0 0 Inline graphic 0 1 0 1); BASF = 0.3072). Atoms marked with a star correspond to the pyran­ose ring, following a numbering convention previously described for (Dox) (Eswaramoorthy et al., 2001).

Table 4. Experimental details.

Crystal data
Chemical formula C27H30NO11·NO3
M r 606.53
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 8.3169 (12), 34.280 (5), 10.1010 (14)
β (°) 114.293 (4)
V3) 2624.8 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.24 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.685, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 33597, 10764, 7299
R int 0.049
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.093, 1.01
No. of reflections 10764
No. of parameters 792
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.18
Absolute structure Flack x determined using 2632 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.3 (4)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015b ), SHELXL (Sheldrick, 2015a ), OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Palmer, 2017).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018002955/wm5435sup1.cif

e-74-00400-sup1.cif (1,006.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002955/wm5435Isup2.hkl

e-74-00400-Isup2.hkl (853.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002955/wm5435Isup3.cdx

CCDC reference: 1815074

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Elumalai Pavadai for helpful technical inputs on mol­ecular overlays.

supplementary crystallographic information

Crystal data

C27H30NO11+·NO3 F(000) = 1272
Mr = 606.53 Dx = 1.535 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.3169 (12) Å Cell parameters from 9978 reflections
b = 34.280 (5) Å θ = 2.9–26.4°
c = 10.1010 (14) Å µ = 0.13 mm1
β = 114.293 (4)° T = 298 K
V = 2624.8 (6) Å3 Sheet, red
Z = 4 0.24 × 0.10 × 0.05 mm

Data collection

Bruker D8 Quest CMOS diffractometer 7299 reflections with I > 2σ(I)
Detector resolution: 10.42 pixels mm-1 Rint = 0.049
φ and ω scans θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −10→10
Tmin = 0.685, Tmax = 0.745 k = −42→42
33597 measured reflections l = −12→12
10764 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.24 e Å3
10764 reflections Δρmin = −0.18 e Å3
792 parameters Absolute structure: Flack x determined using 2632 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraint Absolute structure parameter: −0.3 (4)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 −0.0502 (7) 0.18514 (13) 0.0931 (5) 0.0585 (13)
O4* 0.6155 (6) 0.48108 (13) 0.5178 (5) 0.0481 (11)
H4* 0.645686 0.465763 0.469977 0.072*
O5 0.1037 (6) 0.24134 (12) 0.2718 (5) 0.0513 (12)
O5* 0.5027 (5) 0.42141 (11) 0.6516 (4) 0.0373 (10)
O6 0.2581 (5) 0.29480 (12) 0.4514 (4) 0.0385 (10)
H6 0.249029 0.277163 0.393904 0.058*
O7 0.2617 (5) 0.38118 (10) 0.5142 (4) 0.0305 (9)
O9 0.0248 (6) 0.42485 (12) 0.6025 (4) 0.0404 (10)
H9 0.008204 0.413375 0.526779 0.061*
O11 −0.3440 (5) 0.31738 (12) 0.5332 (5) 0.0456 (12)
H11 −0.425673 0.303697 0.479458 0.068*
O12 −0.4933 (6) 0.26575 (13) 0.3438 (5) 0.0518 (12)
O13 0.1964 (6) 0.41696 (14) 0.9652 (5) 0.0592 (13)
O14 −0.0341 (8) 0.47530 (13) 0.9372 (5) 0.0622 (13)
H14 −0.003156 0.463169 1.013720 0.093*
N3* 0.3633 (7) 0.46242 (16) 0.2253 (6) 0.0500 (14)
H3*A 0.297507 0.447837 0.149414 0.060*
H3*B 0.475149 0.461670 0.236527 0.060*
H3*C 0.324774 0.486934 0.210406 0.060*
C1 −0.5146 (9) 0.21495 (18) 0.1278 (7) 0.0444 (17)
H1 −0.618929 0.221160 0.136119 0.053*
C1* 0.4370 (7) 0.39312 (17) 0.5417 (7) 0.0370 (15)
H1* 0.513936 0.370188 0.572263 0.044*
C2 −0.5114 (10) 0.18808 (19) 0.0281 (7) 0.0497 (18)
H2 −0.617255 0.176785 −0.034084 0.060*
C2* 0.4371 (9) 0.40795 (16) 0.4007 (7) 0.0420 (16)
H2*A 0.557785 0.409799 0.410350 0.050*
H2*B 0.375553 0.389406 0.323876 0.050*
C3 −0.3624 (10) 0.17727 (19) 0.0160 (7) 0.0468 (18)
H3 −0.367212 0.158116 −0.050736 0.056*
C3* 0.3507 (8) 0.44697 (18) 0.3592 (6) 0.0374 (15)
H3* 0.225666 0.444100 0.339457 0.045*
C4 −0.2009 (9) 0.19443 (17) 0.1022 (7) 0.0403 (16)
C4* 0.4339 (8) 0.47586 (18) 0.4843 (6) 0.0384 (15)
H4*A 0.372292 0.500959 0.459076 0.046*
C5 −0.0353 (8) 0.24605 (16) 0.2879 (6) 0.0321 (14)
C5* 0.4159 (8) 0.45854 (16) 0.6152 (6) 0.0353 (14)
H5* 0.290226 0.454630 0.591093 0.042*
C6 0.1027 (7) 0.29952 (16) 0.4623 (6) 0.0286 (13)
C6* 0.4922 (10) 0.48356 (18) 0.7488 (7) 0.0515 (18)
H6*A 0.464805 0.472349 0.824116 0.077*
H6*B 0.442708 0.509284 0.726627 0.077*
H6*C 0.617912 0.485033 0.780942 0.077*
C7 0.2549 (7) 0.35565 (15) 0.6252 (6) 0.0283 (13)
H7 0.360579 0.339180 0.661049 0.034*
C8 0.2488 (7) 0.37850 (16) 0.7521 (6) 0.0291 (13)
H8A 0.278066 0.361105 0.834527 0.035*
H8B 0.337843 0.398804 0.779461 0.035*
C9 0.0706 (7) 0.39708 (16) 0.7192 (6) 0.0307 (14)
C10 −0.0675 (8) 0.36543 (16) 0.6807 (7) 0.0358 (15)
H10A −0.056823 0.352417 0.769223 0.043*
H10B −0.183339 0.377406 0.637884 0.043*
C11 −0.2010 (8) 0.31119 (17) 0.5054 (6) 0.0315 (14)
C12 −0.3558 (8) 0.26088 (16) 0.3247 (6) 0.0343 (14)
C13 0.0784 (8) 0.42099 (16) 0.8475 (7) 0.0328 (14)
C14 −0.0640 (10) 0.4493 (2) 0.8234 (7) 0.061 (2)
H14A −0.082796 0.464209 0.736602 0.074*
H14B −0.171787 0.435043 0.805093 0.074*
C15 −0.3541 (8) 0.23265 (16) 0.2165 (7) 0.0335 (14)
C16 −0.1969 (8) 0.22379 (16) 0.2027 (6) 0.0325 (14)
C17 −0.1987 (7) 0.28312 (16) 0.4090 (6) 0.0290 (13)
C18 −0.0431 (7) 0.27627 (15) 0.3858 (6) 0.0277 (12)
C19 −0.0547 (7) 0.33577 (15) 0.5783 (6) 0.0288 (13)
C20 0.0949 (7) 0.32995 (16) 0.5542 (6) 0.0264 (12)
C21 −0.0478 (11) 0.1538 (2) 0.0032 (9) 0.076 (3)
H21A −0.133917 0.158353 −0.093937 0.115*
H21B −0.075012 0.130013 0.039518 0.115*
H21C 0.067198 0.151890 0.002926 0.115*
O34 0.9753 (7) 0.82204 (16) −0.0230 (6) 0.0754 (16)
O35 1.0122 (6) 0.76876 (14) 0.1649 (5) 0.0599 (14)
O36 1.0308 (5) 0.71127 (12) 0.3215 (5) 0.0456 (12)
H36 0.989301 0.689262 0.313851 0.068*
O37 1.1071 (5) 0.62664 (11) 0.3901 (4) 0.0343 (10)
O39 1.4642 (7) 0.58445 (12) 0.5127 (5) 0.0506 (12)
H39 1.386575 0.591626 0.435418 0.076*
O41 1.7277 (5) 0.69683 (12) 0.4310 (5) 0.0428 (11)
H41 1.755740 0.711119 0.378857 0.064*
O42 1.6881 (6) 0.75101 (12) 0.2491 (5) 0.0470 (12)
O43 1.6156 (7) 0.60300 (13) 0.8710 (5) 0.0591 (14)
O44 1.8716 (6) 0.55690 (13) 0.8977 (4) 0.0508 (12)
H44 1.895492 0.533742 0.896090 0.076*
O55 0.7047 (6) 0.53757 (13) 0.3706 (5) 0.0498 (11)
H55 0.698298 0.518809 0.418573 0.075*
O56 0.9570 (5) 0.59384 (11) 0.5073 (4) 0.0373 (10)
N54 0.7120 (7) 0.54394 (16) 0.0945 (5) 0.0469 (14)
H54A 0.721658 0.553201 0.015785 0.056*
H54B 0.607796 0.550745 0.092677 0.056*
H54C 0.720612 0.518053 0.095890 0.056*
C31 1.4914 (9) 0.80230 (17) 0.0381 (7) 0.0429 (16)
H31 1.607255 0.797568 0.051785 0.052*
C32 1.3907 (11) 0.8297 (2) −0.0621 (7) 0.0523 (19)
H32 1.440145 0.843813 −0.114745 0.063*
C33 1.2187 (11) 0.83629 (19) −0.0847 (7) 0.0527 (19)
H33 1.151700 0.854418 −0.153945 0.063*
C34 1.1447 (9) 0.81639 (18) −0.0061 (7) 0.0453 (17)
C35 1.1642 (9) 0.76388 (18) 0.1767 (7) 0.0394 (15)
C36 1.2008 (8) 0.70888 (16) 0.3421 (6) 0.0324 (14)
C37 1.2158 (8) 0.65236 (16) 0.5045 (6) 0.0329 (14)
H37 1.138142 0.667903 0.535057 0.040*
C38 1.3426 (8) 0.63079 (18) 0.6346 (6) 0.0361 (14)
H38A 1.281283 0.609083 0.654825 0.043*
H38B 1.381380 0.648111 0.717901 0.043*
C39 1.5042 (8) 0.61522 (16) 0.6169 (6) 0.0341 (14)
C40 1.5997 (8) 0.64825 (18) 0.5799 (7) 0.0387 (15)
H40A 1.668966 0.662410 0.668291 0.046*
H40B 1.680911 0.637217 0.543365 0.046*
C41 1.5543 (8) 0.70137 (16) 0.3987 (6) 0.0312 (14)
C42 1.5295 (9) 0.75381 (16) 0.2251 (7) 0.0344 (15)
C43 1.6279 (8) 0.59617 (17) 0.7599 (7) 0.0345 (14)
C44 1.7663 (9) 0.56963 (18) 0.7555 (7) 0.0424 (16)
H44A 1.712099 0.547390 0.693898 0.051*
H44B 1.838642 0.583201 0.715593 0.051*
C45 1.4174 (8) 0.78187 (17) 0.1183 (6) 0.0345 (14)
C46 1.2408 (9) 0.78777 (18) 0.0958 (6) 0.0381 (15)
C47 1.4527 (8) 0.72972 (16) 0.3014 (6) 0.0316 (14)
C48 1.2731 (8) 0.73373 (15) 0.2749 (6) 0.0291 (13)
C49 1.4795 (8) 0.67671 (15) 0.4689 (6) 0.0301 (14)
C50 1.3049 (8) 0.67947 (15) 0.4398 (6) 0.0308 (14)
C51 0.8621 (12) 0.8447 (3) −0.1417 (9) 0.085 (3)
H51A 0.862363 0.834571 −0.230158 0.128*
H51B 0.902539 0.871270 −0.128992 0.128*
H51C 0.744427 0.843774 −0.146502 0.128*
C52 0.9421 (8) 0.61882 (18) 0.3907 (7) 0.0393 (15)
H52 0.892273 0.643636 0.404134 0.047*
C53 0.8221 (8) 0.60273 (18) 0.2455 (7) 0.0451 (17)
H53A 0.700737 0.605672 0.233108 0.054*
H53B 0.836898 0.617729 0.169811 0.054*
C54 0.8571 (8) 0.56056 (18) 0.2284 (6) 0.0384 (15)
H54 0.968632 0.558537 0.217536 0.046*
C55 0.8725 (8) 0.53706 (18) 0.3605 (6) 0.0367 (15)
H55A 0.905157 0.510103 0.350454 0.044*
C56 1.0138 (8) 0.55541 (16) 0.4903 (6) 0.0341 (14)
H56 1.121379 0.557499 0.473420 0.041*
C57 1.0544 (9) 0.5327 (2) 0.6275 (7) 0.0515 (18)
H57A 1.139700 0.546715 0.708267 0.077*
H57B 1.101245 0.507665 0.619801 0.077*
H57C 0.948384 0.529354 0.642242 0.077*
O61 0.3752 (8) 0.59449 (18) 0.2043 (7) 0.0812 (17)
O62 0.3580 (7) 0.5458 (2) 0.0653 (6) 0.092 (2)
O63 0.2521 (7) 0.54165 (16) 0.2223 (6) 0.0678 (14)
N61 0.3272 (8) 0.5614 (2) 0.1620 (6) 0.0525 (15)
O64 0.6646 (9) 0.4626 (2) 0.1392 (8) 0.102 (2)
O65 0.9171 (9) 0.4433 (3) 0.1708 (8) 0.138 (3)
O66 0.7773 (11) 0.4163 (2) 0.2802 (8) 0.119 (3)
N62 0.7890 (10) 0.4409 (2) 0.1966 (7) 0.0611 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.058 (3) 0.054 (3) 0.070 (3) −0.007 (2) 0.032 (3) −0.031 (3)
O4* 0.046 (3) 0.046 (3) 0.049 (3) −0.020 (2) 0.016 (2) −0.005 (2)
O5 0.046 (3) 0.051 (3) 0.068 (3) −0.007 (2) 0.034 (3) −0.022 (2)
O5* 0.038 (2) 0.032 (2) 0.035 (2) −0.010 (2) 0.0085 (19) −0.005 (2)
O6 0.034 (3) 0.039 (3) 0.046 (3) −0.003 (2) 0.020 (2) −0.013 (2)
O7 0.029 (2) 0.0262 (19) 0.037 (2) −0.0035 (17) 0.0146 (19) 0.0007 (18)
O9 0.050 (3) 0.036 (2) 0.033 (2) 0.004 (2) 0.014 (2) −0.001 (2)
O11 0.034 (3) 0.044 (3) 0.068 (3) −0.010 (2) 0.030 (3) −0.019 (2)
O12 0.035 (3) 0.053 (3) 0.072 (3) −0.012 (2) 0.027 (2) −0.021 (3)
O13 0.061 (3) 0.070 (3) 0.033 (3) 0.010 (3) 0.005 (3) −0.014 (2)
O14 0.083 (4) 0.049 (3) 0.061 (3) 0.000 (3) 0.036 (3) −0.022 (3)
N3* 0.050 (3) 0.054 (3) 0.041 (3) −0.010 (3) 0.013 (3) −0.001 (3)
C1 0.045 (4) 0.038 (4) 0.040 (4) −0.013 (3) 0.008 (3) −0.001 (3)
C1* 0.027 (3) 0.032 (3) 0.056 (4) −0.003 (3) 0.021 (3) 0.002 (3)
C2 0.054 (5) 0.040 (4) 0.045 (4) −0.013 (4) 0.011 (4) −0.007 (3)
C2* 0.053 (4) 0.030 (3) 0.055 (4) −0.009 (3) 0.035 (4) −0.008 (3)
C3 0.064 (5) 0.042 (4) 0.032 (4) −0.010 (4) 0.016 (4) −0.009 (3)
C3* 0.035 (4) 0.046 (4) 0.031 (3) −0.008 (3) 0.013 (3) −0.004 (3)
C4 0.059 (5) 0.026 (3) 0.037 (4) −0.001 (3) 0.022 (4) −0.002 (3)
C4* 0.037 (4) 0.036 (3) 0.036 (4) −0.001 (3) 0.009 (3) −0.005 (3)
C5 0.037 (4) 0.029 (3) 0.033 (3) −0.002 (3) 0.018 (3) −0.001 (3)
C5* 0.036 (4) 0.028 (3) 0.041 (4) −0.011 (3) 0.015 (3) −0.007 (3)
C6 0.027 (3) 0.031 (3) 0.029 (3) 0.000 (3) 0.013 (3) 0.004 (3)
C6* 0.065 (5) 0.039 (4) 0.053 (4) −0.015 (4) 0.026 (4) −0.013 (3)
C7 0.030 (3) 0.021 (3) 0.036 (3) −0.001 (3) 0.016 (3) 0.001 (3)
C8 0.026 (3) 0.029 (3) 0.027 (3) −0.002 (3) 0.005 (3) −0.001 (3)
C9 0.033 (4) 0.030 (3) 0.028 (3) −0.001 (3) 0.011 (3) −0.002 (3)
C10 0.037 (4) 0.030 (3) 0.043 (4) −0.007 (3) 0.020 (3) −0.014 (3)
C11 0.030 (4) 0.029 (3) 0.039 (3) 0.002 (3) 0.017 (3) −0.001 (3)
C12 0.041 (4) 0.024 (3) 0.040 (4) −0.007 (3) 0.018 (3) −0.001 (3)
C13 0.039 (4) 0.023 (3) 0.038 (4) −0.001 (3) 0.017 (3) 0.000 (3)
C14 0.067 (5) 0.066 (5) 0.050 (4) 0.006 (4) 0.022 (4) −0.024 (4)
C15 0.041 (4) 0.023 (3) 0.034 (3) −0.003 (3) 0.013 (3) 0.002 (3)
C16 0.047 (4) 0.020 (3) 0.032 (3) −0.002 (3) 0.017 (3) 0.000 (3)
C17 0.029 (3) 0.022 (3) 0.035 (3) −0.006 (3) 0.012 (3) −0.002 (3)
C18 0.029 (3) 0.022 (3) 0.032 (3) −0.004 (3) 0.013 (3) −0.002 (3)
C19 0.030 (3) 0.017 (3) 0.039 (3) −0.007 (3) 0.014 (3) −0.005 (3)
C20 0.025 (3) 0.022 (3) 0.030 (3) −0.006 (2) 0.009 (3) −0.001 (3)
C21 0.077 (6) 0.079 (6) 0.070 (5) 0.009 (5) 0.025 (5) −0.035 (5)
O34 0.073 (4) 0.090 (4) 0.065 (3) 0.034 (3) 0.030 (3) 0.042 (3)
O35 0.044 (3) 0.065 (3) 0.072 (3) 0.020 (3) 0.025 (3) 0.034 (3)
O36 0.032 (3) 0.041 (3) 0.068 (3) 0.002 (2) 0.024 (2) 0.012 (3)
O37 0.033 (2) 0.029 (2) 0.042 (2) −0.0055 (19) 0.017 (2) 0.002 (2)
O39 0.067 (3) 0.041 (2) 0.035 (2) 0.015 (2) 0.012 (2) −0.002 (2)
O41 0.033 (3) 0.045 (3) 0.055 (3) 0.006 (2) 0.023 (2) 0.016 (2)
O42 0.040 (3) 0.053 (3) 0.051 (3) −0.006 (2) 0.021 (2) 0.009 (2)
O43 0.081 (4) 0.063 (3) 0.037 (3) 0.029 (3) 0.028 (3) 0.010 (2)
O44 0.057 (3) 0.051 (3) 0.040 (3) 0.012 (2) 0.017 (2) 0.012 (2)
O55 0.043 (3) 0.057 (3) 0.051 (3) −0.011 (2) 0.022 (2) 0.019 (2)
O56 0.039 (3) 0.034 (2) 0.044 (2) −0.001 (2) 0.022 (2) 0.005 (2)
N54 0.047 (3) 0.053 (3) 0.039 (3) −0.006 (3) 0.016 (3) 0.005 (3)
C31 0.056 (4) 0.030 (3) 0.045 (4) −0.008 (3) 0.024 (4) 0.003 (3)
C32 0.068 (5) 0.046 (4) 0.042 (4) −0.014 (4) 0.022 (4) 0.007 (4)
C33 0.069 (5) 0.037 (4) 0.042 (4) 0.002 (4) 0.012 (4) 0.012 (3)
C34 0.053 (5) 0.035 (4) 0.049 (4) 0.010 (3) 0.022 (4) 0.005 (3)
C35 0.040 (4) 0.034 (4) 0.043 (4) 0.003 (3) 0.016 (3) 0.002 (3)
C36 0.026 (3) 0.029 (3) 0.043 (4) −0.001 (3) 0.016 (3) −0.006 (3)
C37 0.039 (4) 0.028 (3) 0.035 (3) 0.004 (3) 0.019 (3) 0.002 (3)
C38 0.041 (4) 0.041 (4) 0.033 (3) 0.001 (3) 0.023 (3) 0.006 (3)
C39 0.044 (4) 0.028 (3) 0.028 (3) 0.005 (3) 0.013 (3) 0.003 (3)
C40 0.035 (4) 0.047 (4) 0.038 (3) 0.010 (3) 0.018 (3) 0.009 (3)
C41 0.034 (4) 0.024 (3) 0.038 (3) 0.000 (3) 0.017 (3) 0.000 (3)
C42 0.042 (4) 0.028 (3) 0.037 (4) −0.008 (3) 0.019 (3) −0.009 (3)
C43 0.044 (4) 0.028 (3) 0.032 (3) 0.002 (3) 0.016 (3) 0.002 (3)
C44 0.054 (4) 0.036 (3) 0.035 (4) 0.007 (3) 0.016 (3) 0.001 (3)
C45 0.040 (4) 0.032 (3) 0.031 (3) −0.003 (3) 0.014 (3) 0.002 (3)
C46 0.048 (4) 0.035 (4) 0.030 (3) 0.002 (3) 0.015 (3) 0.001 (3)
C47 0.038 (4) 0.024 (3) 0.035 (3) 0.000 (3) 0.016 (3) 0.001 (3)
C48 0.035 (4) 0.018 (3) 0.033 (3) 0.001 (3) 0.013 (3) 0.002 (3)
C49 0.041 (4) 0.019 (3) 0.034 (3) 0.004 (3) 0.019 (3) 0.002 (3)
C50 0.038 (4) 0.019 (3) 0.038 (3) 0.003 (3) 0.017 (3) −0.002 (3)
C51 0.081 (6) 0.109 (7) 0.056 (5) 0.041 (5) 0.019 (5) 0.014 (5)
C52 0.030 (4) 0.036 (3) 0.054 (4) 0.005 (3) 0.020 (3) 0.015 (3)
C53 0.037 (4) 0.042 (4) 0.047 (4) −0.003 (3) 0.008 (3) 0.019 (3)
C54 0.036 (4) 0.044 (4) 0.037 (3) −0.001 (3) 0.016 (3) 0.008 (3)
C55 0.036 (4) 0.034 (3) 0.046 (4) 0.002 (3) 0.022 (3) 0.004 (3)
C56 0.032 (3) 0.035 (3) 0.037 (4) 0.002 (3) 0.016 (3) 0.013 (3)
C57 0.055 (4) 0.051 (4) 0.054 (4) 0.011 (4) 0.028 (4) 0.009 (4)
O61 0.093 (5) 0.055 (4) 0.092 (4) 0.003 (3) 0.034 (4) 0.016 (3)
O62 0.062 (4) 0.158 (6) 0.062 (3) 0.001 (4) 0.032 (3) −0.026 (4)
O63 0.062 (3) 0.072 (3) 0.075 (3) −0.001 (3) 0.034 (3) 0.009 (3)
N61 0.042 (4) 0.065 (4) 0.045 (4) 0.007 (3) 0.012 (3) 0.012 (3)
O64 0.081 (4) 0.079 (4) 0.128 (6) 0.012 (4) 0.025 (4) −0.004 (4)
O65 0.065 (4) 0.254 (10) 0.112 (6) −0.004 (5) 0.053 (4) −0.001 (6)
O66 0.170 (8) 0.114 (6) 0.084 (5) −0.013 (5) 0.062 (5) 0.005 (5)
N62 0.069 (5) 0.064 (4) 0.049 (4) 0.001 (4) 0.023 (4) −0.008 (4)

Geometric parameters (Å, º)

O4—C4 1.332 (8) O36—H36 0.8200
O4—C21 1.411 (8) O36—C36 1.344 (7)
O4*—H4* 0.8200 O37—C37 1.438 (7)
O4*—C4* 1.417 (7) O37—C52 1.400 (7)
O5—C5 1.243 (7) O39—H39 0.8200
O5*—C1* 1.405 (7) O39—C39 1.429 (7)
O5*—C5* 1.435 (7) O41—H41 0.8200
O6—H6 0.8200 O41—C41 1.351 (7)
O6—C6 1.351 (7) O42—C42 1.243 (7)
O7—C1* 1.427 (7) O43—C43 1.190 (7)
O7—C7 1.441 (6) O44—H44 0.8200
O9—H9 0.8200 O44—C44 1.409 (7)
O9—C9 1.439 (7) O55—H55 0.8200
O11—H11 0.8200 O55—C55 1.440 (7)
O11—C11 1.347 (7) O56—C52 1.420 (7)
O12—C12 1.247 (7) O56—C56 1.434 (7)
O13—C13 1.198 (7) N54—H54A 0.8900
O14—H14 0.8200 N54—H54B 0.8900
O14—C14 1.394 (7) N54—H54C 0.8900
N3*—H3*A 0.8900 N54—C54 1.506 (8)
N3*—H3*B 0.8900 C31—H31 0.9300
N3*—H3*C 0.8900 C31—C32 1.382 (9)
N3*—C3* 1.495 (7) C31—C45 1.391 (8)
C1—H1 0.9300 C32—H32 0.9300
C1—C2 1.373 (9) C32—C33 1.372 (10)
C1—C15 1.403 (8) C33—H33 0.9300
C1*—H1* 0.9800 C33—C34 1.370 (10)
C1*—C2* 1.513 (9) C34—C46 1.408 (8)
C2—H2 0.9300 C35—C46 1.474 (8)
C2—C3 1.346 (10) C35—C48 1.461 (8)
C2*—H2*A 0.9700 C36—C48 1.373 (8)
C2*—H2*B 0.9700 C36—C50 1.427 (8)
C2*—C3* 1.494 (8) C37—H37 0.9800
C3—H3 0.9300 C37—C38 1.499 (8)
C3—C4 1.395 (9) C37—C50 1.496 (8)
C3*—H3* 0.9800 C38—H38A 0.9700
C3*—C4* 1.529 (8) C38—H38B 0.9700
C4—C16 1.420 (8) C38—C39 1.524 (8)
C4*—H4*A 0.9800 C39—C40 1.515 (8)
C4*—C5* 1.512 (8) C39—C43 1.533 (8)
C5—C16 1.476 (8) C40—H40A 0.9700
C5—C18 1.452 (8) C40—H40B 0.9700
C5*—H5* 0.9800 C40—C49 1.512 (8)
C5*—C6* 1.501 (8) C41—C47 1.393 (8)
C6—C18 1.390 (8) C41—C49 1.403 (8)
C6—C20 1.416 (8) C42—C45 1.460 (8)
C6*—H6*A 0.9600 C42—C47 1.445 (8)
C6*—H6*B 0.9600 C43—C44 1.482 (8)
C6*—H6*C 0.9600 C44—H44A 0.9700
C7—H7 0.9800 C44—H44B 0.9700
C7—C8 1.521 (7) C45—C46 1.405 (9)
C7—C20 1.508 (7) C47—C48 1.412 (8)
C8—H8A 0.9700 C49—C50 1.361 (8)
C8—H8B 0.9700 C51—H51A 0.9600
C8—C9 1.519 (8) C51—H51B 0.9600
C9—C10 1.510 (8) C51—H51C 0.9600
C9—C13 1.512 (8) C52—H52 0.9800
C10—H10A 0.9700 C52—C53 1.499 (9)
C10—H10B 0.9700 C53—H53A 0.9700
C10—C19 1.485 (8) C53—H53B 0.9700
C11—C17 1.375 (8) C53—C54 1.499 (9)
C11—C19 1.412 (8) C54—H54 0.9800
C12—C15 1.464 (8) C54—C55 1.518 (8)
C12—C17 1.448 (8) C55—H55A 0.9800
C13—C14 1.472 (9) C55—C56 1.493 (8)
C14—H14A 0.9700 C56—H56 0.9800
C14—H14B 0.9700 C56—C57 1.501 (8)
C15—C16 1.404 (8) C57—H57A 0.9600
C17—C18 1.426 (8) C57—H57B 0.9600
C19—C20 1.377 (8) C57—H57C 0.9600
C21—H21A 0.9600 O61—N61 1.221 (7)
C21—H21B 0.9600 O62—N61 1.228 (7)
C21—H21C 0.9600 O63—N61 1.237 (7)
O34—C34 1.361 (8) O64—N62 1.212 (8)
O34—C51 1.414 (9) O65—N62 1.200 (9)
O35—C35 1.231 (7) O66—N62 1.223 (8)
C4—O4—C21 119.3 (5) C39—O39—H39 109.5
C4*—O4*—H4* 109.5 C41—O41—H41 109.5
C1*—O5*—C5* 114.8 (4) C44—O44—H44 109.5
C6—O6—H6 109.5 C55—O55—H55 109.5
C1*—O7—C7 112.8 (4) C52—O56—C56 112.0 (4)
C9—O9—H9 109.5 H54A—N54—H54B 109.5
C11—O11—H11 109.5 H54A—N54—H54C 109.5
C14—O14—H14 109.5 H54B—N54—H54C 109.5
H3*A—N3*—H3*B 109.5 C54—N54—H54A 109.5
H3*A—N3*—H3*C 109.5 C54—N54—H54B 109.5
H3*B—N3*—H3*C 109.5 C54—N54—H54C 109.5
C3*—N3*—H3*A 109.5 C32—C31—H31 120.4
C3*—N3*—H3*B 109.5 C32—C31—C45 119.3 (7)
C3*—N3*—H3*C 109.5 C45—C31—H31 120.4
C2—C1—H1 121.4 C31—C32—H32 119.7
C2—C1—C15 117.2 (7) C33—C32—C31 120.6 (6)
C15—C1—H1 121.4 C33—C32—H32 119.7
O5*—C1*—O7 112.7 (4) C32—C33—H33 119.7
O5*—C1*—H1* 108.3 C34—C33—C32 120.5 (7)
O5*—C1*—C2* 111.2 (5) C34—C33—H33 119.7
O7—C1*—H1* 108.3 O34—C34—C33 123.0 (6)
O7—C1*—C2* 108.0 (5) O34—C34—C46 116.0 (6)
C2*—C1*—H1* 108.3 C33—C34—C46 121.0 (7)
C1—C2—H2 118.4 O35—C35—C46 122.1 (6)
C3—C2—C1 123.2 (7) O35—C35—C48 119.1 (6)
C3—C2—H2 118.4 C48—C35—C46 118.7 (5)
C1*—C2*—H2*A 109.2 O36—C36—C48 122.1 (5)
C1*—C2*—H2*B 109.2 O36—C36—C50 116.8 (5)
H2*A—C2*—H2*B 107.9 C48—C36—C50 121.1 (5)
C3*—C2*—C1* 112.2 (5) O37—C37—H37 108.0
C3*—C2*—H2*A 109.2 O37—C37—C38 112.6 (4)
C3*—C2*—H2*B 109.2 O37—C37—C50 106.9 (4)
C2—C3—H3 119.6 C38—C37—H37 108.0
C2—C3—C4 120.9 (6) C50—C37—H37 108.0
C4—C3—H3 119.6 C50—C37—C38 113.2 (5)
N3*—C3*—H3* 108.3 C37—C38—H38A 108.8
N3*—C3*—C4* 110.0 (5) C37—C38—H38B 108.8
C2*—C3*—N3* 111.5 (5) C37—C38—C39 114.0 (5)
C2*—C3*—H3* 108.3 H38A—C38—H38B 107.7
C2*—C3*—C4* 110.3 (5) C39—C38—H38A 108.8
C4*—C3*—H3* 108.3 C39—C38—H38B 108.8
O4—C4—C3 123.2 (6) O39—C39—C38 113.3 (5)
O4—C4—C16 118.2 (6) O39—C39—C40 110.9 (5)
C3—C4—C16 118.6 (6) O39—C39—C43 104.0 (4)
O4*—C4*—C3* 110.8 (5) C38—C39—C43 108.7 (5)
O4*—C4*—H4*A 110.1 C40—C39—C38 110.2 (5)
O4*—C4*—C5* 108.7 (5) C40—C39—C43 109.5 (5)
C3*—C4*—H4*A 110.1 C39—C40—H40A 108.7
C5*—C4*—C3* 107.1 (5) C39—C40—H40B 108.7
C5*—C4*—H4*A 110.1 H40A—C40—H40B 107.6
O5—C5—C16 122.0 (5) C49—C40—C39 114.3 (5)
O5—C5—C18 119.1 (5) C49—C40—H40A 108.7
C18—C5—C16 118.8 (5) C49—C40—H40B 108.7
O5*—C5*—C4* 110.6 (5) O41—C41—C47 121.9 (5)
O5*—C5*—H5* 108.4 O41—C41—C49 117.4 (5)
O5*—C5*—C6* 107.1 (5) C47—C41—C49 120.7 (5)
C4*—C5*—H5* 108.4 O42—C42—C45 119.9 (5)
C6*—C5*—C4* 113.8 (5) O42—C42—C47 121.2 (6)
C6*—C5*—H5* 108.4 C47—C42—C45 118.8 (5)
O6—C6—C18 122.1 (5) O43—C43—C39 121.3 (5)
O6—C6—C20 116.4 (5) O43—C43—C44 121.2 (6)
C18—C6—C20 121.5 (5) C44—C43—C39 117.5 (5)
C5*—C6*—H6*A 109.5 O44—C44—C43 108.9 (5)
C5*—C6*—H6*B 109.5 O44—C44—H44A 109.9
C5*—C6*—H6*C 109.5 O44—C44—H44B 109.9
H6*A—C6*—H6*B 109.5 C43—C44—H44A 109.9
H6*A—C6*—H6*C 109.5 C43—C44—H44B 109.9
H6*B—C6*—H6*C 109.5 H44A—C44—H44B 108.3
O7—C7—H7 108.7 C31—C45—C42 117.5 (6)
O7—C7—C8 111.6 (4) C31—C45—C46 121.1 (6)
O7—C7—C20 107.1 (4) C46—C45—C42 121.5 (5)
C8—C7—H7 108.7 C34—C46—C35 123.2 (6)
C20—C7—H7 108.7 C45—C46—C34 117.4 (6)
C20—C7—C8 111.9 (5) C45—C46—C35 119.4 (6)
C7—C8—H8A 108.9 C41—C47—C42 120.1 (5)
C7—C8—H8B 108.9 C41—C47—C48 119.3 (5)
H8A—C8—H8B 107.7 C48—C47—C42 120.6 (5)
C9—C8—C7 113.5 (5) C36—C48—C35 120.0 (5)
C9—C8—H8A 108.9 C36—C48—C47 119.4 (5)
C9—C8—H8B 108.9 C47—C48—C35 120.7 (5)
O9—C9—C8 111.2 (5) C41—C49—C40 117.9 (5)
O9—C9—C10 110.3 (5) C50—C49—C40 121.8 (5)
O9—C9—C13 104.3 (4) C50—C49—C41 120.3 (5)
C10—C9—C8 109.0 (4) C36—C50—C37 118.2 (5)
C10—C9—C13 111.7 (5) C49—C50—C36 119.2 (5)
C13—C9—C8 110.2 (5) C49—C50—C37 122.6 (5)
C9—C10—H10A 108.8 O34—C51—H51A 109.5
C9—C10—H10B 108.8 O34—C51—H51B 109.5
H10A—C10—H10B 107.7 O34—C51—H51C 109.5
C19—C10—C9 114.0 (5) H51A—C51—H51B 109.5
C19—C10—H10A 108.8 H51A—C51—H51C 109.5
C19—C10—H10B 108.8 H51B—C51—H51C 109.5
O11—C11—C17 121.9 (5) O37—C52—O56 111.6 (5)
O11—C11—C19 116.3 (5) O37—C52—H52 107.8
C17—C11—C19 121.8 (5) O37—C52—C53 109.0 (5)
O12—C12—C15 119.7 (5) O56—C52—H52 107.8
O12—C12—C17 120.1 (5) O56—C52—C53 112.7 (5)
C17—C12—C15 120.2 (5) C53—C52—H52 107.8
O13—C13—C9 121.1 (5) C52—C53—H53A 109.1
O13—C13—C14 121.0 (6) C52—C53—H53B 109.1
C14—C13—C9 117.9 (5) H53A—C53—H53B 107.8
O14—C14—C13 115.3 (6) C54—C53—C52 112.6 (5)
O14—C14—H14A 108.5 C54—C53—H53A 109.1
O14—C14—H14B 108.5 C54—C53—H53B 109.1
C13—C14—H14A 108.5 N54—C54—H54 108.6
C13—C14—H14B 108.5 N54—C54—C55 109.6 (5)
H14A—C14—H14B 107.5 C53—C54—N54 110.3 (5)
C1—C15—C12 117.6 (6) C53—C54—H54 108.6
C1—C15—C16 121.5 (6) C53—C54—C55 111.1 (5)
C16—C15—C12 120.8 (5) C55—C54—H54 108.6
C4—C16—C5 122.1 (6) O55—C55—C54 108.8 (5)
C15—C16—C4 118.4 (6) O55—C55—H55A 109.7
C15—C16—C5 119.5 (5) O55—C55—C56 111.6 (5)
C11—C17—C12 120.8 (5) C54—C55—H55A 109.7
C11—C17—C18 120.6 (5) C56—C55—C54 107.4 (5)
C18—C17—C12 118.5 (5) C56—C55—H55A 109.7
C6—C18—C5 121.0 (5) O56—C56—C55 108.3 (5)
C6—C18—C17 117.2 (5) O56—C56—H56 108.9
C17—C18—C5 121.8 (5) O56—C56—C57 109.0 (5)
C11—C19—C10 118.6 (5) C55—C56—H56 108.9
C20—C19—C10 123.4 (5) C55—C56—C57 112.9 (5)
C20—C19—C11 117.9 (5) C57—C56—H56 108.9
C6—C20—C7 118.2 (5) C56—C57—H57A 109.5
C19—C20—C6 120.7 (5) C56—C57—H57B 109.5
C19—C20—C7 121.1 (5) C56—C57—H57C 109.5
O4—C21—H21A 109.5 H57A—C57—H57B 109.5
O4—C21—H21B 109.5 H57A—C57—H57C 109.5
O4—C21—H21C 109.5 H57B—C57—H57C 109.5
H21A—C21—H21B 109.5 O61—N61—O62 122.5 (7)
H21A—C21—H21C 109.5 O61—N61—O63 119.6 (7)
H21B—C21—H21C 109.5 O62—N61—O63 117.8 (7)
C34—O34—C51 118.6 (6) O64—N62—O66 117.4 (8)
C36—O36—H36 109.5 O65—N62—O64 120.8 (9)
C52—O37—C37 114.0 (5) O65—N62—O66 121.8 (9)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C4/C15/C16 ring.

D—H···A D—H H···A D···A D—H···A
O6—H6···O5 0.82 1.81 2.526 (6) 146
O11—H11···O12 0.82 1.80 2.526 (6) 146
O14—H14···O65i 0.82 2.07 2.779 (9) 145
N3*—H3*A···O13ii 0.89 2.00 2.874 (7) 167
N3*—H3*C···O63 0.89 1.99 2.865 (8) 168
O41—H41···O42 0.82 1.82 2.537 (6) 146
O44—H44···O14iii 0.82 2.08 2.888 (6) 168
O55—H55···O4* 0.82 1.93 2.724 (6) 163
N54—H54A···O43iv 0.89 2.18 2.890 (7) 136
N54—H54A···O44iv 0.89 2.05 2.843 (7) 147
N54—H54B···O62 0.89 1.99 2.836 (8) 159
N54—H54C···O64 0.89 2.05 2.876 (9) 155
C38—H38B···Cg2v 0.97 2.64 3.556 (7) 157

Symmetry codes: (i) x−1, y, z+1; (ii) x, y, z−1; (iii) x+2, y, z; (iv) x−1, y, z−1; (v) −x+1, y+1/2, −z+1.

Funding Statement

This work was funded by China Scholarship Council grant 201707045007 to G. Yang.

References

  1. Agrawal, P., Barthwal, S. K. & Barthwal, R. (2009). Eur. J. Med. Chem. 44, 1437–1451. [DOI] [PubMed]
  2. Arcamone, F. (1981). Doxorubicin: Anticancer Antibiotics. Academic Press.
  3. Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C. & Spalla, C. (1969). Biotechnol. Bioeng. 11, 1101–1110. [DOI] [PubMed]
  4. Barthwal, R., Agrawal, P., Tripathi, A. N., Sharma, U., Jagannathan, N. R. & Govil, G. (2008). Arch. Biochem. Biophys. 474, 48–64. [DOI] [PubMed]
  5. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. [DOI] [PMC free article] [PubMed]
  6. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cagel, M., Grotz, E., Bernabeu, E., Moretton, M. A. & Chiappetta, D. A. (2017). Drug Discov. Today, 22, 270–281. [DOI] [PubMed]
  8. Cappetta, D., Rossi, F., Piegari, E., Quaini, F., Berrino, L., Urbanek, K. & De Angelis, A. (2018). Pharmacol. Res. 127, 4–14. [DOI] [PubMed]
  9. Chaires, J. B. (1998). Curr. Opin. Struct. Biol. 8, 314–320. [DOI] [PubMed]
  10. Courseille, C., Busetta, B., Geoffre, S. & Hospital, M. (1979). Acta Cryst. B35, 764–767.
  11. Dassault Systèmes BIOVIA (2017). Discovery Studio Visualizer. San Diego, CA, USA.
  12. Denel-Bobrowska, M. & Marczak, A. (2017). Life Sci. 178, 1–8. [DOI] [PubMed]
  13. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  14. Duggan, S. T. & Keating, G. M. (2011). Drugs, 71, 2531–2558. [DOI] [PubMed]
  15. Eckle, E. & Stezowski, J. J. (1980). European Crystallographic Meeting, 6, 296.
  16. Eckle, E. & Stezowski, J. J. (1983). Z. Kristallogr. 162, 63.
  17. Eicher, T., Cha, H., Seeger, M. A., Brandstätter, L., El-Delik, J., Bohnert, J. A., Kern, W. V., Verrey, F., Grütter, M. G., Diederichs, K. & Pos, K. M. (2012). Proc. Natl Acad. Sci. 109, 5687–5692. [DOI] [PMC free article] [PubMed]
  18. Eswaramoorthy, S., Kumaran, D. & Swaminathan, S. (2001). Acta Cryst. D57, 1743–1746. [DOI] [PubMed]
  19. Frederick, C. A., Williams, L. D., Ughetto, G., Van der Marel, G. A., Van Boom, J. H., Rich, A. & Wang, A. H. J. (1990). Biochemistry, 29, 2538–2549. [PubMed]
  20. Genovese, I., Fiorillo, A., Ilari, A., Masciarelli, S., Fazi, F. & Colotti, G. (2017). Cell Death Dis. 8, e2950. [DOI] [PMC free article] [PubMed]
  21. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  22. Howerton, S. B., Nagpal, A. & Dean Williams, L. (2003). Biopolymers, 69, 87–99. [DOI] [PubMed]
  23. Jung, K. & Reszka, R. (2001). Adv. Drug Deliv. Rev. 49, 87–105. [DOI] [PubMed]
  24. Leonard, G. A., Hambley, T. W., McAuley-Hecht, K., Brown, T. & Hunter, W. N. (1993). Acta Cryst. D49, 458–467. [DOI] [PubMed]
  25. Leung, K. K. K. & Shilton, B. H. (2015). Biochemistry, 54, 7438–7448. [DOI] [PubMed]
  26. Lipscomb, L. A., Peek, M. E., Zhou, F. X., Bertrand, J. A., VanDerveer, D. & Williams, L. D. (1994). Biochemistry, 33, 3649–3659. [DOI] [PubMed]
  27. Liu, L. F. (1989). Annu. Rev. Biochem. 58, 351–375. [DOI] [PubMed]
  28. López-González, A., Diz, P., Gutierrez, L., Almagro, E., Palomo, A. G. & Provencio, M. (2013). Ann. Transl. Med. 1, 5. [DOI] [PMC free article] [PubMed]
  29. Ming, L.-J. (2003). Med. Res. Rev. 23, 697–762. [DOI] [PubMed]
  30. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. (2006). Nature, 443, 173–179. [DOI] [PubMed]
  31. Neidle, S. & Taylor, G. (1977). Biochim. Biophys. Acta, 479, 450–459. [DOI] [PubMed]
  32. Palmer, D. (2017). CrystalMaker. Begbroke, Oxfordshire, England: CrystalMaker Software Ltd.
  33. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  34. Post, G. C., Barthel, B. L., Burkhart, D. J., Hagadorn, J. R. & Koch, T. H. (2005). J. Med. Chem. 48, 7648–7657. [DOI] [PubMed]
  35. Shafei, A., El-Bakly, W., Sobhy, A., Wagdy, O., Reda, A., Aboelenin, O., Marzouk, A., El Habak, K., Mostafa, R., Ali, M. A. & Ellithy, M. (2017). Biomed. Pharmacother. 95, 1209–1218. [DOI] [PubMed]
  36. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  37. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  38. Weiss, R. B. (1992). Semin. Oncol. 19, 670–686. [PubMed]
  39. Yang, X.-L. & Wang, A. H.-J. (1999). Pharmacol. Ther. 83, 181–215. [DOI] [PubMed]
  40. Yu, M. K., Jeong, Y. Y., Park, J., Park, S., Kim, J. W., Min, J. J., Kim, K. & Jon, S. (2008). Angew. Chem. Int. Ed. 47, 5362–5365. [DOI] [PubMed]
  41. Zhu, S., Yan, L., Ji, X. & Lu, W. (2010). J. Mol. Struct. Theochem, 951, 60–68.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018002955/wm5435sup1.cif

e-74-00400-sup1.cif (1,006.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018002955/wm5435Isup2.hkl

e-74-00400-Isup2.hkl (853.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018002955/wm5435Isup3.cdx

CCDC reference: 1815074

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES